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Abstract: TiO2/WO3 nanofibers were prepared in a one-step process by electrospinning. Titanium(IV)
bis(ammonium lactato)dihydroxide (TiBALDH) and ammonium metatungstate (AMT) were used
as water-soluble Ti and W precursors, respectively. Polyvinylpyrrolidone (PVP) and varying ratios
of TiBALDH and AMT were dissolved in a mixture of H2O, EtOH and CH3COOH. The as-spun
fibers were then heated in air at 1 ◦C min−1 until 600 ◦C to form TiO2/WO3 composite nanofibers.
Fiber characterization was done using TG/DTA, SEM–EDX, FTIR, XRD, and Raman. The annealed
composite nanofibers had a diameter range of 130–1940 nm, and the results showed a growth in the
fiber diameter with an increasing amount of WO3. The photocatalytic property of the fibers was
also checked for methyl orange bleaching in visible and UV light. In visible light, the photocatalytic
activity increased with an increase in the ratio of AMT, while 50% TiBALDH composite fibers showed
the highest activity among the as-prepared fibers in UV light.

Keywords: electrospinning; polyvinylpyrrolidone; titanium(IV) bis(ammonium lactato) dihydroxide;
ammonium metatungstate; nanofibers; photocatalysis

1. Introduction

The main challenges in enhancing the efficiency of the photocatalytic activity of TiO2 are to
increase its light-absorbing range to a higher wavelength and to decrease the speed of the charge
carriers to recombine [1–5]. Different methods of overcoming these problems have been reported.
One such strategy is to prepare composites of TiO2 with semiconductor metal oxides that have a
narrow bandgap. Tungsten oxide has been widely reported to have excellent photochromic and
electrochromic properties. WO3 has a higher discharge capacity, a smaller bandgap, and is, therefore,
a suitable compound to combine with TiO2 [6–8]. Many methods of coupling TiO2 with WO3 have
been reported. Smith et al. prepared TiO2–WO3 composite nanotubes by anodic oxidation of their
precursors [9]. Szilagyi et al. used electrospinning to synthesize WO3 fibers and coated them with
TiO2 using atomic layer deposition (ALD) [10]. Reyes et al. incorporated WO3 into TiO2 nanotubes
by electrodeposition [11]. Chakornpradit et al. used sol-gel and electrospinning methods to prepare
TiO2/WO3 composite micro-nanofibers [12]. Epifani et al. prepared TiO2/WO3 nanocomposites
by colloidal processing in solvothermal conditions [13]. The challenge of synthesizing composite
TiO2/WO3 nanofibers using a single technique has been that while most TiO2 precursors hydrolyze in
water, WO3 precursors are water-soluble.
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In our previous study, we used a water-soluble precursor to prepare TiO2 nanofibers by
electrospinning [14]. The study presents the possibility of fabricating composite nanofibers from
TiO2 and other metal oxides in a one-step synthesis using electrospinning. Electrospinning has been
reported extensively as a suitable method for preparing nanofibers that are uniform and have a large
surface area [15–19]. This technique uses an electrically charged jet of polymer solution, or melt is
used to form nanofibers that are collected on a grounded target [20–24].

In this study, an aqueous solution of polyvinylpyrrolidone (PVP), titanium(IV) bis(ammonium
lactate)dihydroxide (TiBALDH), and ammonium metatangstate (AMT) was electrospun, and the
as-synthesized fibers annealed to form TiO2/WO3 composite nanofibers. We investigated how the
properties of the electrospun fibers changed when different volume ratios of precursor solutions were
used. A simultaneous thermogravimetry/differential thermal analysis (TG/DTA) of the electrospun
fibers was done in air and nitrogen to determine the annealing temperatures. By annealing the
electrospun fibers at 600 ◦C in air, the polymer was removed, and the precursors decomposed to form
TiO2/WO3 nanofibers. The fibers were studied using Fourier transform infrared spectroscopy (FTIR),
scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The specific surface area of the
annealed fibers was studied by the Bruneauer–Emmett–Teller (BET) method. The annealed nanofibers
were investigated by X-ray diffraction (XRD), Raman spectroscopy and UV-Vis diffuse reflectance
spectroscopy as well. The bandgap of the annealed fibers was also determined. The photocatalytic
activity of the fibers in UV and visible light was investigated using methyl orange.

2. Materials and Methods

2.1. Materials

All the chemicals were of analytical grade and used as received. Polyvinylpyrrolidone (PVP,
(C6H9NO)n, × K-90), ethyl alcohol, acetic acid, titanium(IV) bis(ammonium lactato)dihydroxide
solution (50 wt % in water), and Ammonium metatungstate were obtained from Sigma Aldrich,
(Budapest, Hungary).

2.2. Preparation and Characterization of TiO2/WO3 Fibers

The polymer solution had 20 wt % PVP dissolved in a 1:1 mixture of acetic acid and ethyl alcohol.
An aqueous solution of AMT contained 1 g of AMT in 1 mL of distilled water. The solution for
electrospinning was prepared by adding 2 mL of the polymer solution to 2 mL of an aqueous solution
containing different TiBALDH: AMT volume ratios 100:0, 90:10, 50:50, 10:90 and 0:100. The solution was
magnetically stirred at 25 ◦C for 6 h. For the electrospinning procedure, the solution was transferred
into a 10 mL plastic syringe fitted with a needle. The voltage used was 20 kV, the flow rate was 1 mLh−1,
and the distance between the needle and the collecting plate was 15 cm.

The thermal properties of the as-spun fibers were studied in air and nitrogen using an A STD 2960
Simultaneous DTA/TGA (TA Instruments Inc., New Castle, DE, USA) thermal analyzer. A heating rate
of 10 ◦C min−1 was used, and the fibers were heated to 600 ◦C. The as-spun fibers were calcined in air
at 600 ◦C for 6 h to form nanofibers. The heating rate used was 1 ◦C min−1 up to 600 ◦C.

The morphology of the as-spun and annealed fibers was characterized by SEM using a JEOL
JSM-5500LV (Tokyo, Japan) scanning electron microscope coupled with energy dispersive X-ray (EDX).
All the fibers were covered with a thin Au/Pd layer, using a sputter coater.

The surface area analysis of the annealed fibers was done by a multipoint Brunauer–Emmett–Teller
(BET) method, using nitrogen adsorption/desorption isotherm measurements at 25 ◦C.

A Nicolet 6700 (Thermo fisher scientific USA) Fourier transform infrared spectrophotometer was
used to obtain the FTIR spectra of the fibers in the range of 400–4000 cm−1 in transmittance mode.

The XRD patterns of the annealed fibers were obtained with a X’pert Pro MPD X-ray diffractometer
(PANalytical, Almelo, Netherlands), using Cu Kα irradiation. Raman spectroscopy was done using
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a Jobin Yvon Labram Raman instrument (Horiba, Kyoto, Japan) with an Olympus BX41 microscope
(Olympus, Tokyo, Japan) fitted with a green Nd-YAG laser. The measuring range was 72–1560 cm−1.

The diffuse reflectance UV-Vis absorption spectra of the annealed fibers were measured by
(Avantes BV, Apeldoorn, Netherlands) with fiber optic spectrophotometer between 250 and 800 nm.
The bandgap was calculated using the Kubelka–Munk theory from the Tauc plots [25].

2.3. Photocatalysis

The photocatalytic activity of the fibers was investigated in both UV and visible light. In a
quartz cuvette, 1.0 mg of the annealed fibers mixed with 3 mL of 4 × 10−5 M aqueous methyl orange
solution. The samples were left in the dark for 24 h and then exposed to UV and visible light lamps.
The decomposition of the methyl orange was checked by measuring the absorbance of its most intense
peak (464 nm) every half-hour using a Jasco V-550 UV-VIS spectrometer (Jasco, Tokyo, Japan) for
240 minutes.

3. Results and Discussion

Figure 1 shows the TG/DTA curves for the thermal decomposition of the as-spun fibers in air
and nitrogen. The decomposition process was continuous in both conditions. The DTA curves for
the decomposition process in air showed exothermic peaks because of the decomposition reactions
that occurred. In nitrogen, the fiber components decomposed without combustion, and the DTA
curves showed endothermic peaks. The residual mass was higher when the fibers were decomposed
in nitrogen due to the presence of unburnt carbon [15].

When the fibers were decomposed in air, there was a loss of mass of about 6% at around 100 ◦C
due to the loss of water. The exothermic peaks between 300 and 350 ◦C (Figure 1a–e) are due to the
decomposition and combustion of PVP, and AMT also begins to decompose at this stage. In Figure 1b–e,
the exothermic peaks at around 400–480 ◦C are due to the degradation and decomposition of TiBALDH.
In Figure 1a–d, the exothermic peak between 510 and 560 ◦C can be attributed to the burning of
the carbon residue of PVP. The as-formed h-WO3 also transformed into m-MO3 in this stage [26].
The decomposition of the polymer and the degradation of the precursors finished at around 560 ◦C.
The resulting fibers showed a significant increase in mass with an increase in the concentration of
AMT. This is consistent with the theoretical knowledge, since AMT is about 94.1% WO3 by mass,
while TiBALDH is 27.2% TiO2 by mass.

The SEM images of the as-spun fibers are shown in Figure 2. The diameter of the fibers increased
with an increase in the AMT ratio. The diameter was 630–800 nm for 100% TiBALDH, 720–1050 nm for
90% TiBALDH, 920–1170 nm for 50% TiBALDH, 980–1200 nm for 10% TiBALDH and 1930–2950 nm
for 0% TiBALDH.

As shown in Figure 3, the diameter of the fibers reduced after annealing. This can be attributed to
the decomposition and degradation of PVP, TiBALDH, and AMT. The fibers had a diameter between
130 and 170 nm for 100% TiBALDH, 420 and 480 nm for 90% TiBALDH, 700 and 740 nm for 50%
TiBALDH, 780 and 1020 nm for 10% TiBALDH, and 1610 and 1940 nm for 0% TiBALDH. The elemental
composition and the specific surface area of the annealed fibers are shown in Table 1.
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TiBALDH, (c) 50% TiBALDH, (d) 90% TiBALDH and (e) 100% TiBALDH.
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Figure 3. SEM images of annealed fibers (a) 0% TiBALDH, (b) 10% TiBALDH (c) 50% TiBALDH, (d)
90% TiBALDH, and (e) 100% TiBALDH.

Table 1. The diameter of as-spun and annealed fibers, elemental composition and specific surface area
of annealed fibers.

Fibers Diameter (d/nm) Elemental Composition
(wt %)

Surface Area
(m2/g)

as-Spun
Fibers

Annealed
Fibers Ti W O

100% TiBALDH 630–800 130–170 35.8 64.2 1.5
90% TiBALDH 720–1050 420–480 32.2 6.0 61.8 49.4
50% TiBALDH 920–1170 700–740 12.1 23.1 64.7 25.8
10% TiBALDH 980–1200 780–1020 7.3 28.8 63.9 11.3
0% TiBALDH 1930–2950 1610–1940 36.8 63.2 9.3

The FTIR spectra of the fibers are shown in Figure 4. For the as-spun nanofibers, the vibration
peaks at around 3200 cm−1 are due to the stretching vibrations of –OH from water and –NH functional
groups from AMT [27]. Peaks between 2980 and 2870 cm−1 are associated with the C–H stretching
vibrations from the lactato ligands of TiBALDH. The peak at around 1700 cm−1 corresponds to the
C=O stretching and the –NH bending vibrations in TiBALDH, while around 1430 cm−1 and 1470 cm−1

bands bending –CH bonds of CH2 in PVP and deformation mode of the NH4
+ ion in AMT can be

observed. C–O and C–N stretching bands of PVP can be seen in the range 1250–1220 cm−1. Stretching
and bending vibrations of C=C can be seen at 1550 cm−1 and 980 cm−1, respectively [28]. Peaks at
around 700–900 cm−1 can be attributed to W–O vibrations. The peak at around 550 cm−1 is assigned to
Ti–O stretching motions [29]. After annealing C–H, C=O, C–N, and C=C, vibration peaks disappeared,
demonstrating that the annealing process was successful.
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Figure 5 shows the XRD patterns of the as-spun and annealed fibers. The XRD pattern of the
as-spun fibers did not show distinct diffraction peaks due to the amorphous nature of the as-spun
fibers. The XRD pattern of 100% TiBALDH fibers was indexed to ICDD 04-022-6651. The pattern had
peaks corresponding to the anatase form of TiO2. The diffraction peaks at 2θ = 25.3, 28.6, 48.1, 55.1 and
62.7 corresponded to (101), (112), (200), (105) and (204), respectively [30,31]. The XRD pattern of 0%
TiBALDH fibers was indexed to ICDD 04-021-7427 and corresponded to the monoclinic form of WO3.
The pattern showed the main characteristic peaks corresponding to (002), (020), (200) and (202) planes
at 2θ = 23.1, 23.6, 24.4, and 34.2, respectively [32]. The XRD patterns for 90%, 50%, and 10% TiBALDH
showed peaks corresponding to the anatase form of TiO2 and monoclinic forms of WO3.
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Figure 6 shows the Raman spectra of the annealed fibers; 100% TiBALDH showed Raman active
modes for anatase TiO2; 144 cm−1 (Eg), 197 cm−1 (Eg), 399 cm−1 (B1g), 515 cm−1 (A1g) and 630 cm−1

(Eg) [19]. The peaks at 720 cm−1 and 805 cm−1 for 0% TiBALDH can be assigned to the O=W=O
stretching vibrations characteristic of monoclinic WO3 [33]. The Raman spectra for annealed 10%, 50%,
and 90% TiBALDH showed Raman peaks for both anatase TiO2 and monoclinic WO3.

Nanomaterials 2020, 10, x  7 of 12 

 

Figure 5 shows the XRD patterns of the as-spun and annealed fibers. The XRD pattern of the as-
spun fibers did not show distinct diffraction peaks due to the amorphous nature of the as-spun fibers. 
The XRD pattern of 100% TiBALDH fibers was indexed to ICDD 04-022-6651. The pattern had peaks 
corresponding to the anatase form of TiO2. The diffraction peaks at 2θ = 25.3, 28.6, 48.1, 55.1 and 62.7 
corresponded to (101), (112), (200), (105) and (204), respectively [30,31]. The XRD pattern of 0% 
TiBALDH fibers was indexed to ICDD 04-021-7427 and corresponded to the monoclinic form of WO3. 
The pattern showed the main characteristic peaks corresponding to (002), (020), (200) and (202) planes 
at 2θ = 23.1, 23.6, 24.4, and 34.2, respectively [32]. The XRD patterns for 90%, 50%, and 10% TiBALDH 
showed peaks corresponding to the anatase form of TiO2 and monoclinic forms of WO3. 

Figure 5. XRD patterns: (a) as spun fibers, and (b) as annealed fibers. 

Figure 6 shows the Raman spectra of the annealed fibers; 100% TiBALDH showed Raman active 
modes for anatase TiO2; 144 cm−1 (Eg), 197 cm−1 (Eg), 399 cm−1 (B1g), 515 cm−1 (A1g) and 630 cm−1 (Eg) [19]. 
The peaks at 720 cm−1 and 805 cm−1 for 0% TiBALDH can be assigned to the O=W=O stretching 
vibrations characteristic of monoclinic WO3 [33]. The Raman spectra for annealed 10%, 50%, and 90% 
TiBALDH showed Raman peaks for both anatase TiO2 and monoclinic WO3. 

 

Figure 6. Raman spectra of annealed fibers. Figure 6. Raman spectra of annealed fibers.

The diffuse reflectance spectra in Figure 7 showed that the absorption edge of the fibers increased
with an increase in the concentration of AMT. The increase in the absorption edge implies that the
composite nanofibers can absorb light at a higher wavelength. Therefore, they can utilize light more
efficiently during the process of photocatalysis [22]. The bandgap was calculated from the Tauc
plots (Figure S1) using Kubelka-Munk theory. The bandgap decreased as the ratio of AMT increased,
as shown in Table 2. This confirmed that the electrospinning process resulted in the coupling of TiO2

with WO3, hence a decrease in the bandgap. This is significant, as the decrease in the bandgap can
enable the composite fibers to absorb light in the visible region of the electromagnetic spectrum.
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Table 2. Bandgap values for the annealed fibers.

Fibers 100%
TiBALDH 90% TiBALDH 50% TiBALDH 10% TiBALDH 0% TiBALDH

Bandgap [eV] 3.06 2.96 2.73 2.62 2.58

Figure 8 illustrates the rate of photocatalytic degradation of methyl orange in the presence of
annealed fibers in UV and visible light. In UV light, P25 showed higher photocatalytic activity than the
annealed fibers. For the as-prepared fibers, 50% TiBALDH fibers showed the highest photocatalytic
activity after 240 min, and its activity was very close to that of P25. This can result from the combination
of TiO2 and WO3, which decreased the rate of recombination of photogenerated electrons and holes
during the photocatalytic process. In visible light, 0% TiBALDH fibers had the greatest photocatalytic
activity. For the composite fibers, the photocatalytic activity increased with the increase in the ratio of
AMT. The fibers had increased absorption edges and could absorb light at a higher wavelength.

The reaction constants for the degradation of methyl orange was calculated using a pseudo
first-order kinetics model. A plot of −ln(A/Ao) against time gave a straight line (Figures S2 and S3),
and the slope represented the apparent rate constant (kapp) for the degradation reactions, as shown in
Tables 3 and 4. The kapp was consistent with the photocatalytic activity of the as-spun fibers. The fibers
that showed better photocatalytic activity had higher Kapp values.

The photocatalytic efficiency of the 50% TiBALDH fibers compared favorably with other composite
TiO2/WO3 fibers reported by other authors, as shown in Table 5.
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Table 3. Reaction rate constant and r2 values for the photocatalytic degradation of methyl orange in
UV light.

Sample kapp (min−1) r2

100% TiBALDH 0.0009 99.6
90% TiBALDH 0.0007 99.8
50% TiBALDH 0.0009 98.9
10% TiBALDH 0.0003 82.7
0% TiBALDH 0.0002 98.4

Bare Methyl Orange 0.00006 86.6
P25 0.001 99.8

Table 4. Reaction rate constant and r2 values for the photocatalytic degradation of methyl orange in
visible light.

Sample k (min−1) r2

100% TiBALDH 0.0001 86.1
90% TiBALDH 0.0002 91.4
50% TiBALDH 0.0001 87.2
10% TiBALDH 0.0002 78.1
0% TiBALDH 0.0002 92.0

Bare Methyl Orange 0.0006 86.0

Table 5. Comparison of photocatalytic efficiency of various WO3/TiO2 nanofibers.

Photocatalyst Method of Preparation A/A◦ Authors

WO3/TiO2 films Electrospinning and deposition 0.85 Soares et al. [34]
WO3/TiO2 core shell nanofibers Electrospinning and ALD 0.65 Szilagyi et al. [10]
WO3/TiO2-wood fibers Hydrothermal synthesis 0.2 Gao et al. [35]
WO3/TiO2 nanoparticles Hydrothermal sol-gel synthesis 0.2 Paula et al. [36]

4. Conclusions

TiO2/WO3 composite fibers were successfully synthesized by electrospinning, using water-soluble
precursors and annealing. The fibers were characterized by TG/DTA, SEM-EDX, FTIR, XRD, and Raman.
Annealed fibers had the anatase form of TiO2 and the monoclinic form of WO3. Different precursor
ratios were used to investigate how the concentration of the precursors affected different properties of
the fibers. The diameter of the fibers depended on the precursor ratio and increased with the increasing
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concentration of AMT. Composite fibers with 50% TiBALDH had higher photocatalytic activity in UV
light than pure fibers. This can be as a result of the reduction in the rate of recombination of the charge
carriers. The photocatalytic activity of the fibers in visible light increased with an increasing ratio of
AMT. Coupling TiO2 with WO3 can increase the absorption edge of the fibers, hence making the fibers
absorb light at a higher wavelength of the spectrum, thereby improving the photocatalytic property
of TiO2.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/5/882/s1,
Figure S1: Tauc plots for annealed fibers (a) 100% TiBALDH (b) 90% TiBALDH (c) 50% TiBALDH (d) 10%
TiBALDH (e) 0% TiBALDH, Figure S2: Graph for apparent rate constant and r2 values for the photocatalytic
degradation of methyl orange in UV light, Figure S3: Graph for apparent rate constant and r2 values for the
photocatalytic degradation of methyl orange in Visible light.
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