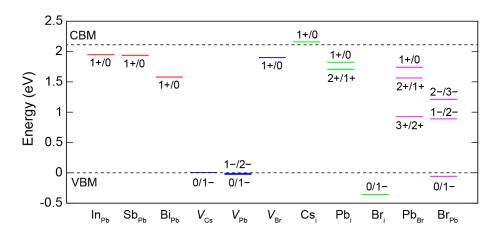
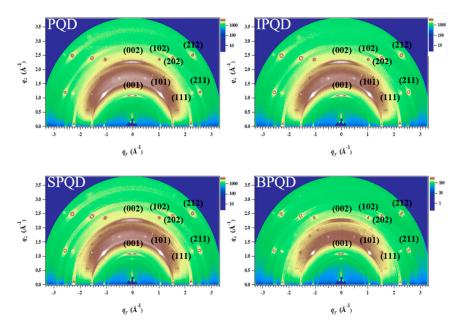
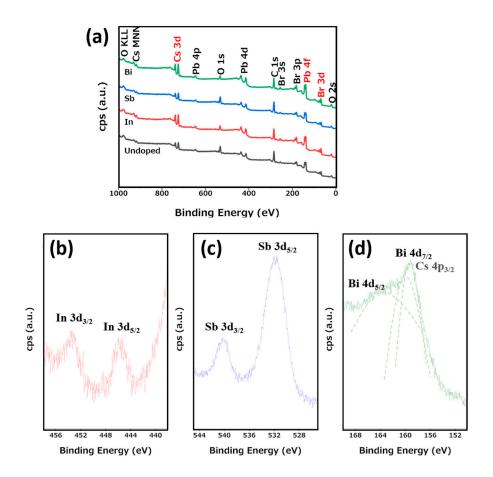

## Enhancement of Photoluminescence Quantum Yield and Stability in CsPbBr<sub>3</sub> Perovskite Quantum Dots by Trivalent Doping


Sujeong Jung <sup>1,+</sup>, Jae Ho Kim <sup>1,+</sup>, Jin Woo Choi <sup>1</sup>, Jae-Wook Kang <sup>2</sup>, Sung-Ho Jin <sup>3,\*</sup>, Youngho Kang <sup>4,5,\*</sup> and Myungkwan Song <sup>1,\*</sup>

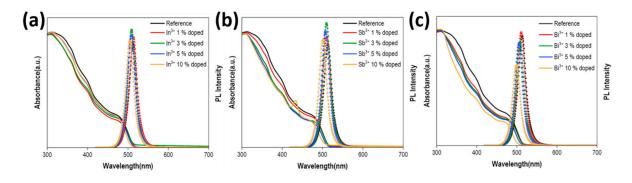
- <sup>1</sup> Surface Technology Division, Korea Institute of Materials Science (KIMS), 797 Changwondae-ro, Sungsan-Gu, Gyeongsangnam-do, Changwon 51508, Korea; sujeong2@kiost.ac.kr (S.J.); jho83@kims.re.kr (J.H.K.); jinwoo.choi@kims.re.kr (J.W.C.)
- <sup>2</sup> Department of Flexible and Printable Electronics, Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju 54896, Korea; jwkang@jbnu.ac.kr
- <sup>3</sup> Department of Chemistry Education Graduate Department of Chemical Materials Institute for Plastic Information and Energy Materials, Pusan National University, Busan 46241, Korea
- <sup>4</sup> Materials Data Center, Korea Institute of Materials Science (KIMS), 797 Changwondae-ro, Sungsan-Gu, Gyeongsangnam-do, Changwon 51508, Korea
- <sup>5</sup> Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Korea
- \* Correspondence: shjin@pusan.ac.kr (S.-H.J.); youngho84@inu.ac.kr (Y.K.); smk1017@kims.re.kr (M.S.); Tel.: +82-(0)51-510-2727 (S.-H.J.); +82-(0)32-835-8606 (Y.K.); +82-(0)55-280-3686 (M.S.)
- + These authors contributed equally to this project.


Received: 17 March 2020; Accepted: 4 April 2020; Published: date

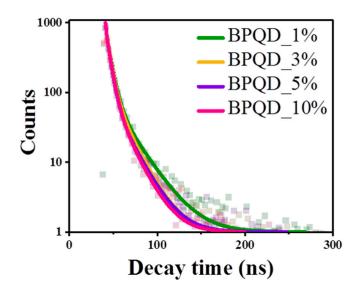



Scheme S1. Schematic of CsPbBr3 synthesis *via* LARP method.

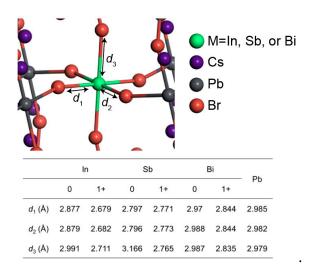



**Figure S1.** The position of the thermodynamic defect level of  $\epsilon((1 + )/0)$  for In<sub>Pb</sub>, Sb<sub>Pb</sub>, and Bi<sub>Pb</sub> as well as native defects such as vacancies and interstitials.

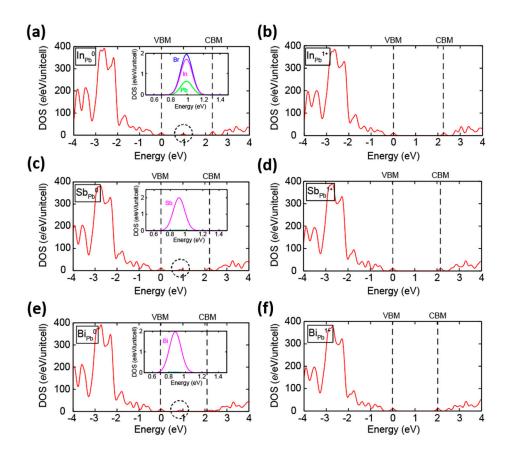



**Figure S2.** GIWAXS images of pure and 3 mol% In, 3 mol% Sb, and 1 mol% Bi substituted CsPbBr<sub>3</sub> perovskite QDs.




**Figure S3.** XPS spectra of (a) the pure and doped QDs consist of Cs, Pb, Br, C, and O, (b) In-, (c) Sb-, (d) Bi- substituted CsPbBr<sub>3</sub> QDs.




**Figure S4.** UV-Visible absorbance and PL emission spectra of (a) In- (b) Sb- (c) Bi- substituted CsPbBr<sub>3</sub> perovskite QDs with various doping concentration.



**Figure S5.** Time-resolved PL decay with fitting curve of 1 mol% Bi ion substituted CsPbBr<sub>3</sub> perovskite QDs.



**Figure S6.** Schematic of the atomic structure and the information of lattice parameters of CsPbBr<sub>3</sub> perovskite QDs with substituted defects.



**Figure S7.** The electronic band structure and partial densities of states (DOS) of selected atoms such as (a) In<sub>Pb</sub><sup>0</sup>, (b) In<sub>Pb</sub><sup>1+</sup>, (c) Sb<sub>Pb</sub><sup>0</sup>, (d) Sb<sub>Pb</sub><sup>1+</sup>, (e) Bi<sub>Pb</sub><sup>0</sup>, and (f) Bi<sub>Pb</sub><sup>1+</sup>.

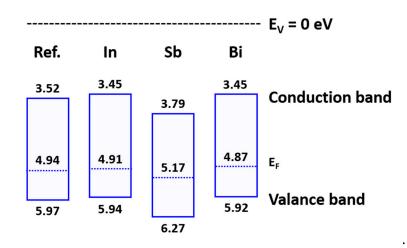



Figure S8. UPS spectra of pure and In-, Sb-, and Bi- ion substituted CdPbBr3 perovskite QDs.

 Table S1. gaps of binary bromide crystal calculated using PBE+SOC calculations methods.

|               | InBr3 | SbBr3 | BiBr3 | PbBr2 |
|---------------|-------|-------|-------|-------|
| Band gap (eV) | 2.41  | 2.99  | 2.18  | 1.91  |

**Table S2.** composition ratio of atomic percentage of In-, Sb-, Bi- substituted CsPbBr3 perovskiteQDs.

|      | Cs   | Pb   | Br   | In  | Sb  | Bi  |
|------|------|------|------|-----|-----|-----|
| Bi   | 11.6 | 27.3 | 59.0 | -   | -   | 2.1 |
| Sb   | 10.8 | 29.1 | 58.3 | -   | 1.8 | -   |
| In   | 12.3 | 28.0 | 58.7 | 1.1 | -   | -   |
| Ref. | 13.5 | 27.9 | 58.5 | -   | -   | -   |

[at%]