

Supplementary Information

Exploring Sn_xTi_{1-x}O₂ Solid Solutions Grown onto Graphene Oxide (GO) as Selective Toluene Gas Sensors

Eleonora Pargoletti ^{1,2,*}, Simone Verga ¹, Gian Luca Chiarello ¹, Mariangela Longhi ^{1,2}, Giuseppina Cerrato ^{2,3}, Alessia Giordana ^{2,3} and Giuseppe Cappelletti ^{1,2,*}

- ¹ Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy; simone.verga@studenti.unimi.it (S.V.); gianluca.chiarello@unimi.it (G.L.C.); mariangela.longhi@unimi.it (M.L.)
- ² Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali (INSTM), Via Giusti 9, 50121 Firenze, Italy; giuseppina.cerrato@unito.it (G.C.); alessia.giordana@unito.it (A.G.)
- ³ Dipartimento di Chimica & NIS, Università degli Studi di Torino, Via P. Giuria 7, 10125 Turin, Italy
- * Correspondence: eleonora.pargoletti@unimi.it (E.P.); giuseppe.cappelletti@unimi.it (G.C.); Tel.: +39-02-50314228 (G.C.)

Table S1. Binding Energies (B. E.) relative to different Sn and Ti oxidation states, and ratios between counts of each peak and the total counts, for 32:1 SnO₂/GO, 32:1 Sn_{0.71}Ti_{0.29}O₂/GO, 32:1 Sn_{0.55}Ti_{0.45}O₂/GO, 32:1 Sn_{0.21}Ti_{0.79}O₂/GO and 32:1 TiO₂/GO representative samples.

Atom	32:1 SnO2/GO		32:1 Sn0.71Ti0.29O2/G O		32:1 Sn0.55Ti0.45O2/G O		32:1 Sn0.21Ti0.79O2/G O		32:1 TiO2/GO											
											B. E.	Rati								
											(eV)	0								
	Sn(II)	_	_	485.3	0.38	484.9	0.12	484.2	0.33	_	_									
	Sn(III)	_	_	486.8	0.42	486.1	0.56	486.1	0.57	_	-									
Sn(IV)	486. 9	1.00	488.5	0.30	487.5	0.32	487.5	0.10	_	_										
Ti(III)	_	_	457.5	0.40	457.3	0.36	456.4	0.32	457. 3	0.33										
Ti(IV)	-	-	459.4	0.36	458.6	0.44	458.0	0.32	458. 3	0.51										
Ti(IV+δ) +	_	_	460.9	0.24	460.2	0.20	459.1	0.36	459. 6	0.16										

Table S2. Response (tres) and recovery (trec) times relative to 1 ppm of (**a**) toluene and (**b**) acetone molecules, obtained at 350 °C, without UV light, in simulated air (20% O₂ – 80% N₂).

(a)

tres (s)	trec (s)
20	30
50	55
36	65
_	-
55	60
100	50
25	30
	tres (s) 20 50 36 - 55 100 25

(b)

Sensor	t _{res} (s)	trec (s)
32:1 SnO ₂ /GO	65	70
32:1 Sn0.55Ti0.45O2/GO	30	50
32:1 TiO ₂ /GO	20	30

Figure S1. (a) Comparison of BET isotherms from pure cassiterite SnO₂, 32:1 SnO₂/GO to 32:1 TiO₂/GO, pure anatase TiO₂. (**b**,**c**) Pores size distribution by BET-BJH analysis for all the solid solutions.

Figure S2. SEM images alongside with the relative EDX spectra of (a) $32:1 \text{ Sn}O_2/\text{GO}$, (b) $32:1 \text{ Sn}O_7/\text{GO}$, (c) $32:1 \text{ Sn}O_57\text{Ti}O_45O_2/\text{GO}$, (d) $32:1 \text{ Sn}O_44\text{Ti}O_56O_2/\text{GO}$, (e) $32:1 \text{ Sn}O_35\text{Ti}O_65O_2/\text{GO}$, (f) $32:1 \text{ Sn}O_21\text{Ti}O_79O_2/\text{GO}$, (g) $32:1 \text{ Ti}O_2/\text{GO}$. The molar ratios Sn/(Sn+Ti) by EDX analysis have been reported, accordingly.

5

4

5

4

а

Figure S3. Toluene sensing by (a) 32:1 SnO₂/GO, (b-e) mixed oxides (with the exception of 32:1 Sn0.44Ti0.56O2/GO, since it did not show any signal), and (f) 32:1 TiO2/GO compounds. Tests were performed at 350 °C, without UV light, in simulated air (20% O₂ – 80% N₂).