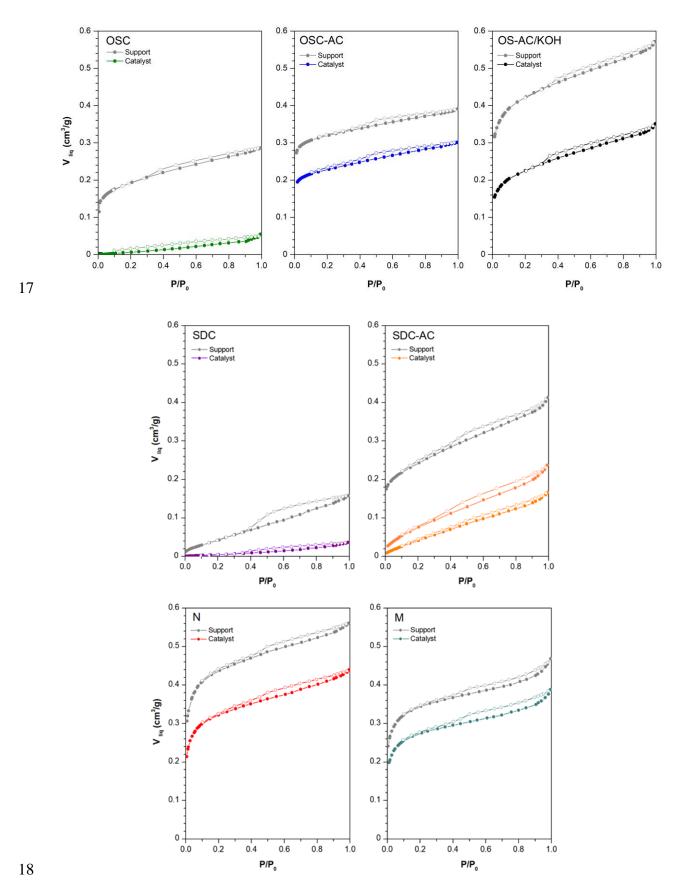


- 1 Supplementary Information
- 2 Fitting biochars and activated carbons from residues
- of the olive oil industry as supports of Fe-catalysts for
- 4 the heterogeneous Fenton-like treatment of simulated
- 5 **olive mill wastewater**
- 6 Bruno M. Esteves ¹, Sérgio Morales-Torres ², Francisco J. Maldonado-Hódar ² and Luis M. Madeira ²
 - ¹ LEPABE Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ega11010@fe.up.pt (B.M.E); mmadeira@fe.up.pt (L.M.M)
 - ² Carbon Materials Research Group, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Avda. Fuente Nueva, 18071 Granada, Spain; semoto@ugr.es (S.M-T), fimaldon@ugr.es (F.J.M-H)

Table S1. Chemical characteristics of the selected phenolic compounds.

Name	Chemical structure	Molecular formula	Molecular weight (g/mol)	pKa (at 25 °C)	Solubility in water (g/L)
Tyrosol	НООН	C8H10O2	138.16	10.20	25.3
Caffeic acid	но	C9H8O4	180.16	4.62	1.6
Gallic acid	НООН	C7H6O5	170.12	4.40	11.5
Protocatechuic acid	OH OH OH	C7H6O4	154.12	4.48	18.2
Vanillic acid	OCH ₃	C ₈ H ₈ O ₄	168.14	4.16	1.5

9


10

11

12

13

Nanomaterials **2020**, 10 2 of 6

 $\textbf{Figure S1.} \ N_2 \ a dsorption/desorption \ is otherms \ for \ the \ supports \ and \ corresponding \ Fe-catalysts \ tested.$

Nanomaterials **2020**, 10 3 of 6

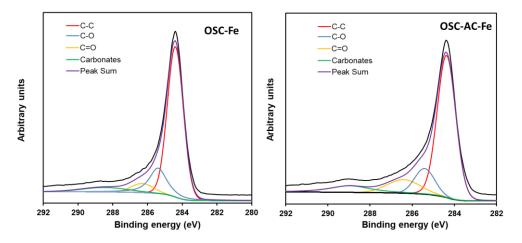
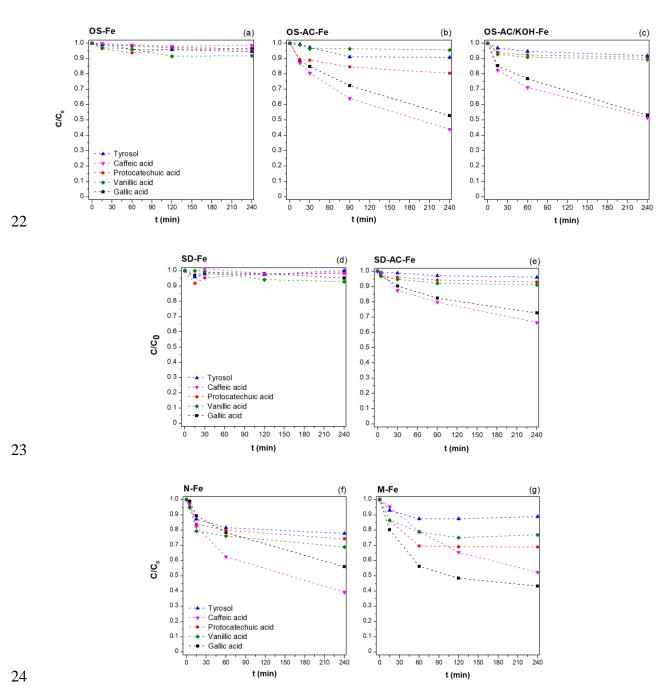



Figure S2. C1s spectral region of OSC-Fe and OSC-AC-Fe catalysts.

20

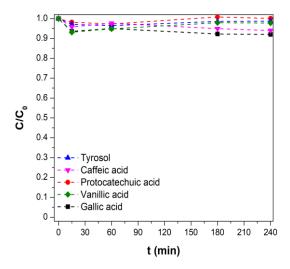

Nanomaterials **2020**, 10 4 of 6

Figure S3. Adsorption runs using the catalysts prepared: removal of each phenolic compound (C/C_0) over time. Experimental conditions: [Cat] = 0.5 g/L, T = 25 0 C, pH= unadjusted.

25

Nanomaterials **2020**, 10 5 of 6

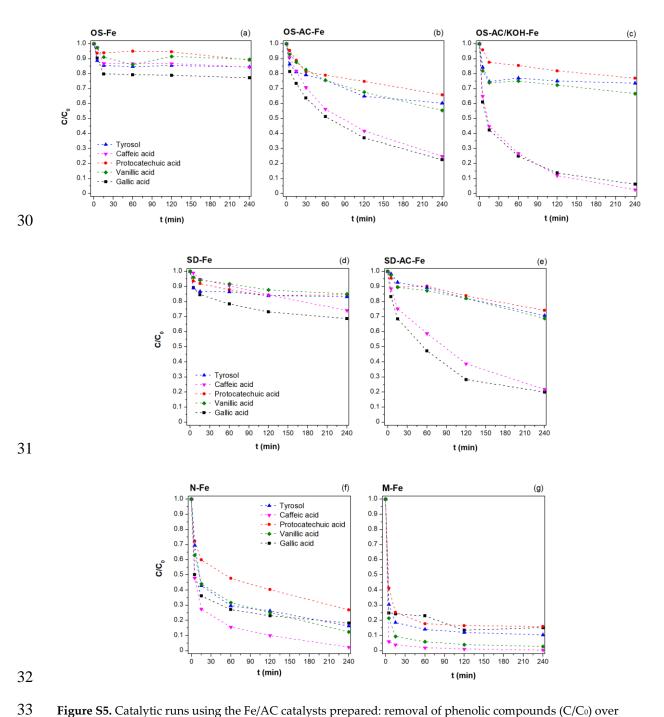


Figure S4. Catalytic effect of H_2O_2 on the removal of phenolic compounds (C/C₀) over time. Experimental conditions: $[H_2O_2] = 1$ g/L, T = 25 °C, pH = unadjusted.

27

28

Nanomaterials **2020**, 10 6 of 6

Figure S5. Catalytic runs using the Fe/AC catalysts prepared: removal of phenolic compounds (C/C₀) over time. Experimental conditions: $[H_2O_2] = 1$ g/L, [Cat] = 0.5 g/L, T = 25 °C, pH = unadjusted.