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Abstract: Heat rejection from electronic devices such as processors necessitates a high heat removal
rate. The present study focuses on liquid-cooled novel heat sink geometry made from four channels
(width 4 mm and depth 3.5 mm) configured in a concentric shape with alternate flow passages (slot
of 3 mm gap). In this study, the cooling performance of the heat sink was tested under simulated
controlled conditions.The lower bottom surface of the heat sink was heated at a constant heat flux
condition based on dissipated power of 50 W and 70 W. The computations were carried out for
different volume fractions of nanoparticles, namely 0.5% to 5%, and water as base fluid at a flow rate
of 30 to 180 mL/min. The results showed a higher rate of heat rejection from the nanofluid cooled
heat sink compared with water. The enhancement in performance was analyzed with the help of a
temperature difference of nanofluid outlet temperature and water outlet temperature under similar
operating conditions. The enhancement was ~2% for 0.5% volume fraction nanofluids and ~17% for
a 5% volume fraction.
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1. Introduction

Miniaturization of electronic devices faces heat rejection problems. Advancement in fabricating
these devices has resulted in them becoming smaller in size. Such devices produce a large heat
generation in a smaller volume. It necessitates an effective cooling arrangement for maintaining the
operating temperature within a safe range [1]. Uses of heat sinks with micro/mini-channels have
emerged as a feasible solution, which was first proposed by Tukerman and Pease [2]. Among the
possible working fluids investigated, air cooling is unable to meet the increasing demand for high heat
removal rates. Electronic and IT applications demand a compact, more efficient, and an adequately
designed effective cooling system that is capable of sustainable longevity. Generally, these electronics
systems are cooled with either air or liquid (water, glycol, etc.) [3]. Microchannel liquid cooling can be
advantageous [4].

Many investigations have reported on hydraulic and thermal behavior as well as heat transfer
augmentations. The different heat-transfer augmented techniques in micro/mini-channels for
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single-phase cooling devices were reviewed by Steinke and Kandlikar [5].An investigation was
performed on a water-cooled offset strip fin enhanced microchannel heat exchanger and this was shown
to perform better when compared with straight continuous channel walls [6]. Khameneh et al. [7]
carried out a numerical study on laminar flow and forced convective heat transfer in water-cooled
rectangular-shaped microchannel sections that had specific hydraulic diameters and distinct geometric
configurations. Aspect ratio and hydraulic diameter affected the heat transfer rate of microchannels.
Hasan et al. [8] analyzed the performance of a microchannel heat exchanger and presented results
which took into consideration the different shapes and sizes of the channels. Xie et al. [4] performed
a numerical study on mini-channel heatsinks subjected to a constant heat flux wall condition. In
narrow and deep channels, the heat transfer performance was improved with a relatively high-pressure
drop. Jiang and Ruina [9] reported that, in mini-fin structures, the convective heat transfer coefficient
increased 9–21-fold for water and 12–38-fold for air, compared to the empty plate channel. Ahmed [10]
conducted a numerical study on grooved microchannel heatsinks to analyze the effect of geometrical
specifications on laminar convective heat transfer. Trapezoidal grooved microchannel heatsinks
(MCHSs) have the optimum thermal design compared to rectangular and triangular grooved MCHSs.
Choi et al. [11] conducted numerical analysis on microchannel water blocks with pass variations.
The heat transfer rate accompanied by higher values of pressure drop were observed in two-pass
samples. Jajja et al. [12] experimentally investigated the influence of fin spacing in different heat
sinks for effective thermal management. Liu and Jianlin [13] numerically analyzed the fluid flow and
thermal characteristics of mini-channel heatsinks with non-uniform inlets. The total thermal resistance
of the mini-channel heat sink was reduced by 9.9% to 13.1% using non-uniform baffles. Aliabadi et
al. [14] experimentally studied the cooling performance of a sinusoidal wavy mini-channel heat sink
and examined the effect of geometrical parameters and working fluids and observed the effective
thermal performance compared to a straight mini-channel heatsink. Lee et al. [15] suggested that a
continuum-based approach can be applied to estimate the heat transfer in microchannels. The use
of a serpentine microchannel (with a square cross-section) to characterize slug flow behavior has
been reported by Cairone et al. [16]. Under critical heat flux conditions, heat rejection from heat sink
utilizing water as the heat transfer media can be further enhanced with nanofluids [17].

Many studies have been carried out citing nanofluid usage in heat transfer enhancement [18–20].
Among these, Choi et al. [21] introduced the concept of nanofluid and presented that thermal
conductivity of base fluid can be increased with the addition of nanoparticles of sizes less than
100 nm [22]. The use of such nanofluids in mini-channel heat sinks (MCHSs) has been reported in some
studies. Ho et al. [23] carried out forced convective cooling of MCHSs with Al2O3–water nanofluid and
found that it enhanced heat transfer. Koo and Kleinstreuer [24] suggested nanofluid selection should
be based on higher Prandtl numbers, high-volume concentrations of nanoparticles, and a high aspect
ratio of microchannels to avoid nanoparticle accumulation. Jang and Choi [25] found that MCHS
performance was enhanced by 10% for a water-diamond nanofluid compared with pure water. Ijam
and Saidur [26] analytically investigated the effect of nanoparticle concentration and Reynolds number
in MCHSs.

Based on the studies above, most of the investigations were carried out on the characteristics of
heat transfer and fluid flow in circular or rectangular straight mini-channel heat sinks. Only a few
experimental or numerical studies are currently available with regards to spiral or concentric channels,
but there is no research currently available which has reported on a multi-circular mini-channel heat
sink. In this work, thermal performance of a concentric channel heat sink with an alternate slot for the
fluid flow is presented.

2. Circulatory Flow Multi-Channel Heat Sink

A heat sink was modified to create a circulatory flow of cooling media. It contained four concentric
channels (width 4 mm and depth 3.5 mm) with alternate opening slots (Figure 1). The cooling fluid
was fed centrally to the heat sink to facilitate higher heat removal. An electronic device such as a
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processor generates more heat at the center, whereas peripheral portions or parts can dissipate heat to
the surroundings. Cooling liquid from the inlet pipe entered centrally, and the flow bifurcated after
passing through the first slot or opening. The liquid then flowed through the first channel again and
then bifurcated after it passed through the second slot. The outlet for circulating liquid was provided
at the outer periphery. The interior view of the heat sink (as shown in Figure 1) was made of copper
and sealed on top with a copper plate. This top cover was provided with an inlet pipe which allowed
the flow of inlet water through the channel. The geometrical dimensions of concentric circulatory flow
heat sink are listed in Table 1.
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Figure 1. Proposed circulatory flow multi-channel heat sink.

Table 1. Specifications of the heat sink.

Parameters Size, mm

Diameter of heat sink (D) 50
Height of channel (H) 3.5
Width of channel (W) 4
Thickness of channel wall (t) 1
Thickness of heat sink base plate (t2) 2
Thickness of heat sink cover plate (t1) 1
Total height of heat sink (H + t1 + t2) 5.5
Flow passage slot for the water to flow (W1) 3
Dimensions of the water outlet duct (W1× H) 3 × 3.5
Width of the slots (passage) 3
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The copper plate of required dimensions is used as heat sink material (Figure 2a). Due to the
miniature size of the heat sink, it is fabricated using CNC machining (Figure 2b). In this study, cooling
performance of the heat sink has tested under simulated controlled conditions. The electronic device
that dissipates heat and needs cooling is replaced with equivalent heating block illustrated in Figure 3.
The heating block majorly comprised of nichrome plate heaters placed directly beneath the lower
surface of the heat sink. The amount of heat flow through this heater can regulated through different
knob settings of the dimmerstat. The wattage of the electrical input is computed based on measured
value of current and voltage. The heating block is provided with insulation to avoid heat losses to the
surroundings. The experimental set up is assisted with instruments for measuring surface temperature
of heat sink, inlet and outlet cooling liquid temperature, mass flow measurement, voltmeter and
ammeter for voltage and current measurement, dimmerstat for wattage control, and control valves.
Set up is created for continuous operation under steady-state conditions with the help of flow from
water tank.
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Figure 3. Arrangement showing water and heating.

During the experiment, a constant input power of 50 W was supplied to the heating block.
The bottom wall temperature of the heating block was recorded after the attainment of steady-state
conditions. Experiments were conducted at different flow rates. A set of three trials were conducted to
check reproducibility of the experimental data.
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3. Numerical Modelling

3.1. Geometry

The present numerical work aimed at providing an insight into thermal performance throughout
the flow direction. The limitation of installing temperature sensors in a mini-channel restricts the
provision of any details on channel-to-channel heat removal. As a result, the three-dimensional
modeling and meshing were created using software package GAMBIT 2.3.16 as shown in Figure 4.
CFD Software package FLUENT 6.3.26 was used to perform numerical computations.
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3.2. Nanofluid Properties

In this investigation, Al2O3 nanoparticles were used due to their ability to enhance heat transfer.
The thermophysical properties of base fluid (water) and nanoparticles (Al2O3) are listed in Table 2.

Table 2. Properties of base fluid and nanoparticles.

Properties Pure Water Alumina (Al2O3)

Mass density, kg/m3 995.81 3880
Specific heat, J/kgK 4178 765

Thermal conductivity, W/mK 0.6172 40
Viscosity, kg/ms 0.0008034 −

For a lesser volume fraction of nanoparticles in the base fluid, the nanofluid can be treated as a
single-phase, homogenous liquid. Nanofluid properties depend on the percentage of nanoparticles used
in the base fluid. The thermophysical properties of nanofluids are calculated by the following equations:

Density [27–29]:
ρn f = (1−∅)ρb +∅ρp (1)
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Viscosity, Einstein’sequation [30]:

µn f = µn f (1 + 2.5∅) (2)

Thermal conductivity [31–33]:

kn f =

kp + 2kb f + 2
(
kp − kb f

)
(1 + β)3∅

kp + 2kb f − 2
(
kp − kb f

)
(1 + β)3∅

kb f (3)

where β is taken as 0.1 [34].
Specific heat [34,35]: (

ρCp
)
n f

= (1−∅)
(
ρCp

)
b f
+∅

(
ρCp

)
p

(4)

where φ denotes volume fraction of nanoparticles and subscript nf, bf, p denotes nanofluid, basefluid
and particle, respectively.

3.3. Governing Equation and Boundary Conditions

The nanofluid was taken as single-phase fluid and subjected to the following flow assumptions:
steady state, incompressible, laminar, and constant properties. The governing equations for solving
flow conditions are given below [36]: Continuity equation:

∇(ρv) = 0 (5)

Momentum equation:
∇(ρvv) = −∇P +∇(µ∇v) (6)

Energy equation for the fluid:
∇

(
ρvCpT

)
= ∇(k∇T) (7)

Energy equation for the solid wall:
∇(k∇T) = 0 (8)

Boundary conditions:
Heat sink walls are subjected to no-slip boundary conditions, whereas the inlet and the outlet

of the domain are given as velocity inlet and pressure outlet, respectively. As shown in Figure 1, the
lower bottom surface of the heat sink was heated at a constant heat flux condition based on dissipated
power of 50 and 70 W.

3.4. Numerical Scheme and Validation

The control volume-based approach was adopted for solving governing equations
(Equations (6)–(9). The SIMPLE algorithm was chosen for pressure-velocity coupling. A steady-state
laminar model was used for the analysis, and the convergence criteria for residuals of continuity and
velocity equations were of the order of 10−6. For the energy equation, they were of the order of 10−9.
The results were obtained once the solutions were converged. Figure 4 shows the plot of surface
temperature and water outlet temperature measured experimentally as described in Section 2. The
area-weighted surface and water outlet temperatures were obtained at similar flow conditions and
were plotted in Figure 5. It was observed that numerical results were in good agreement with the
experimental data and, therefore, the present numerical scheme should be adopted for further study to
give insights into heat transfer.
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4. Discussion

The cooling performance of the heat sink was carried out at heat generation rates of 50 and 70 W.
Under each heating condition, heat dissipation was computed out for four different flow rates at 30 to
180 mL/min. The computational results are presented below.

4.1. Flow Field in Heat Sink

Due to the miniature size involved in the mini-/microchannel heat sink and difficulty in
sensor placement, flow field and temperature distribution were difficult to measure experimentally.
The post-processing tools available in computational software allowed detailed flow-field analysis.
Figures 6–9 show sample contours of temperature for a heat generation rate of 50W. Temperature flow
fields were analyzed at depths of 0.1 mm and 0.5 mm from the base surface of the heat sink. It can be
observed that the temperature of the cooling fluid increased along the flow direction. At the center
of the heat sink, cooling fluid was at its lowest temperature. It collected heat from the heat sink as it
passed through different channels. It was observed that the fluid layers adjacent to the solid bottom
wall collected heat by conduction, whereas other fluid layers above underwent forced convective heat
transfer. The temperature fields developed in the heat sink were also analyzed at different flow rates.
It was observed that lower flow rates were not adequate in maintaining a lower heat sink temperature.
At a lower flow rate, there could be potential danger of obtaining a temperature that is beyond that of
safe operation. The maximum local temperature (~77◦C) attained at a low flow rate (Figure 6) can be
reduced to 58◦C (Figure 7), 49.31◦C (Figure 8), and 44.61 ◦C (Figure 9) for flow rates of 60, 120, and 180
mL/min, respectively.
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4.2. Heat Transfer Enhancement with Nanofluids

The fluid outlet temperature was considered to analyze the device’s cooling performance. Initially,
the heat sink was cooled with water for different flow rates and taken as base for its comparison with
nanofluid. The computations were carried out for different volume fractions of nanoparticles, namely
0.5%, 1%, 3%, and 5%. The following two temperature differences were compared:

∆T = T f ,out − T f ,in
dT = Tn f ,out − Tb f ,out

}
(9)

where Tf,out is the liquid outlet temperature, Tf,in is the liquid inlet temperature, Tnf,out is the
nanofluid outlet temperature, and Tbf,out is the water outlet temperature. The results are plotted in
Figures 10 and 11.
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Figure 10. Temperature difference between liquid outlet and liquid inlet and its comparison with base
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The computed data were analogous to the experimental observation shown earlier in Figure 5.
The liquid outlet temperature was reduced when the liquid flow rate was increased and, therefore,
∆T also reduced the constant liquid inlet temperature. At a low mass flow rate of 30 mL/min and
when Q = 50 W, ∆T was approximately 24 ◦C. Under this condition, the nanoparticle addition in the
base fluid enhanced ∆T. The use of nanoparticles increased dT by 0.5 ◦C to ~3.97 ◦C for nanoparticles
volume concentrations of 0.5% and 5%.Similarly, for the same flow rate of 30 mL/min and Q = 70 W,
∆T was approximately 34 ◦C. The nanofluid raised dT by 0.7 ◦C to ~5.55 ◦C for nanoparticles volume
concentrations of 0.5% and 5%. The other computational results are plotted in Figure 11.

5. Conclusions

In the present work, modified heat sink geometry was introduced for heat dissipation from
electronic devices. The cooling performance of the proposed heat sink was compared with Al2O3–water
nanofluids. The conclusion can be summarized as follows:

(1) The maximum local temperature (~77 ◦C) attained at a low flow rate (30 mL/min) can be reduced
to 58, 49.31, and 44.61 ◦C for flow rates of 60, 120, and 180 mL/min, respectively.

(2) At a lower mass flow rate of 30 mL/min and Q = 50 W, the temperature difference between water
outlet temperature and water inlet temperature was approximately 24 ◦C. This reduced to ~4 ◦C
as the mass flow was increased to 180 mL/min.

(3) A higher rate of heat generation of around 70 W produced a water outlet temperature of ~34 ◦C
for a water flow rate of 30 mL/min. This was reduced to ~5 ◦C when the water flow was increased.

(4) Heat rejection rate enhanced with nanofluid usage. The enhancement was calculatedby measuring
the temperature difference of nanofluid outlet temperature and water outlet temperature under
similar operating conditions. The enhancement was ~2% for 0.5% volume fraction nanofluids to
~17% for a 5% volume fraction.
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