Supporting information

Development of polyelectrolyte complexes for the delivery of peptide-based subunit vaccines against group A streptococcus

Lili Zhao ${ }^{1}$, Wanli Jin ${ }^{1}$, Jazmina Gonzalez Cruz ${ }^{2}$, Nirmal Marasini ${ }^{1}$, Zeinab G. Khalil ${ }^{3}$, Robert J. Capon ${ }^{3}$, Waleed M. Hussein ${ }^{1,4}$, Mariusz Skwarczynski ${ }^{1 *}$ and Istvan Toth 1,3,5*
${ }^{1}$ School of Chemistry \& Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; lili.zhao@uq.edu.au (L.Z.); wanli.jin@uq.net.au (W.J.); nirmal.marasini@uq.net.au (N.M.);
w.hussein@uq.edu.au (W.M.H.)
${ }^{2}$ Diamantina Institute, Translational Research Institute, The University of Queensland, Wooloongabba, QLD 4102, Australia; j.gonzalezcruz@uq.edu.au (J.G.C.)
${ }^{3}$ Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; z.khalil@imb.uq.edu.au (Z.G.K.); r.capon@imb.uq.edu.au (R.J.C.)
${ }^{4}$ Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, 11795, Egypt
${ }^{5}$ School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia

* Correspondence: m.skwarczynski@uq.edu.au (M.S.); i.toth@uq.edu.au (I.T.)

Figure S1. Analytical HPLC profile of LCP-1. $\mathrm{t}_{\mathrm{R}}=23.0 \mathrm{~min}$

Figure S2. Mass spectrum of LCP-1. ESI-MS: m/z 1203.8 (calculated 1203.8) [M+5H] ${ }^{5+}$; 1003.1 (calculated 1003.4) $[\mathrm{M}+6 \mathrm{H}]^{6+} ; 860.0$ (calculated 860.2) $[\mathrm{M}+7 \mathrm{H}]^{7+} ; 752.8$ (calculated 752.8) $[\mathrm{M}+8 \mathrm{H}]^{8+} ; 669.2$ (calculated 669.2) $[\mathrm{M}+9 \mathrm{H}]^{9+}$
a)

b)

c)

d)

e)

f)

Figure S3. The optimization of formulation monitored with DLS. In each panel, the top two graphs represented the optimization of negative polymer mixing ratios (a, Lip-1; b, PEC-1; c, PEC-2; d, PEC-3; e, PEC-4; f, PEC-5) while the bottom two graphs represented the optimization of TMC coating. The optimum amount of each polymer required was marked in blue column.

Figure S4. PEC-5 induced maturation of splenocyte-derived DCs. DCs were cultured with PEC-5 for 5 h and 16 h separately. Expression levels of CD 86 (a), CD 80 (b) and MHC-II (c) were measured by flow cytometry. Results are mean fluorescence intensity (MFI) \pm SEM ($\mathrm{n}=2$). ${ }^{*} \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01$ and ${ }^{* * *} \mathrm{p}<0.001$.

Figure S5. The viability of cells treated with PEC-5. NCIH-460: human lung cancer cell line, SW620: human colorectal cancer cell line, HEK293: human kidney cell line. After 68 h incubation, cell viability was measured with MTT assay. All values are reported as means \pm SEM with duplicate data points.

