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Abstract: Micrometer-sized silicon chips have been demonstrated to be cell-internalizable, offering
the possibility of introducing in cells even smaller nanoelements for intracellular applications. On the
other hand, silicon nanowires on extracellular devices have been widely studied as biosensors or
drug delivery systems. Here, we propose the integration of silicon nanowires on cell-internalizable
chips in order to combine the functional features of both approaches for advanced intracellular
applications. As an initial fundamental study, the cellular uptake in HeLa cells of silicon 3 um X 3 um
nanowire-based chips with two different morphologies was investigated, and the results were
compared with those of non-nanostructured silicon chips. Chip internalization without affecting
cell viability was achieved in all cases; however, important cell behavior differences were observed.
In particular, the first stage of cell internalization was favored by silicon nanowire interfaces with
respect to bulk silicon. In addition, chips were found inside membrane vesicles, and some nanowires
seemed to penetrate the cytosol, which opens the door to the development of silicon nanowire chips
as future intracellular sensors and drug delivery systems.

Keywords: silicon; nanowires; cells; biomimetics; microtechnology; microparticles

1. Introduction

Advances in miniaturization technologies are providing new tools to study fundamental issues in
cell biology [1-4]. For instance, integrated devices with nanosized parts offer a great opportunity to
develop extracellular sensors for cell mechanics [5] or intracellular devices for biomedical applications
such as drug delivery and disease diagnosis [6,7]. On the contrary, micro- and nanoparticles have
revealed an enormous potential for intracellular applications, as they are small enough to be internalized
by cells. Thus, the capability of silicon technologies to produce nanostructured chips smaller than
cells makes silicon a fascinating candidate for intracellular applications [8]. We have previously
demonstrated that intracellular silicon chips can be used for single-cell labeling [9,10], biomolecular
recognition [11], and cell mechanics studies [12]. On the other hand, devices based on semiconductor
nanowires [13,14] have vast potential use in advanced field-effect transistor applications [15,16] and
nanomechanics [17,18]. Furthermore, nanowire devices have been proved to transduce chemical and
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biological binding events into electronics, suggesting their potential for a highly sophisticated interface
for biological information [19-23]. Accordingly, extracellular or invasive devices with integrated silicon
nanowires have demonstrated their capability in many potential applications in cell biology. As relevant
examples, they have been used for delivering biomolecules into living cells by using the ability of
vertical silicon nanowires to penetrate the cell membrane [6,7], as efficient captors of circulating
tumor cells, as shown by nanopillar arrays [24,25], or for localized single-cell electroporation [26].
Furthermore, it has been reported that individual silicon nanowires can be internalized by cells [27,28].
However, the small size of single nanowires limits their prospective application inside living cells due
to their difficult intracellular visualization, their small surface area for molecular delivery, and the
difficulty to implement a transduction principle for sensing applications. In contrast, silicon nanowires
integrated on planar silicon chips have been demonstrated to offer innovative possibilities for a wide
range of applications [29]. Hence, in this work, we propose that silicon nanowires, used as building
blocks integrated on cell-internalizable silicon microchips, will open new application opportunities of
intracellular biology.

2. Materials and Methods

2.1. Technology for the Fabrication of Microchips Decorated with Silicon Nanowires and Isolated Silicon
Nanowire Entangled Meshes

Correlated technical approaches were followed to fabricate three distinct silicon microchips with
well-controlled dimensions and different morphologies: (1) polysilicon microchips (SipCs) to be used
as a control during the biological experiments; (2) polysilicon microchips decorated with randomly
distributed silicon nanowires (SinC+SiNWs), and (3) isolated silicon nanowire entangled meshes
(SINW-Meshes). The starting substrate for all silicon microchips consisted of a 1 um-thick silicon oxide
layer deposited by chemical vapor deposition (CVD) over a 100 mm-diameter p-type silicon wafer
(Figure Sla). SipCs were produced out of a 500 nm-thick polysilicon layer deposited by chemical vapor
deposition (Figure 1a and Figure S1b) over the previous oxide layer. Then, a 1.2 pm-thick HiPR 6512
photoresist (Fujifilm, Valhalla, NY, USA) was spun onto the polysilicon layer to subsequently define
the lateral dimensions by a photolithographic step followed by polysilicon dry etching (Figure 1b
and Figure Slc—f). Finally, the photoresist was stripped, obtaining an array of 3 pm X 3 um chips
separated by 3 um (Figure 1c). SinC+SiNWs were produced by the initial deposition of gold catalyst
nanoparticles over a batch of SiuCs using the galvanic displacement deposition method, ensuring
nanoparticle deposition only at the polysilicon surfaces of the microchips (Figure 1d and Figure S1h) [30].
Then, the nanowires were grown using the vapor-liquid-solid mechanism (VLS) (Figure 1e) [13].
Randomly oriented nanowires were obtained, as polysilicon is composed of silicon crystals, e.g., grains,
which have random crystallographic orientations (Figure 1f and Figure S2). Lastly, SINW-Meshes
were produced by shortening the polysilicon deposition time in order to obtain isolated nucleated
polysilicon nanoclusters (Figure 1g). The diameter and density of the nanoclusters were fixed by
the deposition conditions (temperature 580 °C, pressure 350 mTorr, and a SiHy flow rate of 40 sccm).
The nucleation of nanometer-scale crystallites occurs in the initial stage of polysilicon deposition [31],
which would form a continuous layer if the process continues (SI, Figure S2). After nanocluster
formation, a photolithographic step followed by polysilicon dry etching (Figure 1h,i) defined the
lateral dimensions of the chips (3 pm X 3 um). Again, the galvanic displacement deposition of gold
nanoparticles ensured their deposition only on the polysilicon nanoclusters (Figure 1j). Finally, the
silicon nanowires were grown (Figure 1k), and entangled meshes were obtained due to the random
crystallographic orientations of the nanoclusters (Figure 11).
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Silicon oxide Polysilicon @ Gold nanoparticle / Silicon nanowire

Figure 1. Fabrication of the silicon chips. Polysilicon microchips (SipCs), (a) deposition of a 500 nm-thick
polysilicon layer on a silicon oxide sacrificial layer; (b) Polysilicon patterning delimited the device;
(c) SEM image of the fabricated devices on the wafer. Polysilicon microchips decorated with randomly
distributed silicon nanowires (SipnC+SiNWs), (d) selective gold nanoparticle deposition on SiuCs;
(e) Silicon nanowire growth via the vapor-liquid-solid (VLS) mechanism; (f) SEM image of the
fabricated devices on the wafer. Silicon nanowire entangled meshes (SINW-Meshes), (g) Polysilicon
deposition on the silicon oxide sacrificial layer was stopped at the nucleation stage, and a non-continuous
polysilicon layer was formed; (h) The polysilicon nanoclusters patterning shapes the device; (i) SEM
image of polysilicon nanoclusters (inset, image zoom); (j) Selective gold nanoparticle deposition on the
nanoclusters; (k) Silicon nanowire growth via the VLS mechanism; (I) SEM image of the fabricated
SiNW-Meshes on the wafer; (m) SipCs; (n) SinC+SiNWs; and (o,p) SINW-Meshes after their release.
Arrows indicate the chip orientation (white: top-side up, blue: bottom-side up). Scale bar = 3 pum.
White scale bars = 3 um. Black scale bar = 500 nm.

Lastly, the chips were released by sacrificial etching of the silicon oxide layer in vapors of 49%
HF, then suspended in 96% ethanol by using an ultrasonic bath, centrifuged at 5000x g for 3 min
(MiniSpin Plus®, Eppendorf AG, Hamburg, Germany), and collected in Eppendorf tubes for later
cell studies (Figure Im—p). Due to the fragility of the SINW-Meshes, the process had to be slightly
modified, softening the release conditions, avoiding the application of ultrasounds, and reducing the
spin time to 2 min.



Nanomaterials 2020, 10, 893 4 of 14

2.2. Nanowire Growth Method Assisted by Catalyst Gold Deposition

Gold nanoparticles were selectively deposited on the polysilicon chip surfaces via galvanic
displacement by immersing the substrates in a reverse micellar microemulsion. The microemulsion
was synthesized by mixing an aqueous plating solution with n-heptane and the surfactant sodium
bis(2-ethylhexyl) sulfosuccinate (AOT, CpoH37;07S5Na). The aqueous solution consisted of 0.2 M
HF and 0.01 M KAuCly, while the AOT/heptane solution contained a final concentration of 0.33 M
AQT in n-heptane. Micellar radius (Ry) was determined by the water-to-surfactant molar ratio,
R = [HyOJ/[AOT], according to the empiric law Ry, = 0.175R + 1.5 [30]. A molar ratio of R = 20 and
an immersion time of 10-30 s were used. Silicon nanowires were grown via the VLS mechanism in
a homemade CVD system at 750-800 °C and atmospheric pressure. We used 10% H, in Ar as both
diluent and carrier gas, with flows rates of 270 sccm and 40-50 sccm, respectively. The carrier gas was
passed through a liquid SiCl4 bubbler kept at 0 °C to maintain a constant vapor pressure.

2.3. Cell Culture and Silicon Chips Internalization Methodologies

HelLa cells were cultured in Dulbecco’s modified Eagle medium (DMEM) containing 1 g/L glucose
and supplemented with 10% fetal calf serum, 2 mM glutamine, 5 U/mL penicillin, and 5 ng/mL
streptomycin. The cultures were maintained at 37 °C in a 5% C0O,-95% air atmosphere. Upon reaching
80% confluency, the cells were detached using a 0.25 mg/mL trypsin/EDTA solution and seeded at a
density of 50,000 cells/cm? in the specified support for each experiment. After 24 h, the medium was
replaced by an internalization solution containing silicon chips (SiuCs, SipC+SiNWs, or SINW-Meshes),
in a ratio of 10 silicon chips/cell, and FuGene® 6 (Promega, Madison, W1, USA) in Opti-MEM medium
(Thermo Fisher Scientific, Waltham, MA, USA). After 24 h, the internalization solution was removed,
and the cells were washed for three times with Opti-MEM and processed for observation.

2.4. Living Cells Confocal Microscopy and Viability Assay

To assess cell viability, the membrane-permeable dye Calcein acetoxymethyl ester (Calcein-AM,
Invitrogen, Carlsbad, CA, United States) was prepared as a stock solution of 2 mM in dimethylsulfoxide,
stored at —20 °C, and used at the final concentration of 5 uM in Opti-MEM. Cells seeded in 8-wells Nunc®
Lab-Tek® II (Thermo Fisher Scientific, Waltham, MA, USA) chambered coverglass and incubated with
the internalization solution as described above were rinsed with Opti-MEM and incubated with 50 uL
of Calcein-AM working solution at 37 °C in a CO, atmosphere. After 1 h, the Calcein-AM solution
was removed, and the cells were washed three times. The cells were maintained for 20 min at room
temperature for a complete de-esterification of the dye prior to their observation. Calcein-AM is a
non-fluorescent hydrophobic compound that easily permeates intact live cells. The hydrolysis of
Calcein-AM by intracellular esterases produces calcein, a hydrophilic. strongly fluorescent compound
that is well retained in the cell cytoplasm and that can be measured as a viability indicator. Images for
quantification were obtained using the Confocal Laser Scanning Microscope (CLSM) Leica TCS SP2
(Leica Lasertechnik GmbH, Mannheim, Germany) adapted to an inverted Leitz DMIRBE microscope
and using a HC Plan Apochromatic x20/0.70 oil immersion objective. To obtain the fluorescence images
from calcein, cells were excited with the 488 nm line of an argon ion laser, and the emission light of
500-600 nm was acquired. Silicon chips were simultaneously localized with the reflection mode of
the same excitation line in each image. Fluorescence density of calcein was measured using Image]J
software (v1.53a, NIH, Bethesda, MD, USA, http://imagej.nih.gov/ij/). Regions of interest were set for
each cell, and the presence or absence of silicon chips in the cells was determined by the observation of
dark spots and checked with the refection-mode image of each section. Experiments were performed
in triplicate, and at least 20 cells for each condition were measured in each experiment.
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2.5. Correlative Light and Electron Microscopy of Silicon Chips in HeLa Cells

HeLa cells were plated on square, home-made gridded glass pieces (1 cm X 1 cm) and incubated
with the internalization solution as described previously. Later, the samples were fixed with 2.5%
glutaraldehyde (EM grade; Sigma-Aldrich, St. Louis, MO, USA), dehydrated through a graded series
of ethanol/water mixtures up to 100% ethanol, and dried by the critical point method. The initial
localization of the silicon chips was made by bright-field optical microscopy (BFOM), using an Eclipse
ME600 upright optical microscope (Nikon Minato City, Tokyo, Japan) at X100 magnification (0.8 NA LU
Plan ELWD 3.5). Images were recorded on an 8-bit color CCD camera (DXM1200F, Nikon, Minato City,
Tokyo, Japan). The cells of interest were mapped on the gridded glass pieces and further localized and
observed by Scanning Electron Microscopy (SEM) at 5 keV (Auriga, Carl Zeiss GmbH, Oberkochen,
Germany). Once observed by SEM, the same cells were studied by Focused Ion Beam—-Scanning
Electron Microscopy (FIB-SEM) using Ga™ ions in a dual beam instrument (1560XB Cross Beam, Carl
Zeiss GmbH, Oberkochen, Germany).

2.6. EDX Analysis of Chips and HeLa Cells

HeLa cells seeded in 60 mm-diameter dishes and incubated with the internalization solution as
described above were fixed with 2.5% (v/v) glutaraldehyde in 100 mM phosphate buffer (PB, pH 7.0)
for 1.5h at4 °C. The fixed cells were harvested and pelleted, followed by three washes with 100 mM PB.
The cells were then post-fixed in 1% (w/v) osmium tetroxide for 2 h at 4 °C and washed three more times
with 100 mM PB. The cells were dehydrated through a graded acetone series, resin-infiltrated at room
temperature with several increasing Epon12/acetone mixtures and, finally, embedded in fresh Epon12
resin (EMS, Hatfield, PA, USA) for 5 h and polymerized for 48 h at 60 °C. A Reichert ultramicrotome
was used to produce 150 nm-thick slices that were collected over Formvar-carbonated copper grids
and stained with uranyl acetate (7%) and lead citrate. Energy dispersive-X-ray (EDX) analysis was
performed on cell pellets sections. Images were captured by an INCAx-act SEM (Oxford Instruments,
Abingdon-on-Thames, Oxford, UK), and the EDX spectrums were obtained using a PentaFET-Precision
system (Oxford Instruments, Abingdon-on-Thames, Oxford, UK) attached to the SEM equipment.

2.7. Sedimentation Tests of the Silicon Chips

The SiuCs, SipC+SiNWs, and SiNW-Meshes were suspended by ultrasounds in 96% ethanol,
centrifuged at 5000 g for 3 min (MiniSpin Plus®, Eppendorf AG, Hamburg, Germany), and collected
in three Eppendorf tubes, respectively. Next, the three samples were pipetted, and 2 uL drops were
deposited on a clean silicon substrate. After the solvent evaporated, the substrates were observed
by SEM. The chips on the substrates were counted in a top-side up and a bottom-side up position
and analyzed using Image] software. For each type of devices, three sets of 100 devices were counted
for statistics.

3. Results

3.1. Device Fabrication and Morphological Studies

We fabricated silicon chips with three different morphologies in order to study their cell
internalization and viability: SiuCs, SiuC+SiNWs, and SiNW-Meshes. All chips were fabricated using
semiconductor technologies based on photolithography to control their dimensions, in combination
with bottom-up silicon nanowire growth for high-aspect-ratio nanostructures (Figure 1 and Figure S1).
SEM imaging was used to study nanowire morphology (length, width, and density), which depends
on the growth parameters. The density and morphological features of the silicon nanowires are shown
in Table 1 and Figure S3. Nanowire growth times were fixed to 60 s and 90 s for SiuC+SiNWs and
SiNW-Meshes, respectively. A longer growth time was selected for the meshes in order to obtain
longer wires and ensure nanowire entanglement, as, in this case, there was no 500 nm-thick polysilicon
platform (SipCs) to ensure the structural integrity of the chips. An excessive wire growth time can ruin
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chip collection, as nanowire entanglements between neighboring chips can form (Figure S4). Lastly, the
chips were released by sacrificial etching of the silicon oxide layer in vapors of 49% HF (Figure 1m-p),
suspended in 96% ethanol, centrifuged at 5000 rpm for 3 min (MiniSpin Plus®, Eppendorf AG,
Hamburg, Germany), and collected in Eppendorf tubes for posterior cell studies. Top-side-up and
bottom-side-up images of SiuCs did not reveal any relevant morphological difference between them
(Figure 1m). On the contrary, SinC+SiNWs showed larger differences (Figure 1n), as only the top
side showed nanostructured silicon nanowires. On the other hand, SiINW-Meshes showed different
nanostructured morphologies on the two sides, i.e., polysilicon nanoclusters on the bottom-side-up
and silicon nanowires on the right-side-up (Figure 1o,p).

Table 1. Morphological statistics of the polysilicon nanoclusters and silicon nanowires. The table
shows the distribution of polysilicon nanocluster diameters (2) and densities and of nanowire length,
width, and density obtained for SipC+SiNWs and SiNW-Meshes. Counts, n: polysilicon nanoclusters
n = 6000, nanowires on SipC+SiNWs n = 1500, and nanowires on SINW-Meshes n = 2300.

(%} Density
(nm) (clusters/pum?)
Polysilicon nanoclusters 65+ 12 128 + 8
Length Width Density
(nm) (nm) (NWs/um?)
SipC+SiNWs 885 + 231 60+ 19 28+2
SiNW-Mesh 1124 + 405 71+16 47 +2

3.2. Cell Viability Assays

Our previous works demonstrated that lipofection of SiiCs and silicon-based pressure sensors
with similar dimensions was possible [11,12]. Thus, in this work we evaluated the lipofection of chips
with integrated silicon nanostructures. HeLa cells were lipofected with FuGene® and the fabricated
chips (see Materials and Methods). Later, HeLa cells viability was confirmed after 24 h exposure to
SipCs, SipC+SiNWs, and SINW-Meshes using the Calcein-AM method. Images related to the viability
studies were obtained using a Confocal Laser Scanning Microscope (CLSM) (Figure 2a—d). Microchips
appeared as black areas inside the cells. Remarkably, as shown in Figure 2e, the viability of the cells
with internalized silicon chips was practically unaffected.

3.3. Chip Internalization Studies in HeLa Cells

We next analyzed chips cellular uptake by using a BFOM. The chips appeared as opaque areas
in BFOM images because of the lower optical transmission of silicon (Figure 3a—c, left column).
The information provided by these images was not enough to unambiguously determine whether the
chips were inside or outside the cells. For this reason, optical and SEM correlative inspections and a
detailed cell mapping were combined to confirm chip internalization. SEM inspection only revealed
chips partially or totally outside the cells and did not allow the detection of those chips which were
totally internalized inside the cells (Figure 3a—c, second column from the left). Thus, complementary
focused ion beam (FIB) milling (S5 and Materials and Methods) was performed to visualize the chips
that were completely internalized and preserved inside the cells. Although internalization depends on
particle morphology and shape [32], we found chip internalization in HeLa cells for the three different
morphologies (Figure 3a—c, two right columns). Then, the localization of chips in the cell cultures
was analyzed. The majority of the chips for the three morphologies was cell-internalized at levels
between 59.2% and 74.8% (Figure 3d), and a lower proportion (21.6-36.7%) was partially internalized
or adherent to the cell membrane, indicative of an initial stage of internalization. Although a large
population of the cells, ~25%, with internalized chips carried only one chip (Figure 3e), cells carrying
up to 6 chips were found. These results show a great cell capacity to internalize silicon chips, and,
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remarkably, no significant differences with respect to internalization were found between chips with
micro- and nanomorphologies.

-
_
E

200 [l Cells with chips [ ] Cells without chips
> 1
=< 200 -
T 2007 [ 1
= 100 -
0 I I . . I
CTRL SiuC SiuC+SINW  SiNW-Mesh

Figure 2. Cell viability assays. Confocal images of (a) control cells and cells with internalized (b) SiuCs,
(c) SipC+SiNWs, and (d) SiNW-Meshes. (e) Graph of HeLa cells viability measured as the mean
fluorescence intensity (MFI) obtained by the Calcein method. Cells count, n, for (e): Control n = 209,
SipCs n = 366, SipC+SiNWs n = 377, SINW-Meshes n = 375. Scale bar = 50 um.
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Figure 3. Chip internalization in HeLa cells. HeLa cells with internalized (a) SipC, (b) SipC+SiNWs,
and (c) SINW-Mesh. Panels from left to right show: bright-field optical microscopy (BFOM), SEM,
SEM after focused ion beam (FIB) milling, and pseudo-colored detailed image (pink color indicates
silicon). Black arrows point out chips’ position. (d) Graph showing the proportion of chips laying on
the substrate outside the cells, on the cell membrane, and inside cells. (e) Graph showing the proportion
of cells with internalized chips. Chips and cells counts, n, for (d,e): SiuCs n = 170 and cells n = 345,
SipC+SiNWs n = 360 and cells n = 524, SINW-Meshes n = 297 and cells n = 418. Error bars: + 1SD.
Black scale bars = 10 um. White scale bars = 3 um.

We also explored the initial stage of chip internalization. The top and bottom sides of SiuCs
have equivalent morphologies, and, consistently, the SEM images did not reveal any preferred
chip orientation, top-side-up or bottom-side-up (Figure 4a, top panel). On the contrary, the strong
morphological asymmetry of SinC+SiNWs resulted in a favored orientation, which corresponded to
that of the contact of the nanowire with the cell membrane (Figure 4b, top panel). Finally, SiNW-Meshes
did not present statistical differences in chip orientation during cell internalization, in agreement with
the small morphological differences between the top and bottom nanostructured sides (Figure 4c,
top panel). These results indicate that initial cell contact was facilitated by nano-structured silicon
(Figure 4d,e) with respect to micro-structured silicon. In doubtful cases, where it was difficult to
distinguish cell filopodia of silicon nanowires, energy-dispersive X-ray spectroscopy (EDX) was used for
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material identification (Figure 4f and Figure S5 and Materials and Methods). Sedimentation tests only
with silicon chips were carried out in ethanol to discard any fluid dynamic effects on chip orientation
during deposition (Figure 4a—c, bottom panels and Materials and Methods). Although ethanol allowed
a faster dissipation and final clean surface for characterization, exhaustive sedimentation studies
should be done in culture medium. Significant differences were observed only for SipC+SiNWs
(Figure 4b, bottom panel). Regardless of their initial orientation, it seems that the chips settled down
with the flat micropart turned down and the nanowire side turned up and remained in this orientation,
similar to that of a shuttlecock.

B b
100 . 100 - . 100

9 SiuC g BSIUC+SINW 729 3 SiNW-Mesh

2 751 % 75 5 75 1 45

8 47.9 e K] E 45.5

c 50 4 c 50 c 50 I

o N 27.1 2 [

h=3 g a

£ 25 - £ 25 £ 25 -

o (3] O

0 0 A 0 v
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Energy (KeV)
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Figure 4. Silicon morphology-dependent orientation at the initial stage of internalization. (a-c) Graphs
showing the proportion of chips on the cell membrane (top panels) and on the silicon substrate after
the sedimentation tests (bottom panels) with the topside facing upwards or downwards for SipCs,
SipC+SiNWs and SiNW-Meshes, respectively. Pseudo-colored SEM images showing the initial contact
of (d) two and (e) one SipC+SiNWs chips with a HeLa cell (pink color indicates silicon); bottom panel,
detailed image of a nanowire on the cell membrane. White arrows indicate nanowire—cell contact sites.
White circles indicate EDX spectrum points. (f) EDX spectra confirmed silicon presence. Chips count,
n, for (a-c, top panel): SiuCs n = 170, SipC+SiNWs n = 360, SINW-Meshes n = 297. Chips count, n,
for (a-c, bottom panel): SipCs count n = 300, SipC+SiNWs n = 300, SINW-Meshes n = 300. Error bars:
+1SD. Black scale bars = 1 um. White scale bar = 200 nm.
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We also imaged chip localizations inside HeLa cells. For such study, 150 nm-thick sections of
resin-infiltrated cells were sliced by a microtome (see Experimental Section). SEM inspection and
EDX analysis were used to confirm the presence of silicon inside the cells (Figure 5). Our previous
works demonstrated that SipCs could be found in tight association with endosomal membranes
(Figure 5a) [33]. On the contrary, images of internalized SipC+SiNWs and SiNW-Meshes suggested
that they could be encircled by a lax endosomal-like membrane (Figures 5b and 3c right panel).
Cell membrane piercing by nanowires has been previously reported on cells laying on silicon nanowire
substrates [7,34-36]. Although, from our images, it seemed that some silicon nanowires pierced the
endosomal membrane and reached the cytosol (Figure 5b), we could not confirm this by EDX analysis,
as the nanowires could be wrapped by a tight endosomal membrane impossible to resolve by this
technique. Thus, chemical modification of the silicon nanowires with fluorescence dyes, which was
beyond the scope of this work, will be required to undoubtedly demonstrate the ability of these
nanowires to reach the cytosol [37].

1000
% 750 )
9 500
© 250
0
0O 04 08 12 16 20
Energy (KeV)
250
®
125
%)
o
O @
0 e N
0 04 08 12 16 20
Energy (KeV)

Figure 5. Silicon chips within HeLa cell compartments. Pseudo-colored images (left panels) showing
internalized (a) SipC and (b) a SipC+SiNWs chips. Right panels show the respective EDX spectra.
White encircled areas show the spots where the EDX analysis was performed. SEM images revealed
nanowires in the cytosol (white arrow). Counts per second (CPS). Scale bar = 1 um.

4. Discussion

In this work, the foundational technology used to fabricate SiuCs [11] was extrapolated to develop
distinct microchips decorated with silicon nanowires (SinC+SiNWs) and isolated silicon nanowire
entangled meshes (SINW-Meshes). The CVD process that defined the polysilicon thickness was tuned
to obtain either a 500 nm-thick layer as a base of SiuC+SiNWs or a layer of polysilicon nanoclusters for
SiNW-Meshes. Gold nanoparticles were then selectively deposited over the polysilicon portions of
both substrates to provide an anchoring position for subsequent silicon nanowire growth. An accurate
characterization of the silicon nanowires using SEM allowed the determination of their width, length,
density, and distribution in both cases (Table 1). Importantly, the width of the nanowires grown over
the chips or nanoclusters batches was comparable, demonstrating a consistent growth mechanism
throughout the samples. Furthermore, the increased length of the nanowires in the entangled meshes
was due to a longer growing time, as it was necessary to obtain nanowires long enough to assure the
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robustness of these particles due to their extreme fragility resulting from their lack of support, instead
provided to SinCs-NWs by the 500 nm-thick polysilicon layer. Thus, the release and collection method
had to be modified to avoid breaking the devices.

Further on, the interaction between cells and microchips was studied. Initially, cell viability assays
in HeLa cells demonstrated that the cells with and without internalized silicon chips had the same
viability, providing robust evidence that neither the material nor the structure or the chips altered the
functionality of the cells. Likewise, the internalization capability was similar for the three different
morphologies. Nonetheless, a morphological dependence in the initial stages of chip internalization was
observed. Both SipCs and the SINW-Meshes, with comparable top and bottom faces, were internalized
into the living cells top-side-up and bottom-side-up at similar rates. Alternatively, the very different
morphological faces of SipC-NWs presented two possible internalization pathways. It is also worth
mentioning that SINW-Meshes did not present statistical differences in chip orientation or number of
internalized chips, suggesting that the remaining gold nanoparticles at the tip of the nanowires did not
interfere or affect the internalization process [38]. Overall, the observed results suggest that HeLa cells
prefer specific interfaces in the first stages of cell internalization. This observation is in good agreement
with other works focused on 3D nanostructured platforms for cell trapping, which enhanced local
topographic interactions with extracellular extensions [24,25]. The inspection showed that SINWs share
nanoscaled size and shape with cellular surface components (Figure S6) like filopodia [39], suggesting
that bio-inspired nanomaterials could mimic cell structures and could be used to obtain new tools for
cell biology. To rule out possible interferences in the final intracellular position of the chips due to their
initial position, sedimentation studies of SipCs and SINW-Mesh were performed and showed that there
was not a preferred chip direction when the particles settled down. The fact that SinC+SiNWs were
preferentially deposited with their micropart in a lower position, while their nanowire side appeared
in contact with the cell membrane (Figure 4b) clearly supports the proposition that HeLa cells prefer
the silicon nanowires at the initial stage of chip internalization. The percentage of chips inside the cells
was similar for all the types of chips (Figure 3e). Previous works report that particles of different shape
and size could be internalized by different pathways [40], and cellular uptake kinetics could depend
on particle size [32]. These ideas along with the fact that, before internalization, the cells constantly
manipulate the chips, allowing the contact of their micro- and the nanoparts with the cell membrane,
could enhance the probability that cell internalize the chips by the most favorable pathway, in this case,
that involving the nanoparts.

Lastly, EDX was used for material identification (Figure 4f and Figure S5 and Materials and
Methods), allowing us to track to final location and interactions of the chips inside the cells. Interestingly,
the malleable membrane surrounding the chips could be pierced by physical means by the nanowires,
suggesting a direct passage from the endosomal membrane to the cytosol. Further chemical modification
of the nanowires could provide the means to corroborate and exploit the endosomal—cytosol orifice,
opening new opportunities for intracellular applications like drug delivery, sensing applications for
biomolecular recognition, or nanomechanical sensors.

5. Conclusions

We have developed a technology which allows a batch production of nanowire silicon chips with
controlled dimensions and that are cell-internalizable. In addition, these devices can be collected and
suspended for their posterior use in cell cultures. Cell viability assays with micro- and nanowire
chips were performed in HeLa cells and did not reveal any significant differences in viability when
compared with control cells. Understanding how the geometry and size of a material affect the cell
internalization processes is a crucial issue for the development of future intracellular tools. Hence, in
this work, we fabricated nanowire chips entirely made of a unique, fluorescence dye-free material, i.e.,
silicon, and determined the effects of morphology and size on cell internalization. Our experiments
showed that the internalization ratio for silicon chips with integrated SINWs and SiNWs meshes was
similar to that for non-nanostructured chips. However, differences were revealed in the initial stage
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of chip internalization. HeLa cells prefer SiNWs sides (nano- instead of microstructured silicon) for
initial uptake. This could be related to the fact that particles of different size could be internalized
by different pathways with different kinetics [35]. Finally, the ability to produce chips decorated
with a large amount of silicon nanowires and with a high area-to-volume ratio that allows a large
payload opens new opportunities for intracellular drug delivery. Furthermore, chips trapped in lax
membrane-bound compartments can provide an enhanced loading capacity [38] and could be released
in the cytosol by membrane disruption. Additionally, nanowire intracellular devices have a potential
use in sensing applications [7,39]. For instance, chemical functionalization of the nanowires could
produce valuable devices for biomolecular recognition [23,32]. In addition, the implementation of
SiNWs on intracellular chips as nanomechanical sensors [40] will provide invaluable information on
intracellular forces involved in many fundamental cellular processes. In conclusion, the capabilities of
the cell-internalizable nanowire silicon chips make them excellent candidates for future applications in
living cells [41].

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/5/893/s1,
Figure S1: Detailed sequence of the steps for the fabrication of the silicon chips. Figure S2: Polysilicon film
formation: Nucleation and growth. Figure S3: Silicon nanowires and polysilicon nanoclusters morphology.
Figure S4: Nanowire length controlled by growth time. Figure S5: BFOM, SEM, and FIB inspection of cells and
silicon chips. Figure S6: Silicon nanowires mimic cell surface structures.
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