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Abstract: Laser-induced forward transfer (LIFT) and selective laser sintering (SLS) are two distinct
laser processes that can be applied to metal nanoparticle (NP) ink for the fabrication of a conductive
layer on various substrates. A pulsed laser and a continuous-wave (CW) laser are utilized respectively
in the conventional LIFT and SLS processes; however, in this study, CW laser-induced transfer of the
metal NP is proposed to achieve simultaneous sintering and transfer of the metal NP to a wide range
of polymer substrates. At the optimum laser parameters, it was shown that a high-quality uniform
metal conductor was created on the acceptor substrate while the metal NP was sharply detached
from the donor substrate, and we anticipate that such an asymmetric transfer phenomenon is related
to the difference in the adhesion strengths. The resultant metal electrode exhibits a low resistivity that
is comparable to its bulk counterpart, together with strong adhesion to the target polymer substrate.
The versatility of the proposed process in terms of the target substrate and applicable metal NPs
brightens its prospects as a facile manufacturing scheme for flexible electronics.

Keywords: laser-induced forward transfer; selective laser sintering; metal nanoparticle ink;
flexible electronics

1. Introduction

Wearable electronics such as skin-attachable medical devices may have a huge impact on our
daily lives [1]. As a consequence, the development of adequate manufacturing methods to produce
flexible electronics, which are one of the basic elements for a wearable device, is becoming increasingly
important [2,3] as well. As potential constituent materials for these flexible electronics, nanomaterials
such as nanotubes, nanowires, and nanofibers are under active investigation [4,5], whilst nanoparticles
(NPs) are drawing keen attention, since a conductive layer can be created on various substrates through
a simple sintering process at a relatively low temperature [6,7].

Selective laser sintering (SLS) was recently in the spotlight as a sintering scheme for these metal
NPs. The direct writing nature of SLS enables the simultaneous patterning and sintering of metal NPs,
which is advantageous for the rapid maskless adjustment of the electrode design. Moreover, since the
laser parameters are highly controllable, the SLS process was confirmed to be applicable to the creation
of a metal layer on flexible substrates which are sensitive to heat. The SLS process was first applied to
noble metal NPs such as gold (Au) [8] and silver (Ag) [9,10], but the range of applicable NPs is being
expanded to include more cost-effective materials such as copper (Cu) [11,12] and nickel (Ni) [13,14]
through the reductive sintering process.
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In the conventional SLS process for metal NPs, a focused laser is utilized as a localized heat source
to sinter metal NPs selectively along the designated path. While the deposition of metal NPs on the
target substrate is a prerequisite for the SLS process [10,15], the uniform coating of the metal NP ink is
often problematic for certain flexible films due to its hardness in handling and the poor wettability
between the substrate and the NP ink under concern [16]. The additional cleaning process after the
SLS process, which is required to remove the remaining NP ink from the substrate [9,12], also remains
as a redundant step.

To overcome these limitations, non-contact methods for metal NP patterning such as LIFT process
have been investigated. The LIFT process utilizes a pulsed laser beam as a driving force to transfer the
material from the donor substrate to the acceptor substrate, which are in proximity [17,18]. The NPs
transferred by a single pulse have a circular shape in general [19], and therefore, the single transfer
has to be repeated at specific laser parameters and a proper hatch size to integrate each droplet and
create continuous features [20,21]. Furthermore, unlike the SLS process, additional heat treatment is
essential for these metal NPs to function properly as electrodes [20,22]. Since the LIFT process and the
SLS process use a pulsed laser and a continuous-wave (CW) laser, respectively, an additional furnace
or another optical system is required for the heat treatment after the transfer step, which inevitably
increases the overall manufacturing cost.

Some techniques that performed the SLS process with pulse laser or LIFT process with CW laser
have been studied to overcome these innate limitations. P. Sopeña et al. proposed the CW-LIFT
method [23] and analyzed the dynamics of the method [24], which uses a CW laser for the LIFT of the
liquid Ag NP ink, and F. Zacharatos et al. [25] introduced a sintering method using a high-repetition-rate
pulsed laser after the conventional LIFT method. However, both of these methods could not achieve
the simultaneous sintering and transfer of the target material.

In this report, we introduce the CW laser-induced transfer of metal NP ink to tackle the preceding
problems. The transfer mechanism of the conventional LIFT process is to create impulsive heating at
the donor substrate by a laser pulse, to create a jet from the donor to the acceptor that often suffers from
high irreproducibility [26]. In this study, a pulsed laser is substituted with a CW laser, and the laser
transfer is achieved by harnessing the difference in the adhesion strengths between the sintered metal
NPs and the donor/acceptor substrates. Since sintering and transfer occur simultaneously with the CW
laser-induced photothermal reaction, a high-quality continuous conductive structure is created without
any post-cleaning or additional heat treatment, which has been compulsory in the conventional SLS
and LIFT processes. The potential of the proposed method is then further verified by its successful
application on various polymer substrates, including commercial products.

2. Materials and Methods

2.1. Material Preparation and CW Laser-Induced Metal NP Transfer Method

For the development of the the CW laser-induced metal NP transfer method and comparison
of the results with the previous studies, Ag NP ink was selected as the representative metal NP
ink [15,27]. The current study was conducted with commercial Ag NP ink (NPS-J, Harima Chemicals,
Inc. Tokyo, Japan) and used without any purification after the purchase. The overall experimental
steps are schematically illustrated in Figure 1. In a typical experiment, Ag NP ink was first coated
onto the donor glass substrate (microscope slides of 1 mm thickness, Marienfeld, Lauda-Königshofen,
Baden-Württemberg, Germany) using a spin coater (ACE-200, Dong Ah Trade Corp., Seoul, Korea) at
300 rpm for 200 s (Figure 1a). To control the wettability of the coated Ag NP, the donor glass substrate
was dried on a hot plate (MSH-30D, Daihan Scientific, Wonju, Korea) at 60 ◦C for 20 min. After the
spin coating process, the Ag NP layer on the donor glass substrate was flipped over to make contact
with a polymer film which was placed on a glass substrate. As the Ag NP was almost dried, it was not
spontaneously transferred when it touched the polymer film [28]. This process was confirmed to be
compatible with various polymer substrates, and polyimide (PI) film was selected as a representative
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polymer substrate. In the laser scanning process, the laser beam was passed through the donor glass
substrate vertically and was focused on the Ag NP layer. The focused laser beam was then scanned at
the Ag NP layer, which was in contact with the polymer film underneath (Figure 1b). After the laser
scanning process was finished, the donor glass substrate with the Ag NP was then detached from
the acceptor polymer film (Figure 1c), leaving the polymer film with the selectively transferred Ag
electrode (Figure 1d).

Figure 1. Schematics of the CW laser-induced Ag NP transfer to the thin polymer film. (a) Spin coating
of the Ag NP ink onto the donor glass substrate. (b) Laser scanning conducted at the Ag NP layer,
which is sandwiched between the glass substrate and the polymer film. (c) The detachment of the
donor substrate with the Ag NP. (d) Ag electrode on the acceptor polymer film transferred from the
donor substrate.

2.2. Optical Setup

The optical setup contained a 532 nm wavelength CW diode-pumped solid-state (DPSS) laser
(Sprout-G-5W, Lighthouse Photonics, San Jose, CA, USA) which used Nd:YVO4 as its gain medium,
while its spatial mode (Gaussian mode) was TEM00 at M2 = 1.0–1.1, with a beam diameter of
2.3 mm ± 10%. In the current study, the laser was focused with a 5× objective lens (M Plan Apo 5×,
Mitutoyo, Kawasaki, Japan), and the sample was scanned using a motorized 2-axis translational stage
(ANT130-060-XY-25DU-XY-CMS-MP-PLUS, Aerotech, Pittsburgh, PA, USA) along the programmed
scanning path. For the laser scanning of the current study, the laser’s power was controlled in the
ranges of 0.01–0.50 W and the scanning speed was fixed at 5 mm/s.

2.3. Measurements

The microscope images were taken with an optical microscope (BX53M, Olympus, Tokyo, Japan).
Atomic force microscopy (AFM) and field emission scanning electron microscopy (FE-SEM), together
with energy-dispersive X-ray spectroscopy (EDS) analysis, were conducted using an XE-100 from Park
Systems and a MIRA3 from TESCAN (Brno, Czech Republic), respectively.

3. Results and Discussion

The proposed method shares common characteristics with the conventional SLS method [9,10],
as the laser is utilized to convert the metal NP ink into a continuous conductive layer in a selective
manner. At the same time, however, the objective of the current technique is to transfer the resultant
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conductive layer to the target polymer substrate and the current study should be classified as a laser
transfer technique. It is noticeable that the proposed method possesses two differences compared to
the conventional LIFT process. First, a pulsed laser is substituted by a CW laser that is more widely
available. Secondly, the donor and the acceptor are in direct contact, while the gap distance between
the two substrates had to be precisely controlled in the previous studies [17,18]. The experimental
configuration is analogous to the shear-assisted laser transfer reported by our group previously [15],
however, unlike the thin elastomer substrate, an arbitrary polymer film is not conformally attached to
the metal NP layer. As a result, an additional glass substrate was added so that the target polymer
substrate and the metal NP layer were sandwiched between two auxiliary glass substrates and directly
touching each other.

The transfer characteristics are summarized in Figure 2. Upon successful transfer, we can observe
the complementary results between the donor and the acceptor, i.e., a selectively sintered Ag electrode
is created on the acceptor PI substrate, while the specific area of the laser-scanned Ag NP layer is
removed from the donor glass substrate. Since the amount of the laser-induced heat is the most critical
parameter for the features of the resultant, a parametric study was conducted by changing the laser
power, while other variables such as the laser wavelength, the magnification of the objective lens
and the spin coating condition were fixed. According to the laser power, we classified the transfer
feature into four modes (Figure 2a–d). When the laser power is under 200 mW, it is noticeable that
the Ag NP is sintered on the donor glass substrate, but there is no notable change on the acceptor PI
film. By increasing the laser power to 200–230 mW, irregular patterns appear on the acceptor, while
porous holes occur at the sintered Ag electrode on the donor (Figure 2a). We expect that the trapped
solvent from the Ag NP ink layer is evaporated by the laser heating and condensed onto the acceptor
PI film [17,29], leaving porous holes that originated from the rapid evaporation. Between 230 and
250 mW, regular Ag microparticles are transferred onto the acceptor PI film, while the sintered Ag
electrode has complementary micro holes on the surface (Figure 2b). This phenomenon appears to be a
typical balling effect [30,31] that is frequently reported in the relevant studies. The formation procedure,
relevant factors that affect the results and the mechanism are very complex in the laser-induced balling
effect, and since this is often considered as a defect in the typical SLS process, we attempted to find the
optimum laser power that suppresses the balling phenomenon, which was experimentally found at
270 mW in this study (Figure 2c). At the optimum condition, a high-quality electrode is created at the
acceptor while the Ag NP layer is sharply detached from the donor substrate. When the laser power
overpasses 400 mW, the acceptor PI film is pyrolyzed and carbonized [32,33] (Figure 2d) to create a
highly uneven structure.

Besides the successful demonstrations above, the stable and smooth transfer of the Ag electrode
from the glass to the polymer substrate appears to require a supplementary explanation for its
mechanism. We noted the asymmetric adhesion between the electrode and each substrate, and
expected to find a reasonable explanation. To further discuss, firstly the adhesion mechanism between
the PI substrate and the Ag electrode was investigated. Since it is reasonable to expect the adhesion
force originates from the electrode-substrate interface, an investigation of the PI-electrode interface
followed. To expose the interface, the Ag electrodes on the PI substrate were removed by chemical
etching with a dilute HCl solution. Since PI is well-known for its excellent chemical stability, the
removal process could preserve the surface morphology of the interface even after the etching process.
Consequently, as shown in Figure 2e, we can identify the irregularities at the position of the removed
electrode, which were further revealed as irregular dents and peaks of several micrometers by an AFM
measurement (Figure 2f). Considering the intensive laser-thermal energy of focused laser irradiation,
the rough surface morphology beneath the electrode could be ascribed to the thermal-deformation
of the PI surface driven by the laser irradiation and the resulting thermal energy. Then, such rough
topography of the PI surface could provide a plausible explanation for the adhesion at the interface in
two ways, as follows. First, from a microscopic point of view, the increased interface area due to the
rough topography can greatly enhance the molecular attractive interaction between the PI surface and
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the Ag electrode. Second, from a macroscopic point of view, the micrometer-sized dents and peaks
could induce the mechanical interlocking of each side of the interface. As a result, the adhesion between
the PI substrate and the Ag electrode seems to be attributable to the thermal-deformation of the PI
substrate surface. On the other hand, the glass, the other side of the Ag electrode, is known to be far
more stable to thermal-deformation. The melting point of glass reaches approximately 1500 ◦C, which
exceeds not only the glass transition point of most polymers (~100 ◦C) but also the authors’ expectation
of the laser-induced temperature with the power and scanning values of this study. Therefore, in
this case, we could not expect the adhesion mechanism described above, unlike in the case of the
PI-electrode interface. Consequently, the above-described thermal deformation induced adhesion
mechanism provides a possible explanation for the asymmetric adhesion between the electrode and
each substrate. The difference in thermal stability between the PI and the glass substrates generates
the asymmetric adhesion that can result in the transfer phenomenon. In addition to the effect of
the surface morphology, it is well known that the noble metals do not adhere well to glass [34,35],
while the enhanced adhesion between metal and polymer substrate after the SLS process has been
experimentally confirmed by numerous studies [9,10]. Meanwhile, enhanced surface adhesion by
photothermal reactions has been studied as the driving force of the laser-induced thermal imaging
(LITI) method as well [36]. The adhesion of the Ag electrode after the transfer was further tested by
jetting water using a squeeze bottle with a nozzle (Figure 2g). It was confirmed that vigorous cleaning
using the wash bottle does not result in detachment of the resultant electrode.

Figure 2. Parametric studies seeking the optimum laser parameters. Optical microscope images of the
acceptor according to the laser power (laser velocity was fixed at 5 mm/s); (a) 210 mW, (b) 240 mW (c)
270 mW and (d) 400 mW (inset: corresponding donor substrate). (e) Optical and (f) AFM images of the
PI film after etching the transferred Ag electrode. (g) Adhesion test against water-jetting.

Through this proposed method, we could create micro Ag electrodes on the flexible PI film that
can be attached to arbitrary irregular shapes such as a cylindrical rod (Figure 3a). For more accurate
observation of the created Ag electrode, we measured the transferred Ag electrode with SEM, AFM,
an optical surface profiler and EDS (Figure 3b–d). The SEM (Figure 3b) and optical surface profiler
(Figure 3c) images show that the selective transfer was achieved on the PI film and also that the
transferred Ag electrode has a uniform surface composition. We expect that the simultaneous sintering
and transfer processes by the rapid photothermal reaction, together with extremely high temperature
gradient, create the Ag electrode without any excessive substances. The AFM measurement (Figure 3b
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inset) verifies the uniform and flat-top surface of the Ag electrode, and the EDS image (Figure 3d)
confirms that the transferred electrode is indeed derived from the Ag NP.

Figure 3. (a) Photographs of the transferred Ag electrodes on non-flat substrates such as a cylindrical
rod and a bent elastomer (inset: photograph of the acceptor and the donor together with a scale to
check the size). (b) SEM (inset: AFM), (c) optical surface profiler and (d) EDS measurements of the
transferred Ag electrode.

To ensure the electrical conductivity of the resultant, the transferred Ag electrode was connected
to power a light-emitting diode (LED). The photographs (Figure 4a) indicate that the Ag electrodes
created by the proposed method are available as efficient conductors. From the resistance and the
dimensions of the transferred Ag electrode, we obtained a resistivity of 7.243 × 10−8 Ω·m for the current
conductor, which is about five times higher than that of bulk silver (1.59 × 10−8 Ω·m). This process is
directly applicable to other flexible substrates (Figure 4e–g) as shown in the representative examples of
the transferred Ag electrode on the polycarbonate (PC) film (Figure 4c), polyethylene terephthalate
(PET) film (Figure 4d), thermoplastic polyurethane (TPU) film (Figure 4e), and even on a commercial
nitrile glove (Figure 4f) and 3M tape (Figure 4g). For these substrates, the transfer of the Ag electrode
occurs effectively at a similar laser power, and we expect that the transferred mechanism is analogous
in every case.

Figure 4. (a) Photographs of the circuit using the transferred Ag electrode on the PI film. (b) I-V
characteristics of the transferred Ag electrode. Ag electrode transferred to (c) PC film, (d) PET film,
(e) TPU film, (f) Nitrile glove and (g) 3M tape. The insets of (c–g) are the optical microscope images of
the corresponding Ag electrodes.
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As shown in Table 1, the laser-induced transfer method has been mainly studied in the LIFT method
using a pulsed laser, which inevitably involves additional heat treatment. There have been several
attempts to improve this conventional method. P. Sopeña et al. [23] presented LIFT using a CW laser
and secured its possibility as a low-cost fabrication method, but this scheme also requires additional
heat treatment because it does not include a simultaneous sintering process. Shin et al. [15] introduced
the shear-assisted laser transfer method using a CW laser, which utilizes the thermal expansion
coefficient differences between the donor glass substrate and the acceptor Polydimethylsiloxane
(PDMS) in conformal contact. However, the shear-assisted laser transfer method requires a substrate
with high transparency and thermal expansion coefficients, making it difficult to apply to arbitrary
polymer substrates.

Table 1. Recent progress in the laser-induced transfer of metal NPs.

Laser Laser
Condition Donor Acceptor Gap

distance Year Material Method Ref.

1 Pulsed
laser (ns)

266 nm
40–100
mJ/cm2

Quartz SiO2 300 µm 2014 Silver

LIFT
Additional

Heat
treatment

[37]

2 Pulsed
laser (fs)

1027 nm
530 mJ/cm2 Glass Glass 200 µm 2015 Silver

LIFT
Additional

Heat
treatment

[21]

3 Pulsed
laser (fs)

1027 nm
530 mJ/cm2 Glass

Glass with
ablated
channel

160 µm 2016 Silver

LIFT
Additional

Heat
treatment

[20]

4 Pulsed
laser (ps)

343 nm
35–64 mJ/cm2 Quartz Glass 230 µm 2016 Silver

LIFT
Additional

Heat
treatment

[19]

5 Pulsed
laser (ns)

1064 nm
2–6 J/cm2 Glass Glass 150 µm 2017 Silver LIFT [38]

6 Continuous
wave laser

1064 nm
1W

600mm/s
Glass Glass 150 µm 2017 Silver

CW-LIFT
Additional

Heat
treatment

[23]

7 Pulsed
laser (ns)

1064 nm
11000 mJ/cm2 Glass Paper 150 µm 2018 Silver

LIFT
Additional

Heat
treatment

[22]

8 Continuous
wave laser

532 nm
0.54 W

140 mm/s
Glass PDMS Contact 2018 Silver Shear-assisted [15]

9 Pulsed
laser (ns)

532 nm
320 mJ/cm2 Glass

Glass
SU-8 film
Organic

layer

150 µm
500 µm

3000
µm

2019 Silver

LIFT
Additional

Heat
treatment

[39]

10 Pulsed
laser (ns)

532 nm
360 mJ/cm2 Quartz SU8 on

glass 100 µm 2019 Copper
LIFT
Post

sintering
[40]

11 Pulsed
laser (ps)

532 nm
80–240 nJ

(burst mode)
Glass Glass 200 µm 2019 Silver LIFT(burst) [41]

Current
Study

Continuous
wave laser

532 nm
0.27 W
5 mm/s

Glass Polymer
Substrates Contact Silver

Enhanced
adhesion by

CW laser

4. Conclusions

The laser-induced transfer method of metal NPs using a CW laser, apart from the conventional
LIFT method using a pulsed laser, has hardly been developed to date, since the main transfer mechanism
has remained as jet formation. The current study reports the micropatterning of the target metal NP
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onto a flexible acceptor substrate by harnessing the different adhesion strengths that originate from the
thermal deformation. Through the proposed process, the sintering and transfer occur simultaneously at
a single optical platform without the need for the additional cleaning process. As a result, the proposed
method could be an efficient integrated and complementary technique for the previous SLS and LIFT
process for metal NPs. We expect that the current study can be applied to a wide range of substrates
with enough heat resistance to endure the sintering temperature of the metal NPs. Furthermore, we
anticipate that this method is principally material-independent, such that an identical process would
be compatible with a variety of metal NPs. The proposed CW laser-induced transfer method, therefore,
appears to possess a large potential as a facile manufacturing scheme for flexible electronics.
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