Supplementary Materials

Reactive pulsed laser deposition of clustered-type MoS_x (*x*~2, 3, and 4) films and their solid lubricant properties at low temperature

V. Fominski^{1,*}, M. Demin², V. Nevolin¹, D. Fominski¹, R. Romanov¹, M. Gritskevich¹, N. Smirnov³

¹National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Kashirskoe sh., 31, Russia, 115409

²Russia Immanuel Kant Baltic Federal University, Kaliningrad, A. Nevskogo str. 14, Russia, 236016

³Mechanical Engineering Research Institute of the Russian Academy of Sciences, Moscow, Bardina Ulitsa 4, Russia, 119334

Local atomic structures/cluster unites of amorphous MoS_x materials with varied S content

 $MoS_{x\sim 2}$

Lamellar/layered-type structure

Mo₃-S (Mo₃S₆) cluster units

 $MoS_{x\sim3}$

Linear chain of $Mo-S_3$ (MoS_3) cluster nits

Mo₃-S (Mo₃S₉) cluster units

Polymer-like chain consisted of Mo_3S_{12} and Mo_3S_{13} cluster units

Figure S1. Possible local structures/atomic packings in amorphous MoS_x coatings with $x\sim2$, 3, and 4 (Mo atoms – blue, S atoms – yellow). Different types of S ligands that may present in polymerized amorphous MoS_x structures are indicated for Mo_3S_{12} and Mo_3S_{13} cluster unites in colored squares: green, terminal S_2^{2-} ; red, apical S²⁻; blue, bridging S_2^{2-} ; yellow, unsaturated S²⁻.

Tribometer for friction testing of thin-film coatings by pin-on-dis method at various conditions

Figure S2. Anton Paar TRB3 tribometer modified by the authors for friction testing of MoS_x thin-film coatings at low temperatures.

Composition and surface distribution of elements for MoS_x thin-film coatings obtained by RPLD

Figure S3. Chemical mapping of S, Mo, Fe, and Cr over the surface of different samples obtained by RPLD of MoS_x coatings on the polished steel substrates.

Figure S4. RBS spectra for thin MoS_x films obtained by RPLD on Si substrates at different pressures of H₂S gas.

Monitoring of laser-initiated ion fluxes bombarded the MoS_x coating during RPLD at different pressures of H₂S gas

Figure S5. Time-of-flight (TOF) signals of ion pulses detected by an ion probe during the pulsed laser ablation of a Mo target at different pressures of H_2S gas.

Structural study of MoS₄ film obtained by RPLD

Figure S6. High resolution TEM and SAED patterns for thin MoS₄ film obtained by RPLD. The time of *in situ* electron beam irradiation of the film in the microscope was (**a**) 2 and (**b**) 10 minutes. The e-beam irradiation caused the local modification/crystallization of the film. Lattice spacing in the e-beam induced nanophase was ~0.26 nm. The nature of this nanophase has not been established. It can be assumed that the electron irradiation caused the desorption of sulfur atoms and, as a result, the local formation of the Mo₂S₃ nanocrystals in the amorphous MoS_x matrix. The high resolution TEM image of this compound clearly showed the lattice spacing of 0.255 nm [1].

Distribution of wear along the tracks for MoS₂, MoS₃, and MoS₄ coatings

Figure S7. 2D images and profiles of the wear scar edge for the different MoS_x coatings measured after tribo-testing at -100°C in an oxidizing environment. Red lines show the cross sections of wear scars at indicated places; blue lines show the depths of the tracks alone the direction of ball sliding. For the MoS_2 coating, the profilometry studies revealed the uneven wear along the entire track, therefore, sufficiently accurate profiling along the track could not be done.

Figure S8. Distribution of elements (Mo, S, Fe, Cr, and O) across the central part of the wear track on the MoS_2 coating after tribo-testing at -100°C in an oxidizing environment.

Figure S9. Distribution of elements (Mo, S, Fe, Cr, and O) across the central part of the wear track on the MoS_3 coating after tribo-testing at -100°C in an oxidizing environment.

Figure S10. Distribution of elements (Mo, S, Fe, Cr, and O) across the central part of the wear track on the MoS_4 coating after tribo-testing at -100°C in an oxidizing environment.

Tribological properties of RPLD MoS_x coatings at 22°C

Figure S11. Friction curves of tests conducted at 22° C for different RPLD MoS_{*x*} coatings in an argon–air mixture (RH~9%).

Figure S12. Optical images of the wear tracks for different MoS_x coatings after tribo-testing at 22°C in an argon–air mixture (RH~9%).

Figure S13. Friction curves of tests conducted at 22°C for different RPLD MoS_x coatings in air (RH~50%).

Figure S14. Optical images of the wear tracks for different MoS_x coatings after tribo-testing at 22°C in air (RH~50%).

Reference

1. X. Zhou, W. Zhao, J. Pan, Y. Fang, F. Wang, F. Huang, Urchin-like Mo₂S₃ prepared via a molten salt assisted method for efficient hydrogen evolution, Chem. Commun. 2018, 54, 12714.