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Abstract: This study aims to identify the role of the various electronic states of gold in the catalytic
behavior of Au/MxOy/TiO; (where MyOy are Fe;O3 or MgO) for the liquid phase oxidation of
n-octanol, under mild conditions. For this purpose, Au/MxOy/TiO; catalysts were prepared by
deposition-precipitation with urea, varying the gold content (0.5 or 4 wt.%) and pretreatment
conditions (H; or O,), and characterized by low temperature nitrogen adsorption-desorption, X-ray
powder diffraction (XRD), energy dispersive spectroscopy (EDX), scanning transmission electron
microscopy-high angle annular dark field (STEM HAADF), diffuse reflectance Fourier transform
infrared (DRIFT) spectroscopy of CO adsorption, temperature-programmable desorption (TPD) of
ammonia and carbon dioxide, and X-ray photoelectron spectroscopy (XPS). Three states of gold were
identified on the surface of the catalysts, Au®, Ault and Au3t, and their ratio determined the catalysts
performance. Based on a comparison of catalytic and spectroscopic results, it may be concluded
that Au™ was the active site state, while Au® had negative effect, due to a partial blocking of Au’
by solvent. Au®" also inhibited the oxidation process, due to the strong adsorption of the solvent
and/or water formed during the reaction. Density functional theory (DFT) simulations confirmed
these suggestions. The dependence of selectivity on the ratio of Brensted acid centers to Bronsted
basic centers was revealed.

Keywords: gold catalysts; n-octanol oxidation; gold active sites; gold electronic state; support modifiers;
metal content; pretreatment atmosphere; DFT; solvent adsorption; acid-base centers; selectivity
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1. Introduction

The selective oxidation of alcohols to valuable carbonyl compounds is one of the most crucial
transformations in the chemical industry, for both laboratory and industrial manufacturing [1,2].
Traditionally, numerous oxidizing reagents (including toxic, expensive, stoichiometric oxidants [3,4]),
along with the use of harmful solvents and harsh reaction conditions, have been employed to
accomplish this transformation. Thus, these methods lead to environmental pollution and economic
problems [5-8]. Therefore, there is considerable need for more harmless and sustainable technologies,
requiring renewable feedstock, e.g., biomass, as replacement for fossil resources [9]. Therefore, a green
process, involving the use of non-toxic and cheap oxygen, in the presence of a heterogeneous catalyst
(used as a recyclable solid material in biomass processing), in mild conditions (atmospheric pressure,
low temperature and absence of bases and radical initiators) would be of great interest [10-13].

Supported gold catalysts have proved to be efficient in the liquid phase oxidation of alcohols,
due to their higher selectivity and better resistance to deactivation, compared to their conventional
noble metal counterparts [14-17]. However, the effect of a number of parameters, such as gold content,
particle size of gold, the preparation method, gold electronic state, influence of support modifiers,
redox pretreatment, etc., have not been investigated in detail.

Notably, n-octanol belongs to the group of low fatty alcohols, whose physical properties impose
constraints to the implementation of green chemistry approaches. One of the demanded oxidation
product of n-octanol is octanal or caprylic aldehyde, which occurs naturally in citrus oils and could be
used commercially as a component in perfumes and in flavor production for the food industry [18].
Compounds of octanoic acid, another n-octanol oxidation product, are found naturally in the milk
of various mammals, and as a minor constituent of coconut and palm kernel oils [19]. Octanoic acid,
also known as caprylic acid, has wide applications. In addition to the commercial production of
ester (octyl octanoate) for perfumery, as flavor and fragrance agents, and in the manufacture of dyes,
octanoic acid can be used as disinfectant [20] in commercial food handling and health care facilities.
In addition, it is currently being investigated as a treatment for voice tremor [21,22] and taken as a
dietary supplement [23].

Moreover, n-octanol is often used for comparative studies of catalytic activity in oxidation of
alcohols, as a convenient model of primary alcohols of long chain. However, among them, there are
very few studies where mild conditions have been applied for the efficient and selective liquid phase
oxidation of n-octanol using gold supported catalysts; they are briefly summarized in Table 1.

Li et al. [24] studied silica-supported Au-Cu and Au-Ag alloy nanoparticles (NPs), for the aerobic
oxidation of alcohols. For comparison, they also investigated the corresponding monometallic catalysts
in octanol oxidation. With a large catalyst load, 6 wt.% Au/SiO;, (alcohol/Au ratio, R = 8), they achieved
40% conversion of n-octanol in 4 h, with 17% aldehyde selectivity. Unfortunately, no information of
other products nor of electronic state of gold was provided.

Su et al. [25] suggested that the high dispersion of Au NPs and the electron donation effects of
aryl rings to the Au NPs within the large cages of the MIL-101 support are the main reasons for the
observed high activities of the Au/MIL-101 catalyst in the aerobic oxidation of alcohols, including
n-octanol, under base-free conditions.

Liu et al. [26] showed that Au/y-Ga,O3 was effective for the oxidation of several alcohols.
In particular, 45% octanol conversion was obtained after 2.5 h with 99% aldehyde selectivity, using a
low alcohol/Au ratio (R = 10). Nevertheless, the high catalytic performance exhibited was attributed to
the significantly enhanced dehydrogenation capabilities, due to a strong interaction between Au NPs
and the y-Gay O3 support, which was attributed to the presence of gold species detected by XPS with
binding energy (BE) 83.1-83.4 eV.

Haider et al. [27] described the oxidation of various types of alcohols over 1 wt.% Au/Cu, Mgy, Al.Ox
catalysts. In the case of n-octanol oxidation, 34% octanal yield was obtained at 90 °C after 3 h (Table 1).
Ex situ XANES of the fresh and spent catalysts revealed that a significant fraction of the deposited gold
existed as charged species (Au™).
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In a recent paper [28], MgO, ZnO and Nb,Os, representative of three different types of oxides
(basic, amphoteric and acidic, respectively), were used as supports for Au NPs. It was found that
the catalytic activity is influenced by the electron mobility between the Au NPs and the support,
which depends on the intermediate electronegativity of the support. However, besides the predominant
(Au®)°~ species in some active dried catalysts (2 wt.% Au-MgO-D and 2 wt.% Au-ZnO-D), cationic
gold (Au*) was also present. Selectivity in n-octanol oxidation, preferably towards ester formation in
the case of the most active catalyst, was influenced by redox properties of the gold species, acid-base
properties of the supports and catalyst pretreatment.

Our group widely investigated titania supported Au NPs with different modifiers, gold loading
and treatments in n-octanol oxidation [29-33] (Table 1). It was found that monovalent gold ions are
presumed to be the active sites in Au/MxOy/TiO, (M = La or Ce) [31-33]. The concentration, strength
and stability of these sites are determined by the gold content, the nature of the support and modifier,
and the pretreatment atmosphere.

Table 1. Catalytic oxidation of n-octanol using gold catalysts under mild conditions (1 atm, 80 °C).

- o
Catalyst Au Content, Oxidant Solvent R?admn R¢ Conv., % Selectivity, % Ref.
wt.% time, h Aldehyde Acid Ester
Au/SiO; 6 Oy toluene 4 8 40 17 [24]
Au/GazAl30g 1 (03 toluene 3 67 23 99 [25]
Au/MIL-101 2 0.5 O, toluene 3 67 38 99 [25]
Au/y-Ga,0; 25 0, Mes. d 25 10 45 99 [26]
Au/Cu,Mg, Al:Ox 1 0O, Mes. 3 95 34¢ 98 [27]
Au-Nb,O5-D P 2 O, n-heptane 6 100 5 58 0 42 [28]
Au-Nb,O5-H b 2 O, n-heptane 6 100 6 45 0 55 [28]
Au-ZnO-D 2 O, n-heptane 6 100 45 18 0 82 [28]
Au-ZnO-H 2 Oy n-heptane 6 100 38 20 0 80 [28]
Au-MgO-D 2 0O, n-heptane 6 100 65 15 10 75 [28]
Au-MgO-H 2 0O, n-heptane 6 100 27 35 15 50 [28]
Au/TiO,_pH, 4 O, n-heptane 6 100 11 81 3 16 [29]
Au/CeO,/TiO,_pH, 4 O, n-heptane 6 100 23 66 2 32 [29]
Au/Lay03/TiO,_pH; 4 Oy n-heptane 6 100 40 36 0 64 [29]
Au/Fe;03/TiO,_pH, 4 0O, n-heptane 6 100 15 58 0 42 [30]
Au/MgO/TiO,_pH; 4 O, n-heptane 6 100 20 67 2 31 [30]
Au/TiO,_pO, 0.5 O, n-heptane 6 100 17 28 52 20 [32]
Au/Fe;03/TiO,_pO, 0.5 O, n-heptane 6 100 41 36 21 43 This
Au/MgO/TiO,_pO, 0.5 O, n-heptane 6 100 43 38 20 42 work
Au/CeO,/TiO,_pO, 0.5 O, n-heptane 6 100 30 27 43 30 [32]
Au/LayO03/TiOy_pO, 0.5 O, n-heptane 6 100 63 26 11 63 [32]
Aw/TiO,_pO, 0.5 TBHP f - 6 5000 27 0 80 20 [33]
Au/CeO,/TiO,_pO, 0.5 TBHP - 6 5000 30 0 80 20 [33]
Au/LayO3/TiO;_pO, 0.5 TBHP - 6 5000 58 0 80 20 [33]

2 MIL-101: zeolite-type metal-organic framework; b D, dried; H, after thermal reductive treatment; ¢ R: alcohol/Au
ratio (mol/mol); d mes.: mesitylene at 90 °C; ¢ Instead of conversion, data on yield of aldehyde is given; f TBHP:
tert-butyl hydroperoxide.

Modification and treatment in a hydrogen atmosphere of 4 wt.% Au/MxOy/TiO; catalysts, where
MOy = Fe;03 or MgO modifiers, lead to the enhancement of Au/TiO; catalyst activity in 7-octanol
oxidation [30]. Changes in the catalytic behavior were associated with a change in the electronic state
of gold caused by the surface modification of TiO, with oxides of magnesium and iron. However,
the obtained experimental data turned out to be insufficient to identify the nature of the active site of
these catalytic systems.

Therefore, in this work we aimed to study, in detail, how various electronic states of gold are
formed under several factors, such as gold loading, treatment atmosphere, modifier nature, and how
they affect the catalytic performance of Au/MxOy/TiO; (MxOy = Fe;O3 or MgO) catalysts in n-octanol
oxidation under mild conditions.

2. Materials and Methods

Commercial nonporous TiO; P25 (Evonik Degussa GmbH, Essen, Germany) was used as the
initial support. Fe(NO3)3-9H,0 or Mg(NO3),-6H,O (Merck, Darmstadt, Germany) aqueous solutions
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were used for the modification of titania by impregnation method. Nominal molar ratio Ti/M (M = Fe
or Mg) was 40. Impregnated supports were dried at room temperature for 48 h and at 110 °C for 4 h,
with following calcination at 550 °C over 4 h. According to EDS results molar ratio Ti/M was closed
to nominal ones (37-39) for both modified supports, and the ratio did not change significantly after
gold deposition.

The method of deposition-precipitation with urea was used for gold deposition with 0.5 and
4 wt.% nominal loadings on the supports using HAuCly-3H,O (Merck, Darmstadt, Germany) as a
precursor. The process of gold deposition was conducted in the absence of light, according to the
previously reported procedure [34,35]. Shortly, the support was added in an aqueous solution (distilled
water) containing 4.2 x 1073 M of the gold precursor and 0.42 M urea (Merck, Darmstadt, Germany).
This mixture had an initial pH of 2.4. After heating of solution at 80 °C for 16 h, the pH was adjusted
to 7.5. The solution was then centrifuged at 11,000 rpm for 15 min and decanted, and the remaining
solid washed with water; this procedure was repeated 4 times. The final stage was drying of samples
under vacuum 2 h at 80 °C. Such samples before any pretreatment (H; or O, atmosphere) will be
denoted herein as as-prepared samples. To prevent any alteration, the samples were stored in a
desiccator under vacuum, away from light and at room temperature.

Nitrogen adsorption-desorption isotherms at —196 °C were used for the study of textural properties
of catalysts and supports. Micromeritics TriStar 3000 apparatus (Norcross, GA, USA) was applied
for the record of isotherms. Degassing of samples under vacuum at 300 °C for 5 h preceded each
measurement. Normalization to standard temperature and pressure of adsorbed N, volume was
carried out. The BET method was applied to the nitrogen adsorption data (P/P range 0.05-0.25) for
the calculation of the specific surface area (Sggt) of the samples.

XRD patterns were obtained by using a Philips XPert PR diffractometer (Amsterdam,
The Netherlands) using Ni-filtered CuKo (A = 0.15406 nm) radiation. The step-scanning procedure
included the following parameters (step size 0.02°; 0.5 s).

Scanning transmission electron microscopy-high angle annular dark field (STEM-HAADF)
measurements were conducted with a microscope (JEOL JEM-2100F, JEOL Ltd., Tokyo, Japan) operated
at 200 kV. Prior to study, samples were abraded to a fine powder state and then, a drop of the suspension
was deposited on a lacey carbon coated copper grid. For each sample, at least ten representative
images from the microscope were acquired, and at least 150 particles for each sample were taken into
account for obtaining particle size distribution. Gold contents were measured by energy dispersive
spectroscopy (XEDS) in the same system of the microscope equipped with an Oxford INCA X-sight
system detector (Oxford Instruments, Abingdon, Oxfordshire, UK).

XPS was applied for the study of gold electronic state on catalyst surface with a SPECS GmbH
(SPECS Surface Nano Analysis GmbH, Berlin, Germany) custom-made system using a PHOIBOS 150
WAL hemispherical analyzer and a non-monochromated X-ray source (Al Ka X-rays 1486.6 eV, 200 W).
Detailed information was given in our previous papers [31,32].

Diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) measurements were
performed on a Bruker EQUINOX 55/S FTIR spectrometer (Bruker Optik GmbH, Ettlingen, Germany)
equipped with a homemade accessory. All DRIFTS CO spectra on the catalyst samples were recorded
at 20 Torr pressure (5% accuracy measurement), at room temperature with a resolution of 4 cm™.
Typically, the powdered sample was loaded in a quartz ampoule with a window of CaF,. Prior to
measurements, the samples were calcined at 100 °C under vacuum (10_4 Torr) for 1 h. Then, each
catalyst was studied in three states: as-prepared, and after pretreatments either in H, or in O, at 300 °C
for 1 h at 100 Torr, and then cooled down to room temperature. After that, hydrogen or oxygen was
evacuated and CO adsorption (>99%) was carried out. The obtained DRIFTS data were presented in
the form of Kubelka—Munk units (KMU). DRIFT CO spectra were obtained by subtracting the CO gas
phase spectrum and the baseline was corrected. Pure supports did not exhibit bands of adsorbed CO
in this region of the spectrum under the mentioned conditions.
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NH;-temperature-programmable desorption (TPD) and CO,-TPD methods were applied to the
study of acid and basic properties of the catalysts and corresponding supports on a “Chemosorb”
chemisorption analyzer (Neosib, Novosibirsk, Russia), equipped with a thermal conductivity detector
(TCD), which was calibrated with NH3 or CO, prior to analysis. The starting desorption temperature
in the case of CO, was 25 °C, while TPD of ammonia started from 100 °C. Additionally, carrier gas in
NH;-TPD was helium; in CO,-TPD was argon. Otherwise, the experimental procedure was the same
in both cases, except for the listed differences in these methods. Prior to the measurements, the samples
were treated at 300 °C under an inert atmosphere (He or Ar) for 1 h, to remove the impurities adsorbed
on the surface. Then, the temperature was decreased to 100 °C or 25 °C, followed by saturation with
NH; or CO; for 1 h and flushing with He or Ar for 1 h, to remove physisorbed ammonia or carbon
dioxide. After that, the temperature was increased to 600 °C at a rate of 10 °C min~!, under an inert
atmosphere. For a comparative analysis, NH; and CO, desorption profiles of catalysts are divided
into three temperature ranges: 100 (25)-200 °C, 200-400 °C and 400-600 °C, and are assigned to weak,
medium and strong acid or basic sites, respectively.

Before catalytic experiments of oxidation of n-octanol (Merck, >99%, HPLC grade), as-prepared
samples were treated either in O, atmosphere (herein denoted as n% Au/(MxOy)/TiO,_pO;) or in Hp
atmosphere (herein denoted as n% Au/(MxOy)/TiO,_pH>) at 300 °C for 1 h, where 7 is the gold content
in wt.% and M is the metal (Fe or Mg) of the modifier oxide.

The catalytic properties were studied at the temperature 80 °C under atmospheric conditions for
6 h in a semi-batch reactor, which is a four-necked round bottom flask equipped with reflux, oxygen
feed, thermocouple and a septum cap. The appropriate amount of catalyst sample in n-octanol/Au
ratio = 100 mol/mol was added to a flask with 0.1 M solution of n-octanol (25 mL) in n-heptane
(Supelco, 299%, HPLC grade). Oxygen was bubbled through the reaction mixture with 30 mL/min
rate. To monitor the reaction progress, small aliquots of the reacting mixture by using nylon syringe
filters (pore 0.45 pm) were collected at 0.25, 0.5, 1,2,4 and 6 h, and then were analyzed in a Varian
450 gas chromatograph (Varian Inc, Palo Alto, CA, USA) with flame ionization detector (FID), using a
capillary DB wax column (15 m X 0.548 mm, Varian Inc., Palo Alto, CA, USA), and He as the carrier gas.
The attribution of peaks was made by comparison with chromatograms of genuine samples. In the
absence of support/catalyst, no activity was observed in oxidation of n-octanol.

Alcohol conversion (X) and product yield (Y;) and selectivity (S;) were calculated in terms of
moles of C atoms, as follows:
niCi

Y, = b
: 8 - CroHin

-100 1)

where #; is the number of carbon atoms in compound i, and C; is its molar concentration, and Cropyin
represents initial octanol concentration.

Conversion was calculated as the sum of the yields of carbon containing products, and product
selectivity as the ratio between product yield and conversion.

Xrop = Zyi )

Y:
Si = ———-100 3
P = Xeom ®)

Carbon balances in all reported data were within 100 + 3%.

The adsorption of n-octanol on gold nanoparticles was simulated using the density functional
theory PBE [36] to determine at the atomic level the type of adsorption sites (Au’ or Au*, top atom
or facet atom) of nanogold catalysts. As a model of nanoparticles, the tetrahedral Auyg cluster was
considered. The experimentally observed Auyg cluster is 1 nm in size [37]. Because the cluster has
atoms with different coordination numbers (on the top, on the facet and on the edge), it has been a
popular model for studying the structural effects in adsorption and catalysis [38,39].
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We simulated the n-octanol adsorption as a reaction:
Auyy + C7H15CH20H i (C7H15CH20H)AH20 (Rl)

Au20+ + C7H15CH20H - (C7H15CH20H)AH20+ (R2)

The different coordination of alcohol on Auyy; was considered. The structures of
(C7H15CH;OH)Auyy were optimized, and the total energies of the reagents and products were
calculated, taking into account the energy of zero vibrations. The change in total energy and standard
enthalpies of the Reactions (R1) and (R2) at the 100 °C temperature were determined according to
the formulas:

AE; = E(octanol-Auyg) — E(Auyg) — E(octanol) 4)

AE, = E(octanol-Auyy*) — E(Auyy™) —E(octanol) (5)
To reveal the role of different gold sites in the adsorption of solvent molecules, heptane adsorption
on simple (Au’0)?~, (Au*0)~, and (Au**O)* models containing Au’, Au*, and Au®* was also studied

at the atomic level using density functional theory calculation with PBE functional [36]. We simulated
CyH;6 adsorption through Reactions (R3)—(R5):

(AuOO)Z_ + C7H16 d C7H16—(Au00)2_ (R3)
(AU+O)_ + C7H16 - C7H16—(Au+0)_ (R4)
(AuTO)* + C7Hp4 — CyHp6-(AUTO)* (R5)

The structures of all molecules were fully optimized, and the total energies of the reagents and
products were calculated taking into account the energy of zero vibrations. Adsorption energies
were calculated as the difference in total energies of adsorbed complex and the reagents (heptane and
(Au?0)*/(AutO)~/(Au*+O)™).

All density functional theory (DFT) calculations were performed in the PRIRODA program
(version 17, Russia) [40], using a Lomonosov supercomputer [41].

3. Results and Discussion

3.1. Catalytic Results

The results showed that the gold content, support nature and the pretreatment atmosphere
significantly affected the catalytic properties of gold catalysts in the liquid phase oxidation of n-octanol.
The activity of catalysts in the as-prepared state was insignificant and practically does not depend on
the nature of the support and gold content. The reason for this is that gold in as-prepared samples is
found on the support surface in the form of a trivalent gold complex with urea hydrolysis products,
which is catalytically inactive [30,42].

However, for most of the studied catalysts, the activity increased several times after either the
reduction or oxidation treatment. However, depending on the pretreatment atmosphere, the effect
of gold content on activity was different (Figure 1). After H, treatment, the order of activity was:
Au/MgO/TiO; > Au/Fe;O3/TiO; > Au/TiO,, and activity increased with an increase of gold content in
the three cases (Figure 1).
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Figure 1. Effect of gold loading and pretreatments on the oxidation of n-octanol on Au/MXOy/TiOZ
(MxOy = FepO3, MgO) catalysts: evolution of conversion with run time (a—c).

Analysis of the products distribution (Figure 2) for 0.5% Au/TiO,_pHy, 0.5% Au/Fe,O3/TiO>_pHo,,
0.5% Au/MgO/TiOy_pH, samples showed that selectivity to acid formation (39%, 30% and 53%
respectively) increased with run time, while selectivity to aldehyde sharply decreased from 100% at
the reaction start down to 50% for 0.5% Au/TiO,_pH;, 53% for 0.5% Au/Fe;O5/TiO,_pH, and 30%
for 0.5% Au/MgO/TiO,_pH,. Ester formation was at 12% and 17% levels for unmodified sample and
modified samples, respectively. The selectivity trends were totally different for their homologues
with 4 wt.% gold loading after hydrogen pretreatment. The main product was octanal. Octanoic acid
formation was practically negligible; only some traces of acid were detected at longer run times for
4% Au/TiO,_pH; and 4% Au/MgO/TiO,_pH,. For 4% Au/Fe;O3/TiO,_pHy; selectivity towards octyl
octanoate increased at the expense of octanal formation with no acid formation.
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Figure 2. Effect of gold loading and pretreatments on the oxidation of n-octanol on Au/MOy/TiO,
(MxOy = Fe;03, MgO) catalysts. Products selectivity evolution with conversion for Au/TiO; (a—c),
Au/Fe;O3/TiO, (d-f) and Au/MgO/TiO, (g-i) is shown. Green lines: results after hydrogen pretreatment,
blue lines: after oxygen pretreatment. Catalysts Au contents: hollow symbols show catalysts with 0.5%

Au;

full symbols with 4% Au.

Such changes in the reaction product distribution with an increase in Au content should be caused
by alteration in the acid-base properties of support. Aldehyde formation requires only the first step of
the reaction mechanism, that occurs on the gold active surface, while the formation of octanoic acid and
octyl octanoate requires a second mechanistic step [29,30] through intermediates formed by acid-base
catalyzed reactions, proceeding mainly on the support surface. In addition, in the scheme proposed
by several authors [29-33,43], the formation of ester or acid can occur by two routes: hydration to a
geminal diol (Scheme 1, A) that can be further oxidized to octanoic acid, or an acetalization to form the

hemiacetal, that can be oxidized to octyl octanoate. The ester could also be formed by the esterification
of the acid with the alcohol (Scheme 1, B).
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Scheme 1. Possible reaction pathways for the oxidation of n-octanol on supported gold catalysts
(adapted from [29-33,43]).

In contrast, after pretreatment of samples in an oxygen atmosphere, the opposite dependence on
the activity of the gold content was observed, i.e., the catalytic activity decreased with the increase of
gold content for all supports. Similarly good results were achieved using modified samples with the
lower Au content after oxidation pretreatment at 300 °C for 1 h, namely 0.5% Au/MgO/TiO,_pO, and
0.5% Au/FeyO3/TiO,_pO;,: the conversion of n-octanol after 6 h reached 43% and 41%, respectively,
with increasing ester selectivity in both cases (Figures 1 and 2). Acid formation (up to 52% selectivity)
was observed only for the unmodified catalyst, 0.5% Au/TiO;_pO,. In case of modified samples, acid
formation decreased after 3 h of reaction and was 20% after 6 h for both catalysts.

For catalysts with higher gold loading after oxygen treatment, similar trends in selectivity can
be seen for samples with samples after hydrogen treatment: almost complete absence of acid (1% of
acid was found only for 4% Au/Fe,O3/TiO,_pO,). However, the difference is a larger formation
of ester: 20% in case of 4% Au/TiO,_pO;, 40% and 42%, in case of 4% Au/MgO/TiO,_pO, and
4% Au/Fe;O3/TiO,_pO,, respectively. At the same time, it is worth noting that the activity of these
catalysts was very low, especially for modified samples (Figure 1b,c).

A common feature of catalysts with 0.5% Au, independently of the pretreatment, was the
preferential formation of acid, but a larger tendency to ester formation was found for catalysts with
oxygen pretreatment; also 0.5% Au/MgO/TiO, and 0.5% Au/Fe,O3/TiO, catalysts showed almost
identical activity and selectivity in n-octanol oxidation.

3.2. Catalysts Characterization

To understand the differences observed in the catalytic behavior of the samples, a series of
physicochemical studies were carried out.

The XRD method was used to study the phase composition of the catalysts. The diffractograms
(Figure 3) showed the absence of diffraction lines related to gold or the modifiers, indicating either
small sizes of Au particles and metal oxides (lower than the XRD sensitivity threshold of 3—4 nm) [44]
or their X-ray amorphous structure.

Table 2 summarizes the specific surface area (Sppr) and gold content of the catalysts and their
corresponding supports. Because of modification with both Fe and Mg oxides, Sgpt of the initial TiO,
support was reduced by 13% (48-49 m?/g). Further gold deposition did not significantly change the
supports’ Spgt, except for catalysts with 4% Au, where Sgpr had a 10% decrease. Elemental analysis
showed that the actual gold loadings obtained were close to the nominal value.

Table 2 also depicts the Au particle size obtained from STEM HAADF images presented in Figure 4.
The distribution of gold nanoparticles for all the studied catalysts is in the range of 1-10 nm, with the
exception of 0.5% Au/TiO,_pH),, for which larger particles were observed; up to 15 nm (Figure 4a).
The average size of Au NPs was found within the 2.6-5.2 nm interval for the studied materials (Table 2).
The most active samples, namely 0.5% Au/Fe;O3/TiO;_pO; and 0.5% Au/MgO/TiO,_pO;, with almost
equal conversion (41% and 43%) had similar mean particle size (3.4 and 3.2 nm), respectively. However,
catalysts with smaller particle sizes, like 0.5% Au/MgO/TiO,_pH; (2.6 nm) and 4% Au/MgO/TiO,_pO,
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(2.9 nm), demonstrated low activity in n-octanol oxidation (12% and 3% conversion, respectively).
Therefore, taking into account the data from catalytic studies, no direct correlation between Au NPs
average size and catalytic performance can be found.

Table 2. Textural properties of supports and catalysts, analytical content and particle size of Au.
Data for Entries 1-4 taken from [31,32].

Entry Sample SpeT, m?/g EDX Au Au Average
Support Catalyst ~ Content, wt. %  Particle Size, nm
1 0.5% Au/TiO,_pH,; 55 54 0.4 4.4
2 0.5% Au/TiO,_pO, 55 54 0.4 4.2
3 4% Au/TiO,_pH, 55 50 4.0 3.0
4 4% Au/TiO,_pO, 55 50 4.0 3.3
5 0.5% Au/MgO/TiO,_pH, 48 47 0.3 2.6
6 0.5% Au/MgO/TiO,_pO, 48 47 03 32
7 4% Au/MgO/TiO,_pH, 48 43 4.0 5.1
8 4% Au/MgO/TiO,_pO, 48 43 4.0 2.9
9 0.5% Au/Fe,03/TiO,_pH, 49 49 0.5 3.1
10 0.5% Au/Fe,03/TiO,_pO, 49 49 0.5 34
11 4% Au/Fe,03/TiO,_pH, 49 44 3.2 5.2
12 4% Au/Fe,03/TiO,_pO, 49 44 3.2 3.2

—TiO: Fe205/TiO2
—0.5% AuW/TiO: ——0.5% Au/Fe205/TiO:z
4% Au/TiO: 4% Au/Fe:05/TiO2

Au(111) Au200) Au(220) Au(311)

Tk

Au(111 Au(200) Au(220) Au(311)

M ML A
B R W
JVUk_JL_.
i~ B ST P
70 80 90 20 30 40 50 60 70 80 90
20
(a) (b)
—— MgO/TiO:
——0.5% Au/MgO/TiO:
4% Au/MgO/TiO:
Au(111) Au(200) Au(220)  Au(311)
ek ool
A A
20 30 40 50 60 70 80 90

20
()

Figure 3. XRD patterns for catalysts Au/TiO; (a), Au/Fe;O3/TiO; (b), Au/MgO/TiO; (c) treated in Hp
(300 °C, 1 h) and their corresponding supports.
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Figure 4. Au particle size distribution and representative STEM HAADF micrographs of catalysts
Au/TiO; (a—d), Au/Fe,O3/TiO; (e-h), Au/MgO/TiO; (j-m), for different gold amounts (0.5 or 4 wt.%)
and pretreatment atmospheres (H; or Oy).

Nevertheless, one should note that according to DRIFT CO studies and XPS presented below
(Table 3, Figures 5 and 6), there is a fraction of gold in ionic state (Au* or Au®*), which is not
detected by STEM. The amount of these gold species depends on the support, pretreatment and gold
content. Furthermore, for such a type of reaction, not all metal particles visible on the micrographs
are active participants in the catalytic process; in some cases, only particles with a size below the
threshold of the technique (1 nm) and less are active, as reported in the literature and in our previous

works [29,30,45-47].

Table 3. Effect of gold content (0.5 or 4 wt.%) and redox treatment (H, or O,) on the different electronic
states of Au (determined by XPS), and their catalytic activity for n-octanol oxidation for Au/TiO,,
Au/Fey;03/TiO,, Au/MgO/TiO; catalysts. Entries 1-4 data are taken from [31,32].

Au Electronic State Relative Content, %

Conversion of
Entry Catalyst Au® Aut Audt n-Octanol after 6 h, %

1 0.5% Au/TiO,_pH, 91 9 0 3

2 0.5% Au/TiO,_pO, 84 16 0 17

3 4% Au/TiO,_pH, 73 14 11 11

4 4% Au/TiO,_pO, 89 11 0 6

5 0.5% Au/MgO/TiO,_pH, 81 11 8 12

6 0.5% Au/MgO/TiO,_pO, 67 25 8 43

7 4% Au/MgO/TiO,_pH, 51 29 20 20

8 4% Au/MgO/TiO,_pO, 100 0 0 3

9 0.5% Au/Fe,O3/TiO,_pH, 28 29 43 7
10 0.5% Au/Fe;O3/TiO,_pO; 26 64 10 41
11 4% Au/Fe,O3/TiO,_pH, 42 37 21 15
12 4% Au/Fe,03/TiO,_pO, 100 0 0 5
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The XPS method was applied to investigate gold electronic states onthe support surface.
The binding energies of Au 4f spectra according to XPS measurements show various states of gold,
ions Au* and Au®* and neutral gold, which were affected by the support composition, pretreatment
atmosphere, and Au content (Table 3). The XPS spectra for modified samples are presented in Figure 5.

0.5% Au/FezO]/TiOz_sz 0.5% AU/F8203/TiOZ_pOZ

Au™

§2 84 86 s o0 92 £ 84 8 88 0 9
Binding energy, eV Binding energy, eV
(a) (b)
4% Au/Fe,0/TiO, pH, 4% Au/Fe 0/TiO, pO,
o
Aw® AU AU e Au
i ! i : AL
T T T T T T T T T T T T
82 84 86 88 90 92 82 84 86 88 90 92
Binding energy, eV Binding energy, eV

(©) (d)

) .
0.5% AWMgO/TiO, pH, 0.5% AwMgO/TiO,_pO,

82 84 86 88 90 92 82 84 86 88 90 92
Binding energy, eV Binding energy, eV
(e) ®

Figure 5. Cont.
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Figure 5. Au4f XP spectra of Au/Fe;O3/TiO; and Au/MgO/TiO, samples with different gold contents
(0.5 or 4 wt.%), pretreated in Hj or O, flow, at 300 °C, for 1 h: 0.5% Au/Fe,O3/TiO,_pH; (a), 0.5% Au/Fe;Os/
TiO,_pO; (b), 4% Au/Fe;O3/TiO,_pHj (c), 4% Au/Fe;O3/TiO;_pO; (d), 0.5%Au/MgO/TiO,_pH, (e), 0.5%
Au/MgO/ TiO,_pO; (£), 4% Au/MgO/TiO,_pH; (g), 4% Au/MgO/TiO,_pO; (h).

Allsamples showed BE (Audf;)) 84.2 eV (26-100% relative content), attributed to Au’ states [48-52];
this metallic gold was the only state found for 4% Au/MgO/TiO,_pO, and 4% Au/Fe;O3/TiO,_pO;.
Besides the peak due to the metallic gold, another Au4fy, peak in the BE range 85.2-85.5 eV, attributed
to single charged ions (Au*) [49-52], was detected in all the other catalysts, with 9-64% relative content.
The highest amount of Au™ was found in the modified samples, with 0.5% Au after oxygen treatment
and 4% Au after hydrogen treatment (Table 3, Entries 6, 7, 10 and 11). The 0.5% Au/Fe;O3/TiO,_pO,
sample showed the maximum contribution of single charged ions (64%), compared with other catalysts.

Moreover, another oxidized state of gold, related to three-charged gold (Au**) with BE in the
range 86.4-86.6 eV (Audf;,) [53-55] was found for 4% Au/TiO,_pH, [31], and in modified catalysts
with different contents (8-43%), the highest portion of Au®* being found for 0.5% Au/Fe,O3/TiO;_pH,.

It should be noted that in both 0.5% Au/MgO/TiO,_pH; and 0.5% Au/MgO/TiO,_pO; catalysts,
there was an overlapping of Au4fy line with the Mg2s line (Figure 5e,f), leading to a complication of
these peaks’ interpretation, with a subsequent uncertainty. However, since the Audfy, line is clearly
visible, the states are identified correctly.

In order to obtain more information on the gold electronic states of the catalysts, DRIFT spectroscopy
of CO adsorption was used. As can be seen from Figure 6, an absorption band with the maximum in the
range of 2090-2130 cm™!, corresponding to the surface carbonyl groups on gold atoms Au’~CO [56],
was observed for all catalysts. The different intensities of the absorption bands corresponding to
Au’-CO can be explained by carbon monoxide being very weakly adsorbed on metallic gold, due to
some features of the o-7t bond in M~CO for Au compared to other noble metals [57]. Therefore, only
the highly dispersed clusters or gold atoms can be sites for the adsorption of CO.

Comparing the data on the band intensity related to Au’~CO with the STEM results, it can be
seen that the average particle size for samples with low frequency absorption bands is larger than for
samples with high band intensity, and the differences in signal position are due to the adsorption of
CO on metal clusters of different sizes. In fact, considering the DRIFT CO results for samples with the
same support and Au content but different pretreatment, e.g., 4% Au/MgO/TiO,_pO, (Figure 6l) and
4% Au/MgO/TiO,_pH, (Figure 6m), a higher intensity of the Au’~CO band is observed for the latter,
meaning that this catalyst should have smaller particles than the former. This is confirmed by the STEM
results shown in Table 2: Entry 7 (4% Au/MgO/TiO,_pO;) 5.1 nm and Entry 8 (4% Au/MgO/TiO,_pH,)
2.9 nm. The same correlation between the average particle size and the intensity of the absorption
band of metal particles was observed for the rest of the catalysts.
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Another absorption band with the maximum in the range 2150-2170 cm™!, related to the
complexes of ions Au*-CO [58,59], was observed in all cases, except for 4% Au/Fe;O3/TiO,_pO, and
4% Au/MgO/TiO,_pO, (Figure 6¢,g,1). These results are in a good agreement with XPS data, as no
Au™ was detected in these catalysts (Figure 5d,h). This absorption band is less intense than the one
attributed to Au’-CO, except for 0.5% Au/Fe;O3/TiO,_pO; (Figure 6e), which correlates well with the
predominant content of Au™ (64%) found by XPS in this catalyst (Table 3, Entry 10).

Along with absorption bands at 2090-2130 cm™! and 2150-2170 cm™!, ascribed to carbonyls of
metallic and singly charged gold, respectively, a third band appears within 2170-2190 cm™! range
for 4% Au/TiO,_pH;, 4% Au/Fe;O3/TiO;_pHj, 4% Au/MgO/TiO,_pH,, 0.5% Au/Fe,O3/TiOy_pHy
and 0.5% Au/Fe,O3/TiO;_pO; catalysts, its interpretation being ambiguous. In most studies, this
absorption band is assigned to the adsorption of CO on monovalent gold ions, as it is believed that a
higher-charged gold cation (Au®*) is very unstable, or even does not form carbonyl species. That could
be caused by the following reasons: (1) Au®* ions are very easily reduced with CO [60-62]; (2) since
Au®" ions are strongly charged, probably, trivalent ions on a support surface are usually saturated by
coordination, and the evacuation at elevated temperatures will easily lead to the reduction of Au* [63].

At the same time, according to XPS (Table 3 and Figure 5), Au3* was found for 4% Au/TiO,_pHy,
4% Au/Fe,Os/TiO,_pHj, 4% Au/MgO/TiO,_pH, samples, even after the reduction treatment at
300 °C. Moreover, Au®* relative content in these samples is much higher than in the oxidized ones.
Luengnaruemitchai et al. [55] have observed that Au’* remains in Au/Fe,O5/TiO, catalytic systems,
even after calcination at 400 °C. Such trivalent cations could be stabilized by oxygen vacancies, formed
under the action of high temperature reduction treatment during the preparation of the catalyst [64-67].
It is also worth noting that the reducibility of supports such as titania increases after the gold deposition,
due to metal-support interaction. A similar mechanism for the stabilization of gold ions was proposed
elsewhere [68]. In addition, it was also suggested that modification of the titania surface leads to an
increase in the number of oxygen defects, which in turn increases the number of stabilized gold ions.
A similar trend was observed in our study.
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Figure 6. DRIFT spectra of CO adsorbed on catalysts pretreated at 300 °C for 1 h under a H, or
O, atmosphere.
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Mihaylov et al. [63] carried out CO adsorption IR experiments for the characterization of supported
gold catalysts in conditions comparable to our study, and proved that the absorption band with a
maximum in the range of 2170-2190 cm™~!
Thus, we can also assume that the absorption band within 2176-2186 cm™' interval belongs to the
trivalent gold ion. Additionally, this is in good agreement with the XPS data.

Because no direct correlation was found between the average particle size of gold and the catalytic
activity of samples, and neither significant differences in the texture and structural properties of the
studied catalysts were found, it can be assumed that these parameters are not determining for the

observed catalytic behavior of our systems. However, another parameter capable of influencing the

corresponds to trivalent gold in non-exchange positions.

catalytic behavior of gold catalysts is its electronic state. Based on the analysis performed on the
surface of the studied catalysts by the above methods (XPS, DRIFT CO), three electronic states of gold
were found, with different relative concentrations and ratios.

Table 3 shows the relative content of the electronic states of gold found in the samples and
n-octanol conversion after 6 h. It can be seen that there is no relationship between the conversion
and the content of gold in cationic states (Au™ and Au®"), if each state is considered separately.
However, if the combined concentration of Au* and Au>* is considered, one tendency can be seen: for
samples with a higher concentration of Au*, but with a lower contribution of Au®*, the conversion of
octanol is higher. For example, for 0.5% Au/MgO/TiO,_pH, and 0.5% Au/MgO/TiO,_pO; (Table 3,
Entries 5 and 6, respectively), the Au" content is the same (8%). However, the sample after
oxygen pretreatment has a larger contribution of monovalent gold (25%) than the reduced sample
(11%); similarly, the conversion for Au/MgO/TiO,_pO, (43%) sample is much higher than for 0.5%
Au/MgO/TiO,_pH, (12%). Furthermore, for the same content of monovalent ions (29%), in 4%
Au/MgO/TiO,_pH, and 0.5% Au/Fe,O3/TiO,_pHj; catalysts (Table 3, Entries 7 and 9, respectively),
the octanol conversion is higher in the latter sample, where the content of trivalent gold is 23% lower
than in the former. It is worth noting that for samples with a high content of metallic gold (Table 3,
Entries 8 and 12), the conversion of n-octanol is very low, 3 and 5%, respectively.

Therefore, by comparing the spectroscopic and catalytic results, it can be assumed that monovalent
gold ions (Au™) are probably responsible for enhanced catalytic activity, while metallic gold (Au®)
and three-charged gold (Au®") have a negative effect on the catalytic activity. The DFT calculations
of n-octanol adsorption on tetrahedral gold clusters presented in Section 3.4 below proved that
monovalent gold ions play an important role in the n-octanol oxidation.

The negative effect of metallic and trivalent gold on catalytic activity probably occurs due to the
strong adsorption of the solvent (n-heptane) on both Au® and Au®* or water generated during the
dehydrogenation reaction of n-octanol on Au* (Scheme 1). The calculations of the adsorption energy
in Section 3.5 below confirmed this assumption.

3.3. Study of Acid-base Properties of Catalysts

CO,-TPD and NH;3-TPD methods were used to reveal which centers on the surface of the supports
are responsible for the secondary reactions in the oxidation of n-octanol; namely, the formation of ester
or acid. Three types of acid and basic sites with different concentration and strength (weak, medium
and strong), depending on the temperature range where CO, or NHj3 desorption occurs, reflecting
their nature, were detected for studied catalysts (Tables 4 and 5). Both basic and acid centers with
weak (25-200 or 100-200 °C) and medium strength (200400 °C) are usually associated with surface
hydroxyl groups, i.e., the Brensted basic centers (BBC) and Brensted acid centers (BAC). Strong acid
centers (400-600 °C), along with protonated sites (hydroxyl groups), can also have aprotic nature
and represent Lewis acid centers (LAC), which could include cations of gold, titanium or modifiers.
Strong basic centers (400-600 °C) are associated with low-coordinated oxygen anions.



Nanomaterials 2020, 10, 880 18 of 26

Table 4. Acid properties of catalysts.

Concentration of Acid Centers, pmol/g

Entry Catalyst
Weak  Medium Strong  Total Amount
1 0.5% Au/TiO,_pH,; 100 313 110 523
2 0.5% Au/TiO,_pO, 167 250 337 754
3 4% Au/TiO,_pH, 264 81 8 353
4 4% Au/TiOy_pO, 260 66 9 335
5 0.5% Au/Fe,03/TiO,_pH, 86 114 41 241
6 0.5% Au/Fe;O3/TiO;_pO, 189 440 234 863
7 4% Au/Fe,03/TiO,_pH, 298 54 352
8 4% Au/Fe,03/TiO,_pO, 176 398 320 894
9 0.5% Au/MgO/TiO,_pH, 108 69 17 194
10 0.5% Au/MgO/TiO;,_pO, 203 177 36 415
11 4% Au/MgO/TiO,_pH, 262 65 327
12 4% Au/MgO/TiO,_pO, 369 67 436

Table 5. Basic properties of catalysts.

Concentration of Basic Centers, pmol/g

Entry Catalyst
Weak Medium  Strong  Total Amount
1 0.5% Au/TiO,_pH, 46 66 15 127
2 0.5% Au/TiO,_pO, 56 20 13 89
3 4% Au/TiO,_pH» 15 41 17 73
4 4% Au/TiO,_pO, 34 29 21 84
5 0.5% Au/Fe,03/TiO,_pH, 22 121 130 21 22
6 0.5% Au/Fe;O3/TiO;_pO, 37 91 47 175
7 4% Au/Fe,03/TiO,_pH, 33 138 180 225 33
8 4% Au/Fe,03/TiO,_pO, 20 74 30 124
9 0.5% Au/MgO/TiO,_pH» 23 163 126 32 23
10 0.5% Au/MgO/TiO,_pO, 44 38 26 108
11 4% Au/MgO/TiO, pH, 23 78 66 69 23
12 4% Au/MgO/TiO,_pO, 51 41 21 113

As known, esterification of alcohols is catalyzed by H*. On the catalyst surface, most likely,
the Bronsted acid centers act as the source of H. At the same time, the formation of acid requires the
presence of water, which on the catalyst surface can be in the form of pairs of Brensted basic and acid
centers (BBC and BAC), not excluding adsorbed water, which in turn, can dissociate on the catalyst
surface with the formation of a pair of BBC and BAC. Accordingly, both acid and basic Brensted centers
must be present on the surface of the catalyst for the reaction to proceed along route A, including the
esterification reaction (Scheme 1). In turn, BAC should mainly be on the surface of the catalyst for the
reaction to proceed along route B.

In relation to the studied catalysts, a direct correlation between the acid-base properties determined
by the TPD of NHj; and CO; and the selectivity for acid or ester was not found (Table 6), which is
most likely due to a combination of a number of reasons; namely, different activity of the catalysts,
the presence of trivalent gold and metallic gold (due to the adsorption of the solvent on trivalent
gold and metallic gold not only the deactivation of the catalyst occurs, but also a change in selectivity,
which leads to disconformities between the acid-base properties and ester and/or acid selectivity),
as well as some features of desorption methods for determining acid-base properties, namely TPD of
NHj3 and CO,, described next.

Firstly, one should take into account the differences in temperatures: in this case, the oxidation
of n-octanol tests (T = 80 °C), and the temperature ranges of the TPD study (CO, desorption starts
from 25 °C, meanwhile NH3 desorption starts from 100 °C to exclude the contribution of ammonia’s
physical adsorption). It should be noted also that mainly due to this reason, we take into account
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only the concentrations of weak acid and basic centers. It is also well known that strong BAC and
BBC are active participants in the catalytic process only at elevated temperatures (high-temperature
gas-phase reactions).

Table 6. Acid-basic properties of catalysts and corresponding selectivity data in n-octanol oxidation.

Concentration of Weak Centers, pmol/g  Selectivity after 6 h, %

Ent 1
i Catalyst Basic Acid Ester Acid
1 0.5% Au/TiO,_H, 46 100 12 39
2 0.5% Au/TiO,_0O, 56 167 20 52
3 4% Au/TiO,_H, 15 264 16 3
4 4% Au/TiO,_0O, 34 260 42 3
5 0.5% Au/Fe,03/TiO,_H, 22 121 86 17 29
6 0.5% Au/Fe,O3/TiO,_0O, 37 189 43 21
7 4% Au/Fe,O3/TiO,_H, 33 138 298 42 0
8 4% Au/FeZO3/TiOZ_Oz 20 176 51 1
9 0.5%Au/MgO/TiO,_H, 23 163 108 16 53
10 0.5%Au/MgO/TiO,_O, 44 203 42 20
11 4%Au/MgO/TiO,_H, 23 78 262 31 2
12 4%Au/MgO/TiO,_O, 51 369 42 0

Secondly, the probe molecules can change the chemical properties of the surface due to chemical
transformations. Such examples are: ammonia dissociation at elevated temperatures on NH, ™ and H,
giving false centers [69]; in addition, as shown in [70,71], a carbon dioxide molecule adsorbed on small
gold nanoparticles can react with gold at room temperature (oxidizing metallic gold: 2Au’ + CO, —
Au*-Op-Au* + CO) and, accordingly, provide new basic sites, not directly related to the catalyst.

Thirdly, the probe molecules do not coincide in size with the reagent molecules and there will
always be the issue of comparing the results of measuring acidity (basicity) and catalytic behavior.

Fourthly, the TPD methods of ammonia and CO; give information only about the strength and
concentration of acid and basic centers, but not about their nature (Brensted acid centers, Bronsted
basic centers, Lewis acid centers and Lewis basic centers).

Nevertheless, for most of the studied systems, with the exception of samples with a high content
of trivalent gold, there is a general tendency in the selectivity for acid and/or ester, depending on the
acid-base properties of the catalysts (Table 6), namely:

For 0.5% Au/TiO,_H; and 0.5% Au/TiO,_O, samples (Table 6, Entries 1 and 2) with a content
of weak acid (100 and 167 pmol/g) and basic (46 and 56 umol/g) centers, with a ratio of 2:1 and 3:1,
respectively, acid and ester were observed in the reaction products, with the predominant formation of
acid (the reaction proceeds along route A, Scheme 1).

For samples 4% Au/TiOy_O,, 4% Au/Fe;O3/TiOy_pO,, 4% Au/MgO/TiO,_pO, and 4%
Au/TiO,_pH, (Table 6, Entries 4, 8, 12 and 3 respectively), with a significant predominance of
BAC compared to BBC, the acid formation does not exceed 3%, and we can assume that the reaction
proceeds mainly along route B, taking into account the low conversion of n-octanol for these samples.

When comparing 0.5% Au/Fe;Os3/TiO;_pO, and 0.5% Au/MgO/TiO,_pO, (Table 6, Entries 6 and
10) samples with a similar conversion level and roughly the same distribution of reaction products, we
can also note that the concentrations of acidic and basic centers for these samples are close, the ratio of
BAC/BBC = 4.6 and 5.1, respectively.

It should be noted that with an increase in the ratio of BAC/BBC, ester begins to prevail in the
reaction products. This is clearly seen when comparing the corresponding values of BAC/BBC and
the selectivity for ester and acid for samples 0.5% Au/TiO,_Hj; and 0.5% Au/TiO,_O, (BAC/BBC < 3),
0.5% Au/Fe;O3/TiO;_pO, and 0.5% Au/MgO/TiO,_pO, (BAC/BBC > 4.5) and 4% Au/TiO,_O;,
4% Au/Fe;O3/TiOy_pOs, 4% Au/MgO/TiO,_pO, and 4% Au/TiO,_pH, (BAC/BBC > 7.5).
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3.4. Quantum Chemical Simulation of n-Octanol Adsorption on Tetrahedral Gold Cluster

The optimized structures of octanol-Auyy complexes with alcohol coordination on different gold
atoms are shown in Figure 7. The energy changes during the formation of the complexes and the
corresponding standard enthalpies are collected in Table 7. The optimization of octanol-Auyy complex,
in which alcohol is coordinated on the facet of the cluster, has led to the (C;H5CH,OH)Auyo_2
complex with edge coordination. The OH group is involved in the interaction of the alcohol and the
cluster. The calculated Au-O distances are 0.243 nm and 0.338 nm in (C;H;5CH,OH)Auyy_1 and
(C7H15CH,OH)Auyg_2, respectively. According to the calculated data, the most favorable coordination
of n-octanol on Auy is at the cluster’s top. The binding energy of alcohol on the edge atoms is
significantly lower.

(C’HisCH20H)Au2*_1 (C/HisCH20H)Au*_2

Figure 7. Optimized structures of n-octanol-Auyg and n-octanol-Auyy* complexes.

Optimized structures of octanol-Auyy* have features similar to those of neutral octanol-Auy.
In contrast, the calculated energy changes in Reaction (R2) (Table 7) are larger than in Reaction (R1).
The binding energy of n-octanol with low-coordinated cationic gold atoms through OH-group is twice
as much than that of low-coordinated gold atoms of neutral cluster. So, it can be concluded that the
cationic sites play an important role in n-octanol activation on gold nanoparticles.
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Table 7. Calculated energy change (AE in kJ/mol) and standard enthalpy (AH, kJ/mol) in the
Reactions (R1) and (R2) of n-octanol with Auyy? cluster (z =0, +1).

z Complex Type of Coordination AEq, AE;  AHy, AH,
0 (C7H15CH20H)AU20_1 tOp —40 -36
0 (C7H15CH20H)AU20_2 edge -23 -20
+1 (C7H15CH,OH)Auy ™ _1 top =81 -78
+1 (C7H15CH20H)A1120+_2 edge -55 -51

The adsorption of n-octanol on gold nanoparticles was simulated using DFT. It was shown that
the low-coordinated gold atoms on the clusters top are the most active in the activation of alcohol.
The binding energy of n-octanol with low-coordinated cationic gold atoms is sufficiently higher than
on the neutral cluster. Based on the quantum chemistry, it can be concluded that the cationic sites play
an important role in n-octanol adsorption.

3.5. Quantum Chemical Simulation of n-Heptane Adsorption on Au®, Au* and Au*3

To reveal the role of Au’" sites as inhibitors of the catalytic reaction, a quantum chemical
simulation of the adsorption of the solvent (heptane) on simple models containing Au’, Au™ and
Au’" was performed. (Au’0)?, (AutO)~ and (Au**O)* molecules were considered as models.
Optimized structures of C;H4-(Au’0)?~, C;H-(AutO)~ and C;Hi-(Au*O)* complexes and
calculated values of adsorption energies are presented in Figure 8.

C-o

C7Hie-(Au®O)-
AE =-134

C7Hie-(Au+O)- C7Hie-(Au+O)*
AE =-26 AE =-302

Figure 8. Optimized structures of C;H4-(Au’0)?>~, C;H6-(Aut0)~ and CyHy6-(Aut30)*. Calculated
adsorption energies are given in kJ/mol.

Heptane can interact with (Au’O)?~ with an adsorption energy of —134 kJ/mol. This suggests that
the Au’ sites may be partially occupied by solvent molecules. In contrast, heptane forms the most
stable complex with (AuO)*, in which gold is in the trivalent state. The calculated adsorption energy
in C;Hy6-(Au*0)* is =302 kJ/mol. Using small models of active sites containing Au’, Au™ and Au3*,
it was shown that (Au3*O)* cations can strongly bind heptane.

4. Conclusions

The efficiency of gold catalysts supported on titania modified with iron or magnesium oxides and
different gold contents (0.5 or 4 wt.%), and different thermal pretreatment conditions (H; or O,), were
investigated in the aerobic oxidation of n-octanol under mild conditions.

It was found that the catalytic behavior of Au/MxOy/TiO, systems is primarily determined by the
electronic state of the deposited gold; namely, the ratio between the Au’, Au* and Au®* states, which is
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determined by the nature of the support and modifier, pretreatment conditions and gold concentration.
A comparative study revealed that Au* plays a decisive role in the oxidation of n-octanol and acts as an
active site of Au/MyOy/TiO, catalysts. Au>" ions play an inhibitory role in the oxidation of n-octanol,
due to the strong adsorption of the solvent and/or the blocking of highly charged trivalent gold ions by
water molecules from the reaction. The low catalytic activity of the samples where only metallic gold
was detected, according to the XPS and DRIFT CO data, was probably due to the partial blocking of the
Au sites by the solvent that also led to inhibition of the oxidation of n-octanol, as in the case of Au®".

Density functional theory (DFT) simulations confirmed that Au* sites play an important role,
while Au” and mostly Au* has an inhibitory effect n-octanol oxidation. By varying the nature of the
modifier, the pretreatment atmosphere and the gold content, it was possible to obtain the optimal ratio
between Au’, Au™ and Au®* states, thereby increasing the efficiency of Au/MxOy/TiO; catalysts in the
oxidation of n-octanol.

It was found that reaction product distribution, notably, the formation of acid and/or ester, depends
on the ratio of Brensted acid centers to Brensted basic centers: with a high ratio no acid is formed;
with a low ratio of BAC/BBC selectivity to acid higher then to ester; intermediate values of BAC/BBC
ratio produce mixture of acid and ester. It should be mentioned that, such a trend in dependence
selectivity on BAC/BBC ratio was not observed only for three catalysts with a high content of trivalent
gold, where mainly the adsorption of solvent occurs.

The best results of n-octanol oxidation were achieved using modified samples with the lower
gold content after oxidizing pretreatment at 300 °C for 1 h, namely 0.5% Au/MgO/TiO; and
0.5% Au/Fe,O3/TiO,; reaching 43% and 41% conversion after 6 h, with the highest selectivity to
ester in both cases.
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