Supporting information

Development of polyelectrolyte complexes for the delivery of peptide-based subunit vaccines against group A streptococcus

Lili Zhao ¹, Wanli Jin ¹, Jazmina Gonzalez Cruz ², Nirmal Marasini ¹, Zeinab G. Khalil ³, Robert J. Capon ³, Waleed M. Hussein ^{1,4}, Mariusz Skwarczynski ^{1*} and Istvan Toth ^{1,3,5*}

- ¹ School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; lili.zhao@uq.edu.au (L.Z.); wanli.jin@uq.net.au (W.J.); nirmal.marasini@uq.net.au (N.M.); w.hussein@uq.edu.au (W.M.H.)
- ² Diamantina Institute, Translational Research Institute, The University of Queensland, Wooloongabba, QLD 4102, Australia; j.gonzalezcruz@uq.edu.au (J.G.C.)
- ³ Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; z.khalil@imb.uq.edu.au (Z.G.K.); r.capon@imb.uq.edu.au (R.J.C.)
- ⁴ Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, 11795, Egypt
- ⁵ School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- * Correspondence: m.skwarczynski@uq.edu.au (M.S.); i.toth@uq.edu.au (I.T.)

Figure S1. Analytical HPLC profile of LCP-1. tr=23.0 min

Figure S2. Mass spectrum of LCP-1. ESI-MS: m/z 1203.8 (calculated 1203.8) $[M+5H]^{5+}$; 1003.1 (calculated 1003.4) $[M+6H]^{6+}$; 860.0 (calculated 860.2) $[M+7H]^{7+}$; 752.8 (calculated 752.8) $[M+8H]^{8+}$; 669.2 (calculated 669.2) $[M+9H]^{9+}$

a)

c)

d)

e)

f)

Figure S3. The optimization of formulation monitored with DLS. In each panel, the top two graphs represented the optimization of negative polymer mixing ratios (a, Lip-1; b, PEC-1; c, PEC-2; d, PEC-3; e, PEC-4; f, PEC-5) while the bottom two graphs represented the optimization of TMC coating. The optimum amount of each polymer required was marked in blue column.

Figure S4. PEC-5 induced maturation of splenocyte-derived DCs. DCs were cultured with PEC-5 for 5 h and 16 h separately. Expression levels of CD 86 (a), CD 80 (b) and MHC-II (c) were measured by flow cytometry. Results are mean fluorescence intensity (MFI) \pm SEM (n= 2). * p<0.05, ** p<0.01 and *** p<0.001.

Figure S5. The viability of cells treated with PEC-5. NCIH-460: human lung cancer cell line, SW620: human colorectal cancer cell line, HEK293: human kidney cell line. After 68 h incubation, cell viability was measured with MTT assay. All values are reported as means ± SEM with duplicate data points.