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Abstract: Motivated by often contradictory literature reports on the dependence of the surface
energy of gold nanoparticles on the variety of its size and shape, we performed an atomistic study
combining molecular mechanics and ab initio calculations. We show that, in the case of Au nanocubes,
their surface energy converges to the value for (0 0 1) facets of bulk crystals. A fast convergence
to a single valued surface energy is predicted also for nanospheres. However, the value of the
surface energy is larger in this case than that of any low-index surface facet of bulk Au crystal.
This fact can be explained by the complex structure of the surface with an extensive number of
broken bonds due to edge and corner atoms. A similar trend was obtained also for the case of
cuboctahedrons. Since the exact surface area of the nanoparticles is an ill-defined quantity, we have
introduced the surface-induced excess energy and discuss this quantity as a function of (i) number
of atoms forming the nano-object or (ii) characteristic size of the nano-object. In case (i), a universal
power-law behaviour was obtained independent of the nanoparticle shape. Importantly, we show
that the size-dependence of the surface energy is hugely reduced, if the surface area correction is
considered due to its expansion by the electronic cloud, a phenomenon specifically important for
small nanoparticles.
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1. Introduction

Surface energy is an important thermodynamic quantity. Particularly in cases where the
volume-to-surface ratio becomes small, as is the case of nanoparticles, its relevance must not be
underestimated [1,2].

There has been a vivid discussion concerning the qualitative trend of the surface energy as
a function of the nanoparticle size. On the one hand, in many cases one finds reports on decreasing
surface energy with decreasing particle size, e.g., in a study by Vollath and Fischer [3] or earlier
studies [4,5]. This trend has been conventionally explained with an increasing tendency to form
a liquid-like structure at the surface of the particles [6]. On the other hand, there exists a number of
primarily theoretical papers finding a significant increase of the surface energy with decreasing particle
size, see, e.g., Refs. [7–9]. Furthermore, there are also some heavily disputed experimental results
indicating an increasing surface stress (and hence, due to a conventional assumption, also surface
energy) with decreasing particle size [10,11]. Nanda et al. [11] pointed out that the difference between
various reported trends stems from the nanoparticle nature. The surface energy is expected to
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increase for free nanoparticles with decreasing particle size, while the opposite trend is obtained
for nanoparticles embedded in a matrix.

Wei and Chen [12] pointed out that, from the theoretical point of view, the trend could
be qualitatively altered by changing the definition of a nanoparticle surface area. Unlike the
energy change related to forming the free surface of a nanoparticle, the area is not well defined.
Consequently, small changes of the radius/size yield large changes of the surface area, especially for
nanometre-sized particles [12]. The rather geometrical argumentation of Ref. [12] was later linked to a
physical quantity, a spatial expansion of the electronic cloud [13]. Using a refined, physically-based
surface for small nanoparticles consequently leads to a weak-to-no size dependence of surface
energy [14,15]. The latter reference also provided a thermodynamical-based model with predictive
capabilities, hence seemingly resolving the enigma regarding the size dependence of the surface energy.

Nanoparticles, and particularly gold nanoparticles, nonetheless present a rich area of application
as well as curiosity-driven research. Their applications span from biomimetic materials, over printed
electronics to electrochemical biosensors [16,17]. Quite counterintuitively, the most preferable
structure of a 55 Au atoms cluster was shown to be an amorphous structure even at 0 K [18],
being a consequence of the small nanoparticle size. This prediction, however, was experimentally
corroborated [18]. Ali et al. [9] predicted a rapid increase of the surface energy upon the nanoparticle
melting. In agreement with earlier work of Shim et al. [19], they also predicted the decrease of
melting temperature with decreasing nanoparticle size. Spontaneous segregation to some facets
has been reported for Au-Ni nanoparticles, leading to an overall isotropic elastic response [20].
Another interesting effect is the shape variety of nanoparticles, accessible via solution synthesis
modifying the surface energy in its very essence [17,21].

In the present study we, therefore, employ atomistic simulations to study the impact of
nanoparticle shape on the resulting surface energy estimation. We focus on shapes ranging from rather
artificial but geometrically simple nanocubes, over cuboctahedrons (special members of the truncated
octahedrons, which have been reported as equilibrium shapes of Au nanoparticle), to nanospheres.
In the final section we discuss how is the shape and size dependence of the surface-induced excess
energy (i.e., the total nanoparticle surface energy) are related to number of broken bonds due to the
creation of the free surface.

2. Methodology

Molecular mechanics (MM) simulations were performed using the LAMMPS package [22] together
with an interatomic potential describing the gold interatomic interaction within the embedded atom
method (EAM) as parametrised by Grochola et al. [23]. The individual idealised nanoparticles
with well-defined shapes were cut out from bulk fcc structure with lattice constants of 4.0694 Å.
This was obtained from fitting calculated total energies corresponding to different bulk volumes
with Birch-Murnaghan equation of state [24], and agrees well with the values 4.0701 Å obtained
by Grochola et al. [23]. All models were structurally relaxed using conjugate-gradient energy
minimisation scheme at 0 K with force-stopping convergence criterion set to 10−12 eV/Å.

Additionally, a few ab initio runs were performed to benchmark our MM calculations. We used
Vienna Ab initio Simulation Package (VASP) [25,26] implementation of Density Functional Theory
(DFT) [27,28]. Two common approximations of the electronic exchange and correlation effects were
considered: local density approximation (LDA) [28] and the Perdew–Wang parametrisation of the
generalised gradient approximation (GGA) [29]. The contribution of ions and core electrons were
described by projector augmented wave (PAW) pseudopotentials [30]. The plane wave cut-off energy
was set to 400 eV, and the reciprocal space sampling was equivalent to 10 × 10 × 10 k-mesh for
the fcc-conventional cell. In directions, where periodicity should be avoided (e.g., the direction
of the slab, all 3 directions in the case of nanoparticles), only a single k-point was used. In other
directions, the number of k-points was scaled so that the k-point spacing in the reciprocal space was
kept constant, i.e., ≈ π/(10 · 4.069)Å−1 = 0.077 Å−1, where 4.069 Å is the lattice parameter of fcc-Au.
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Due to the employed periodic boundary conditions, we used a simulation box ≈20 Å larger than the
actual (unrelaxed) nanoparticle to avoid any undesired interactions through the vacuum separating
neighbouring nanoparticles. Similarly, ≈15 Å vacuum in the direction perpendicular to a free surface
was used to separate slabs for calculating the surface energies of bulk Au. The electron charge was
considered converged when the total energy of two subsequent self-consistency cycles differed by less
than 10−4 eV, whereas structural optimisations were stopped when the total energy of two subsequent
configurations differed by less than 10−3 eV. These criteria provide a total energy accuracy in the order
of 1 meV/at. or better.

Finally, the qhull program [31] was used to calculate an area of a convex hull of ionic positions for
each nanoparticle, to be used as an estimate of the surface area.

3. Results

3.1. Low-Index Facets of Bulk Au

The results presented in this chapter serve the subsequent discussion of the MM results, and their
accuracy with respect to first principles calculations. Surface energy, γ, of a surface facet (h k l) can be
calculated as

γ =
1

2A
(Eslab − NEbulk) , (1)

where Eslab is energy of a slab composed of N layers. Ebulk is the energy of the bulk material per one
layer of cross-section A. The factor 2 results from the fact that the slab has two surfaces. A layer is
understood as a surface primitive cell, i.e., when the desired facet (h k l) is perpendicular to one of
the lattice vectors (for a detailed description of the surface primitive cells, see e.g., Ref. [32]). Due to
the interaction of the two free surfaces, either through the vacuum (i.e., not well separated slabs
in the case of periodic boundary conditions) or the bulk of the slab (i.e., too thin slab), the value γ

has to be converged with respect to both of these. In the case of MM simulations, only the latter
convergence needs to be tested if the simulation is run in a box without periodic boundary conditions
in the direction perpendicular to the free surface.

Test calculations revealed that vacuum of 10 Å is sufficient to get surface energy results converged
to well below 1 meV/Å

2
. Similarly, a slab thickness of about 40 Å is needed in order to avoid

interactions of the free surfaces through the gold layer. The obtained values from the DFT benchmarks
and MD simulations are summarised in Table 1. The here obtained DFT values are comparable with
data from the literature. They exhibit the same ordering (γ(1 1 0) > γ(1 0 0) > γ(1 1 1)) as reported
earlier [33]. In a simplified picture, the surface energy expresses energy penalty related to the areal
density of broken bonds [32,34]. This is 8/a2

0 for the (1 0 0) surface, 7.07/a2
0 for (1 1 0), and 4.33/a2

0
for the (1 1 1) surface (a0 being the fcc lattice constant). The density of broken bonds is similar for the
(1 0 0) and (1 1 0) surfaces, while it is significantly lower for the (1 1 1) orientated facet, hence providing
a qualitative explanation for the surface energy ordering.
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Table 1. Calculated surface energies for three low-index facets, including data from the literature
for comparison.

(1 0 0) (1 1 0) (1 1 1)
[meV/Å2] [J/m2] [meV/Å2

] [J/m2] [meV/Å2] [J/m2]

DFT-GGA (this work) 54.5 0.87 57.0 0.91 45.2 0.72
DFT-GGA (Ref. [35]) 50 0.80
FCD-GGA † (Ref. [33]) 101.5 1.63 106.1 1.70 80 1.28
MM (this work) 80.9 1.30 72.5 1.16
DFT-LDA (this work) 83.5 1.34 89.2 1.43 78.4 1.26
DFT-LDA (Ref. [35]) 80 1.28
experiment (Ref. [36]) 93.6 1.50
experiment (Ref. [37]) 94.0 1.51

† FCD = full charge density.

The DFT and MM values exhibit an almost constant difference between the corresponding surface
energies. Moreover, the MM values are very close to the DFT-LDA results. This is a somewhat
surprising result since the EAM potential has been fitted to the DFT-GGA data using the same
parametrisation by Perdew and Wang [29] as used here. We speculate that this is caused by fixing 4.07 Å
as the lattice constant during the EAM potential fitting [23], as our LDA and GGA calculations yielded
4.061 and 4.176 Å, respectively. Nevertheless, since LDA and GGA are known to overestimate and
underestimate, respectively, binding [38], and since the MM values are in between the two DFT-based
estimations, we conclude that the interatomic potential used here is suitable for studying trends in
surface energies. Moreover, the resulting values are expected to be very close to DFT-LDA calculations.

3.2. Impact of Shape and Size on the Nanoparticles Surface Energy

The surface energy of a gold nanoparticle consisting of N atoms is defined as an excess energy
with respect to the energy of N atoms of bulk fcc gold, normalised to the nanoparticle surface area, A:

γ =
Enanoparticle − NEbulk

A
. (2)

In the above, Enanoparticle is the total energy of the nanoparticle, while Ebulk is energy per atom of
bulk fcc Au. Unlike the total energies, the surface area A is not a well defined quantity. In the following
sections, an area of a convex hull of the relaxed ionic positions is consistently used as an estimate for A.

3.2.1. Nanocubes

In order to calculate the total energy of {1 0 0}-faceted nanocubes, structural models with a side
length up to 20 nm were fully structurally relaxed. As a consequence of the surface tension, the apexes
“popped in” as is apparent from the snapshot of relaxed atomic positions shown in Figure 1.

Supercells up to 3 × 3 × 3 conventional fcc cell (172 atoms) were treated using the DFT,
while nanocubes up to 50× 50× 50 (515 151 atoms) were calculated using MM. A nanocube formed
from n× n× n conventional cubic fcc cells (4 atoms per cell) contains N = 4n3 + 6n2 + 3n + 1 of atoms.
The calculated surface energy values shown in Figure 2 were fitted with an exponential relationship

γ = γ0 exp
(L

a

)
, (3)

where a = n · a0 is the side length of a cube formed by n × n × n conventional fcc cells with the
lattice parameter a0. The quantities γ0 and L are used as two fitting parameters. The thus obtained
values of the pre-exponential parameter, γGGA

0 = 57.4 meV/Å
2
, γLDA

0 = 89.8 meV/Å
2
, and γMM

0 =

81.4 meV/Å
2

agree well with the bulk surface energies for the (1 0 0) facets (γGGA
(1 0 0) = 54.5 meV/Å

2
,
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γLDA
(1 0 0) = 83.5 meV/Å

2
, and γMM

(1 0 0) = 80.9 meV/Å
2
). This is an expected result as the bulk values are

limits for infinitely large cubes. It is, however, surprising, that such a good agreement is obtained for
the DFT data where only three data points are available for the fitting procedure. The same fitting
procedure yielded for the parameter L (Equation (3)) values of 0.397 nm, 0.392 nm, and 0.661 nm for
DFT-GGA, DFT-LDA, and MM data sets, respectively.

Figure 1. Relaxed structure of a nanocube with side a = 2.035 nm (666 atoms). The dashed line is
a guide for the eye showing an ideal square shape.
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Figure 2. Surface energy of nanocubes
calculated by DFT and MM. The calculated
datapoints were fitted with Equation (3). The
dashed lines are (1 0 0) surface energies as
listed in Table 1.
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Figure 3. Surface energy of nanospheres
calculated by DFT and MM. The dashed lines
are the MM values for single-orientated (1 0 0)
and (1 1 1) surfaces as listed in Table 1.
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DFT-GGA, DFT-LDA, and MM data sets, respectively.

3.2.2. Nanospheres

Nanospheres with all possible facet orientations were considered as an opposite extreme to the
nanocubes with only a single orientation of their facets. They were constructed by cutting material
contained in an ideal sphere of a given radius out of an infinitely large fcc Au crystal. The DFT
calculations were performed up to r = 0.9 nm (152 atoms), while the MM calculations allowed easily
for spheres up to r = 20.3 nm (2 094 177 atoms) (Figure 3). In comparison to the case of nanocubes,
the surface energy of the nanospheres converges faster to a constant value of ≈ 94 meV/Å

2
. This is

a slightly higher value than γ of any low-index facet (cnf. Table 1) reflecting the fact that a spherical
surface composes (from the atomistic point of view) of a large number differently orientated facets.
Places where these facets meet (i.e., edges) are composed of atoms with the same or higher number of
broken bonds than atoms in the surrounding planar facets, thus, further increasing the surface energy.

3.2.3. Cuboctahedrons

The last class of objects studied in this work are cuboctahedrons, i.e., (1 0 0)-faceted cubes with all
apexes cut by (1 1 1) planes (see inset in Figure 4b). Cuboctahedrons are a special subset of truncated
octahedrons with the all sites equally long. Figure 4a shows the total energy per atom plotted against
the nanoparticle size in terms of the number of forming atoms for cuboctahedrons together with
more general truncated octahedrons. The latter were generated with a build-in function of Atomic

Figure 2. Surface energy of nanocubes calculated by DFT and MM. The calculated datapoints were
fitted with Equation (3). The dashed lines are (1 0 0) surface energies as listed in Table 1.

3.2.2. Nanospheres

Nanospheres with all possible facet orientations were considered as an opposite extreme to the
nanocubes with only a single orientation of their facets. They were constructed by cutting material
contained in an ideal sphere of a given radius out of an infinitely large fcc Au crystal. The DFT
calculations were performed up to r = 0.9 nm (152 atoms), while the MM calculations allowed easily
for spheres up to r = 20.3 nm (2 094 177 atoms) (Figure 3). In comparison to the case of nanocubes,
the surface energy of the nanospheres converges faster to a constant value of ≈94 meV/Å

2
. This is

a slightly higher value than γ of any low-index facet (cnf. Table 1) reflecting the fact that a spherical
surface composes (from the atomistic point of view) of a large number differently orientated facets.
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Places where these facets meet (i.e., edges) are composed of atoms with the same or higher number of
broken bonds than atoms in the surrounding planar facets, thus, further increasing the surface energy.
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apexes cut by (1 1 1) planes (see inset in Figure 4b). Cuboctahedrons are a special subset of truncated
octahedrons with the all sites equally long. Figure 4a shows the total energy per atom plotted against
the nanoparticle size in terms of the number of forming atoms for cuboctahedrons together with
more general truncated octahedrons. The latter were generated with a build-in function of Atomic

Figure 3. Surface energy of nanospheres calculated by DFT and MM. The dashed lines are the MM
values for single-orientated (1 0 0) and (1 1 1) surfaces as listed in Table 1.

3.2.3. Cuboctahedrons

The last class of objects studied in this work are cuboctahedrons, i.e., (1 0 0)-faceted cubes with
all apexes cut by (1 1 1) planes (see inset in Figure 4b). Cuboctahedrons are a special subset of
truncated octahedrons with the all sites equally long. Figure 4a shows the total energy per atom
plotted against the nanoparticle size in terms of the number of forming atoms for cuboctahedrons
together with more general truncated octahedrons. The latter were generated with a build-in function
of Atomic Simulation Environment toolkit [39] for various sizes of the truncated octahedron apexes.
Obviously, the cuboctahedrons are not always the most convenient shape for a given number of atoms.

The surface energy of cuboctahedrons (Figure 4b) oscillates between two values, ≈78 and
≈90 meV/Å

2
. This behaviour is caused by the changing ratio of surface atoms forming the (1 0 0)

and (1 1 1) facets and the edges and corners, which directly corresponds with the atomistic nature
of the nanoparticle. A detailed analysis of the coordination of the surface atoms reveals that the
number of 9-coordinated surface atoms, corresponding to ideal (1 1 1) facets, is in anti-phase with
the surface energy as shown in Figure 4b. The 8-coordinated (1 0 0) surface atoms also show small
steps hence causing a non-monotonous increase of their number as a function of the cuboctahedron
size. At the same time, the numbers of 10-, 7-, 6-, and 5-coordinated surface atoms forming edges and
corners (i.e., atoms with even smaller coordination and, consequently, more broken bonds than those
on ideal (1 0 0) and (1 1 1) facets, and hence increasing the overall surface energy), exhibit the same
“oscillations” concerning the cuboctahedron size as the surface energy itself. Therefore, the oscillations
are expected to decrease with increasing cuboctahedron size. It is interesting to note that the two limit
values for the surface energies, ≈90 and ≈80 meV/Å

2
, represent approximately the same range as

the two values, 80.9 and 72.5 meV/Å
2

for pure (1 0 0) and (1 1 1) facets, respectively. Similarly to the
case of nanospheres, the values are somewhat higher than the ideal single-orientated facets due to the
presence of the edges and corners.
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Figure 4. (a) Total energy per atom as a function of the nanoparticle size (in terms of number of forming
atoms) for cuboctahedrons (full circles) and general truncated octahedrons (open circles). (b) Surface
energy of cuboctahedrons calculated by MM and showed as a function of the size of “parent” cube.
The dashed lines are the MM values for single-orientated (1 0 0) and (1 1 1) surfaces as listed in Table 1.

4. Discussion

4.1. Correction of the Surface Area for Electronic Cloud

The surface areas calculated in the previous parts corresponds to the convex hull of ionic positions.
In our recent paper [13] dealing with predicting surface energy of Au55 cluster, we have discussed the
error made by neglecting extend of the electronic cloud. There, a radius correction of 1.3–1.4 Å has
been proposed under the assumption that the mass density of the nanocluster is the same as that of
bulk fcc-Au. Note that, radius corrections of 0.5–0.8 Å have been proposed by de Heer [40].

In order to see how neglecting the electronic cloud layer actually influences the predicted surface
energies, we re-evaluate the surface areas. Let {~Ri} be a set of the atomic (ionic) positions defined with
respect to the nanoparticle centre of mass, i.e.,

∑
i

~Ri =~0 , (4)

where the sum is performed over all atoms in the nanoparticle. Subsequently, a new set of coordinates,
{~̃Ri}, is defined as

~̃Ri =
(
|~Ri|+ ∆

)
~R0

i (5)

where ~R0
i = ~Ri/|~Ri| is a unit vector along the direction of ~Ri. This means that all atoms, and in

particular those on the convex hull envelope, are shifted by ∆ away from the nanoparticle centre of
mass. A new surface area is calculated as a convex hull of {~̃Ri} positions for several representative
values of ∆.

The results are summarised in Figure 5 for all three nanoparticle geometries considered in the
present work. In all cases, the surface energy decreases with increasing values of ∆, which is a simple
consequence of the surface energy definition in Equation (2). It is, however, remarkable to notice
that even for the largest nanoparticle sizes the surface energy reduction is still larger than 1% for the
DFT-based electron cloud thickness. We, therefore, conclude that, especially for nanoparticles with
specific sizes below 5 nm, the correction of the surface area due to the electronic cloud is essential.
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Moreover, it is likely that for the small nanoparticle sizes, the surface energies calculated here are
overestimated due to that fact that even a lower energy can be obtained for a different atomic ordering
than fcc (e.g., Mackay icosahedrons as in the case of Au55) or even amorphous liquid-like structures [13].
Finally, it is worth noting that the problem of electronic cloud is not an issue in standard calculations
of single orientated flat single crystal facets since it does not influence the actual surface area.
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The results are summarised in Figure 5 for all three nanoparticle geometries considered in the
present work. In all cases, the surface energy decreases with increasing values of ∆, which is a simple
consequence of the surface energy definition in Equation (2). It is, however, remarkable to notice
that even for the largest nanoparticle sizes the surface energy reduction is still larger than 1% for the
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Figure 5. Corrected absolute (upper row) and relative values (lower row) of the surface energies for
(a,d) nanocubes, (b,e) cuboctahedrons, and (c,f) nanosheres. The relative surface energies are calculated
with respect to the values without correction for the electronic cloud thickness (∆ = 0).

Figure 5. Corrected absolute (upper row) and relative values (lower row) of the surface energies for
(a,d) nanocubes, (b,e) cuboctahedrons, and (c,f) nanosheres. The relative surface energies are calculated
with respect to the values without correction for the electronic cloud thickness (∆ = 0).

4.2. Surface Induced Excess Energy

As mentioned above and discussed in the literature, the surface area of nanoparticles is
an ill-defined quantity. In order to eliminate this problem, we introduce a new quantity, Eexcess,
expressing the surface-induced excess energy with respect to the bulk energy corresponding to the
same number, N, of atoms as in the nanoparticle, normalised to 1 atom, as

Eexcess =
Enanoparticle − NEfcc-Au

N
. (6)

A similar concept has been previously demonstrated to work also for energetics of carbon
fullerenes [41], or even for elasticity of nanoporous gold [42]. If the excess energy, Eexcess, is evaluated
for nanocubes, nanospheres, and cuboctahedrons, a linear relationship between log Eexcess and log N
is obtained independent of the nanoparticle shape (Figure 6a). This suggests that the excess energy
is a power law function of the total number of atoms (nanoparticle size). This fit (the dashed line in
Figure 6a) gives

Eexcess = 3523.3 meV/atom× N−0.346 . (7)
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Figure 6. Excess energy, Eexcess, of nanoparticles with respect to the bulk fcc Au as a function of the
number, N, of atoms forming the nanoobject. Eexcess is normalised to (a) number of the atoms forming
the nanoparticle, and (b) to the number of broken bonds. The dashed lines in (b) show the difference
between the actual value of Eexcess as calculated by MM, and a fitted value using Equation (10).

Recalling the idea that the surface energy is genuinely connected with the broken bonds (bb),
we now establish the energy needed to “break” a bond. Let us consider an n × n × n nanocube
containing atoms with 4 different nearest neighbour coordinations: 8 atoms with 9 bb forming corners
(i.e., 3-coordinated atoms), (12n− 12) atoms with 7 bb forming the edges (i.e., 5-coordinated atoms),
(12n2 − 12n + 6) atoms with 4 bb forming the surface facets (i.e., 8-coordinated atoms), and (4n3 −
6n2 + 3n− 1) bulk atoms with no bb (i.e., fully 12-coordinated atoms). If we simply assume that all
bonds “cost” the the same energy Ebond to break them, the excess energy, Eexcess, i.e., the sum of the
contributions described above, follows as

Eexcess =
[
9× 8 + 7× (12n− 12) + 4× (12n2 − 12n + 6)

]
Ebond , (8)

yielding Ebond = 168.1 meV/bond from fitting the nanocubes data.
However, the red triangles in Figure 6b, showing the nanocubes excess energy normalised to the

number of broken bonds, clearly exhibit a non-constant value for Ebond. Consequently, we propose
a slightly modified description in which the energy needed to break a bond is a (non-linear) function
of the coordination. Hence, it costs different energy to create, e.g., a corner atom (9 broken bonds) than
a facet atom (4 broken bonds). Thus the excess energy becomes

Eexcess = 72Ecorner + 84(n− 1)Eedge + 24(2n2 − 2n + 1)Efacet . (9)
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Fitting yields Ecorner = 272.1 meV/bond, Eedge = 215.2 meV/bond, and Efacet =

166.0 meV/bond. It turns out that for nanocubes with side ' 5 nm, Equation (9) provides predictions
with an accuracy better than ≈1 meV/bond. Energy of a broken bond, corresponding to an infinitely
large (1 0 0) facet, can be estimated from the surface energies as given in Table 1. This value is
167.5 meV/bond, which is close to Ebond = 168.1 meV/bond (Equation (8)) as well as Efacet =

166.0 meV/bond (Equation (9)).
The complex shapes of cuboctahedrons and nanospheres somewhat restrict the intuitive analysis

of the excess energy above presented. When the excess energy is fitted with a single valued energy per
broken bond (equivalent to Equation (8)), values of 172.8 meV/bond and 181.9 meV/bond are obtained
for cuboctahedrons and nanospheres, respectively. These values represent an excellent estimation of the
excess energies in the limit of large nanoparticles, as shown in Figure 6b. Moreover, the excess energy
value for cuboctahedrons lies between the values estimated for (1 0 0) (E(1 0 0) = 167.5 meV/bond)
and (1 1 1) (E(1 1 1) = 173.3 meV/bond) facets. This fact further illustrates that the surface energy
values, as presented in Section 3.2, are remarkably influenced by the evaluation of the actual surface
area (which is, from the atomistic point of view, ill-defined). Consequently, the mean value of the
surface energy of cuboctahedrons as shown in Figure 4b lies outside the range bounded by γ(1 0 0) and
γ(1 1 1) values.

Finally, in order to obtain a non-constant behaviour, we fit the excess energy with

Eexcess =
11

∑
i=1

(12− i)N(i)E(i) (10)

where N(i) is the number of i-coordinated atoms (i.e., those having (12 − i) broken bonds) and
E(i) is the corresponding excess energy contribution. Equation (10) is a generalised formulation of
Equation (9) reflecting that all possible coordinations may occur due to the shape of nanoparticles.
We note that the smallest coordination obtained was 3 and 4 for the case of cuboctahedrons and
nanospheres, respectively. The fitted values of E(i) are given in Table 2, and the difference between
the actual Eexcess from MM and values predicted using Equation (10) is shown in Figure 6b with
dashed lines. Obviously, the fit provides excellent agreement for nanoparticles containing ≈104 atoms
and more.

Table 2. Fitted coefficients E(i) for the excess energy expression according to Equation (10). The index
i expresses the coordination of atoms (i.e., (12− i) is the number of broken bonds, bb).

Nanocubes Cuboctahedrons Nanospheres

E(3) [meV/bond] 272.1 287.3 0
E(4) [meV/bond] 0 161.1 426.3
E(5) [meV/bond] 215.2 243.4 258.3
E(6) [meV/bond] 0 163.1 232.0
E(7) [meV/bond] 0 239.5 212.2
E(8) [meV/bond] 166.0 170.3 181.1
E(9) [meV/bond] 0 162.2 159.2
E(10) [meV/bond] 0 93.6 100.7
E(11) [meV/bond] 0 16.9 46.0

Our analysis provides an insight into the here predicted trends. Regardless of the nanoparticle
shape, the surface energy decreases with the increasing particle size. The reason is that the smaller is
the nanoparticle, the larger is the fraction of the surface atoms with small coordination, i.e., those with
lots of broken bonds. Moreover, the energy to break a bond increases (generally) with the decreasing
atom coordination.
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4.3. Contribution of Surface Stress State

As it has been recently stressed out [43], the excess energy due to a free surface has two
contributions: the surface energy contribution related to the energy penalty of broken bond and
the contribution due to the elastic strain energy generated by the surface stress state. The latter
depends on the surface curvature. As an illustrative example let us assume a spherical body and
a homogeneous surface stress state with the value σ leading to a pressure with value 2σ/R in the whole
spherical body. From this description it becomes clear that the energetic surface stress contribution is
zero for the slab approach. Similarly, the energetic surface stress contribution will be negligible for
rather large nanocubes with only a marginal amount of corner and edge atoms (see discussion in the
Section 4.2).

We now try to estimate the energetic surface stress contribution to the excess energy for the case
of a spherical nanoparticle using classical continuum mechanics. Let us denote R the nanosphere’s
radius, and γ its surface energy. Furthermore, let us keep to the reasonable assumption that the value
of σ and γ are of the same order of magnitude. The corresponding total surface energy is then

Eγ = 4πR2γ . (11)

For sake of simplicity, we further assume isotropic elastic properties of the nanoparticle, with ν

and E being its Poisson’s ratio and Young’s modulus, respectively. The elastic strain energy caused by
the surface stress σ, activating an internal pressure 2σ/R, is

Eσ =
4
3

πR3 6(1− 2ν)

E
σ2

R2 , (12)

for details, see, e.g., Ref. [1], Appendix 3. The ratio of the energetic surface stress contribution to the
surface energy follows with σ = γ as

Eσ

Eγ
=

2(1− 2ν)

E
γ

R
. (13)

Taking a representative values for gold, γ = 1 J/m2, E = 78 GPa, ν = 0.44, and R = 1 nm,
Equation (13) yields 0.359× 10−2, i.e., the energetic surface stress contribution to the total excess energy
is less than 1% of the surface induced excess energy. This ratio becomes even smaller (negligible) for
larger nanospheres.

To corroborate this rather simplistic estimation, we plot the excess energy distribution over
a cross section including the centre for a nanosphere (Figure 7a) and a nanocube (Figure 7b) as
obtained from the MM simulations. Several observations can be made. Firstly, the excess energy is
concentrated at the nanoparticle surface irrespective of its shape. The surface stress (and hence the
corresponding elastic strain energy) could be only of relevance for a nanosphere. However, we can
conclude that this contribution is effectively zero (or negligible). A similar situation can be expected
for a nanocube, where the excess energy is concentrated to the nanocube edges (corner of the cross
section in Figure 7b). This fact nicely agrees with the fitted values of Eedge = 215.2 meV/bond being
larger than Efacet = 166.0 meV/bond, estimated in Section 4.2.

Even though the term surface energy was used in a slightly imprecise way throughout the
Section 3.2 (more accurate would be to talk about surface induced excess energy), we conclude that
the energy contribution of surface stress can be neglected and the two quantities, surface energy and
surface induced excess energy, are equivalent (or at least of the same order of magnitude) for practical
cases with nanoparticles larger than ≈1 nm.
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Figure 7. Contour plots of the distribution of the surface stress induced excess energy (in eV/at.)
contribution for a cross section of (a) a nanoshere (R = 3.25 nm) and (b) a nanocube (a = 6.92 nm).
Both cross sections include the nanoparticle centre. The dots represent actual atoms in the cross section,
e.g., real locations, where the excess energy is stored. For sake of clear demonstration, the discrete data
were interpolated over the whole cross sectional area.

5. Conclusions

A molecular mechanics study, complemented by first principles Density Functional Theory
calculations, was performed to obtain surface energy of small gold nanoclusters of various sizes and
(geometrically well defined) shapes. The employed interatomic pair potential was shown to give
structural parameters and surface energies comparable with DFT-LDA calculations. The surface energy
of nanocubes and nanospheres has been shown to converge to a constant value. The convergence
was faster in the case of nanospheres compared with nanocubes. The surface energy, γ, is practically
constant for any particles with radius larger than ≈3 nm. Truncated cubes (cuboctahedrons) did
not achieve a single value for the surface energy within the studied range of nanoparticle sizes but,
instead, an oscillating behaviour between two values. The range of these oscillations equals to the
difference between γ of (1 0 0) and (1 1 1) facets. Finally, the surface-induced excess energy obviously
follows a universal power-law dependence on the number of atoms forming the nanoparticle and is,
to a large extent, related to the number of broken bonds (reduced coordination of the surface atoms).
Importantly, the size-dependence of surface energy becomes significantly reduced when the actual
surface area is corrected by the thickness of the electronic cloud, leading to almost constant values
particularly for nanocube and nanosphere sizes of about 5 nm and more.

As outlined above, this study has found an increase of the surface energy with decreasing particle
size (which is in agreement with other theoretical studies). Two remarks may be useful in this regard.
Firstly, this fact should not be confused with experimental works on liquid solution–solid nanoparticle
interface energies of gold nanoparticles, moreover often having irregular shapes or even liquid-like
surface layer. Secondly, we note that small nanoparticles, specifically the Au55, were shown to be
amorphous rather than crystalline. Hence the values predicted here for the smallest particle sizes of
a few nanometers are not relevant for amorphous or glassy particles.

In conclusion, this work contributes to understanding of surface energy (solid phase–vacuum
interface) of crystalline nanoparticles and its relation to the their structure.
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