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Abstract: We present experimental evidence about the magnetocaloric tuning effect in one-dimensional
nanostructure fibers mixed-valence manganite as synthesized by electrospinning techniques and
under heat treatments of 973, 1073 and 1173 K. The stoichiometry obtained is La0.7Ca0.23Sr0.07MnO3

and Rietveld refinement indicates a single-phase with an orthorhombic (Pnma) crystal structure.
Scanning and transmission electron microscopy observations indicate coalescence in granular colonies
of La0.7Ca0.23Sr0.07MnO3 nanoparticles to conform nanofibers. Magnetic entropy change is tuned
due to heat treatments at 1173 K with maximum values of 1, 1.82 and 2.51 J/kgK for applied external
magnetic fields of µ0H = 1, 2 and 3T, respectively, with a maximum magnetic entropy difference at a
Curie temperature of 293 K (furthermore, second-order magnetic phase transition was observed).
Additionally, for a magnetic field, ~µ0H = 3 T values of 49, 95 and 143 J/kg for 973, 1073 and 1173 K
heat-treated samples were obtained.
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1. Introduction

The development of a new cooling technology referred as magnetic refrigeration, is based on the
magnetocaloric effect (MCE), considered an intrinsic property of magnetic materials. MCE technology
aims to replace traditional refrigeration systems mainly due to its high energy efficiency, compact
design and ecological interplay with the environment [1]. When estimating MCE two parameters are
considered: the isothermal entropy change and the adiabatic temperature gradient. Both take place
when an external magnetic field is applied and removed from a magnetic material. The variation of
the external applied magnetic field and its interaction with the magnetic material, change the magnetic
contribution of total entropy and originate the magnetocaloric effect as described by the authors of [2].
The maximum value of magnetic entropy change occurs near magnetic phase transition temperature,
and strongly depends of the magnetic field magnitude [3]. The relative cooling power (RCP) is a
parameter used to identify a suitable magnetocaloric material for magnetic refrigeration applications.
In an ideal refrigeration cycle, RCP is the amount of heattransferred between hot and cold reservoirs [4].
One main point of interest for the synthesis of nanodimensional (1D, 2D) ceramic materials, like
nanofibers, nanowires and nanorods is to achieve remarkable physical properties for applications in
photonics, electronics, mechanics and recently, nanostructured materials for advanced magnetism
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applications [5,6]. The electrospinning technique is picked to fabricate 1D nanostructure specially for
ceramic nanofibers, due to its fast and low-cost route to achieve a one-dimensional nanostructure with
a specific shape and chemical parameters [7]. The perovskite manganite is a relevant ceramic due
to the manipulation of its critical size and the formation of multidomain, as found in the literature
for La0.6Sr0.4CoO3 nanotubes (d~100 nm) and nanowires (d~40–60 nm) and as extensively described
by Li et al. [8]. Generally, manganite complex oxides with stoichiometry R1-xAxMnO3 (R a trivalent
rare earth element and A represents alkaline earth cations) possess magnetic properties susceptible to
crystalline structure [9]. Also, double exchange interaction between Mn3+ and Mn4+ ions and strong
spin-lattice coupling cause a significant magnetic entropy change near the magnetic phase transition [10].
Furthermore, R1-xAxMnO3 manganites are ideal materials candidates for the development of magnetic
refrigeration technology, due to their substantial MCE values, preparation forms, low cost, chemical
stability, and tuning of magnetic transition temperatures [11,12]. Here, we present magnetocaloric
effect in La0.7Ca0.23Sr0.07MnO3 nanofibers fabricated by the electrospinning technique along with
extensive characterization using X-ray diffraction, scanning and transmission electron microscopy and
vibrating sample magnetometry.

2. Materials and Methods

The nanofibers with stoichiometry La0.7Ca0.23Sr0.07MnO3 were synthesized using La, Ca, Sr
and Mn acetates as precursors. All precursors were dissolved in deionized water at 0.1 molar and
subsequently mixed with 20% of polyvinylpyrrolidone (PVP) to form a homogenous solution. Using a
stainless steel 22-gauge needle with working distance of 15 cm between needle and aluminum substrate,
0.1 mL/h fluid flow and 15 kV as set conditions; nanofibers were produced with deposits via a Tong Li
Tech Co.® electrospinning equipment model TL-Pro©. The as-deposited nanofibers were collected and
subjected to heat treatments of 973 K, 1073 K and 1173 K (ramp rate of 1 K/min) for 1.5 h, as described
previously by Burrola et al. [13]. Phase formation and crystal structure of the as-synthesized nanofibers
were studied by X-ray diffraction (XRD) technique with a panalytical diffractometer model X’Pert
Pro-MPD© located at IIT-UACJ facilities. The crystallite size (d) of the samples was calculated from
Scherrer equation (d = 0.9 λ⁄(β cosθ)), where λ is the wavelength of Cu Kα (1.54059 Å), θ is Bragg angle
and β is the full width at half maximum. The morphology of fibers was observed using a scanning
electron microscopy (SEM) model JEOL 6010 LV® and transmission electron microscopy (TEM) with
a field emission 2200-JEOL® equipped with CCDcamera, STEM unit, high-angle annular dark-field
(HAADF) detector and X-Twin lenses. The sample was dispersed on isopropanol and drop cast onto
200 mesh Lacey Formvar Carbon TEM grids. Measurements of magnetization isotherms were carried
out in a Quantum Design Versalab®, with a vibrating sample magnetometer attachment.

3. Results and Discussion

3.1. Powder X-ray and Rietveld Refinement

Using information from powder X-ray diffraction patterns performed at room temperature, the
Rietveld refinements was calculated using Full Proof program. Figure 1 presents the diffraction data
for La0.7Ca0.23Sr0.07MnO3 nanofibers under thermal treatment of (a) 973 K, (b) 1073 K and (c) 1173 K.
The crystallographic information for all refinements was acquired using 56636 ICSD card, which
corresponds to single-phase orthorhombic structure Pnma space group and crystallite size of 48 nm
50 nm and 62 nm for (a) 973 K, (b) 1073 K and (c) 1173 K, respectively. One can conclude that crystallite
size increases due to heat treatments, possibly due to coalescence phenomena, as confirmed by TEM
measurements. A summary of Rietveld refinement is presented in Table 1, corresponding to lattice
parameters, cell volume and crystal structure for samples under thermal treatment of 973 K, 1073 K
and 1173 K.
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Figure 1. Rietveld refinements for La0.7Ca0.23Sr0.07MnO3 nanofibers heat treated at (a) 973 K, (b) 1073 K 
and (c) 1173 K correspond to single-phase orthorhombic structure (Pnma) with crystallite size of (a) 
48 nm, (b) 50 nm and (c) 62 nm, respectively. 

Table 1. Summary of lattice parameters, cell volume and crystal structure obtained from Rietveld 
refinement for La0.7Ca0.23Sr0.07MnO3 nanofibers at 973, 1073 and 1173 K. 

 a (Å) b (Å) c (Å) Volume (Å) Structure 
Sr0.07 (973 K) 5.4540 (7) 7.7096 (10) 5.4992 (7) 231.23 (5) Orthorhombic 

Sr0.07 (1073 K) 5.4549 (7) 7.7087 (10) 5.4961 (7) 231.11 (5) Orthorhombic 
Sr0.07 (1173 K) 5.4582 (4) 7.7111 (6) 5.4915 (4) 231.13 (3) Orthorhombic 

3.2. High-Resolution Transmission and Scanning Electron Microscopy 

In order to determine morphology and size of La0.7Ca0.23Sr0.07MnO3 nanofibers, transmission and 
scanning electron microscopy were applied. Results indicate nanofibers and agglomeration with no 
beads fomation, which is typical due to injection rate (0.1 mL/h) of the as-synthesized solution, along 
with thermal treatments, as observed clearly in Figure 2. From scanning transmission electron 
(Z-contrast), it was possible to observe coalescence effect of La0.7Ca0.23Sr0.07MnO3 nanocrystallites  to 
conform nanofibers, in agreement with Zhou et al. [5] and as presented in Figure 2. 

 

Figure 1. Rietveld refinements for La0.7Ca0.23Sr0.07MnO3 nanofibers heat treated at (a) 973 K, (b) 1073 K
and (c) 1173 K correspond to single-phase orthorhombic structure (Pnma) with crystallite size of
(a) 48 nm, (b) 50 nm and (c) 62 nm, respectively.

Table 1. Summary of lattice parameters, cell volume and crystal structure obtained from Rietveld
refinement for La0.7Ca0.23Sr0.07MnO3 nanofibers at 973, 1073 and 1173 K.

a (Å) b (Å) c (Å) Volume (Å) Structure

Sr0.07 (973 K) 5.4540 (7) 7.7096 (10) 5.4992 (7) 231.23 (5) Orthorhombic
Sr0.07 (1073 K) 5.4549 (7) 7.7087 (10) 5.4961 (7) 231.11 (5) Orthorhombic
Sr0.07 (1173 K) 5.4582 (4) 7.7111 (6) 5.4915 (4) 231.13 (3) Orthorhombic

3.2. High-Resolution Transmission and Scanning Electron Microscopy

In order to determine morphology and size of La0.7Ca0.23Sr0.07MnO3 nanofibers, transmission
and scanning electron microscopy were applied. Results indicate nanofibers and agglomeration with
no beads fomation, which is typical due to injection rate (0.1 mL/h) of the as-synthesized solution,
along with thermal treatments, as observed clearly in Figure 2. From scanning transmission electron
(Z-contrast), it was possible to observe coalescence effect of La0.7Ca0.23Sr0.07MnO3 nanocrystallites to
conform nanofibers, in agreement with Zhou et al. [5] and as presented in Figure 2.
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Figure 1. Rietveld refinements for La0.7Ca0.23Sr0.07MnO3 nanofibers heat treated at (a) 973 K, (b) 1073 K 
and (c) 1173 K correspond to single-phase orthorhombic structure (Pnma) with crystallite size of (a) 
48 nm, (b) 50 nm and (c) 62 nm, respectively. 

Table 1. Summary of lattice parameters, cell volume and crystal structure obtained from Rietveld 
refinement for La0.7Ca0.23Sr0.07MnO3 nanofibers at 973, 1073 and 1173 K. 

 a (Å) b (Å) c (Å) Volume (Å) Structure 
Sr0.07 (973 K) 5.4540 (7) 7.7096 (10) 5.4992 (7) 231.23 (5) Orthorhombic 

Sr0.07 (1073 K) 5.4549 (7) 7.7087 (10) 5.4961 (7) 231.11 (5) Orthorhombic 
Sr0.07 (1173 K) 5.4582 (4) 7.7111 (6) 5.4915 (4) 231.13 (3) Orthorhombic 

3.2. High-Resolution Transmission and Scanning Electron Microscopy 

In order to determine morphology and size of La0.7Ca0.23Sr0.07MnO3 nanofibers, transmission and 
scanning electron microscopy were applied. Results indicate nanofibers and agglomeration with no 
beads fomation, which is typical due to injection rate (0.1 mL/h) of the as-synthesized solution, along 
with thermal treatments, as observed clearly in Figure 2. From scanning transmission electron 
(Z-contrast), it was possible to observe coalescence effect of La0.7Ca0.23Sr0.07MnO3 nanocrystallites  to 
conform nanofibers, in agreement with Zhou et al. [5] and as presented in Figure 2. 
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Figure 2. Top: scanning electron micrographs for La0.7Ca0.23Sr0.07MnO3 nanofibers at (a) 973 K,
(b) 1073 K and (c) 1173 K. Bottom: (d,e) Scanning transmission electron micrographs for
La0.7Ca0.23Sr0.07MnO3 nanofiber in dark and bright field modes (Z-contrast); red circle denotes
coalescence effect among granular colonies of La0.7Ca0.23Sr0.07MnO3. (f) Energy-dispersed X-ray
spectra and chemical count analysis.

3.3. Magnetic Entropy Change

From curves of magnetization as a function of magnetic field measured at constant temperatures,
magnetic entropy change was estimated for the three samples. The measurements were carried
out in temperature range 180–380 K and under applied magnetic field up to µoH = 3T. Results of
magnetization isotherms for (a) 973 K, (b) 1073 K and (c) 1173 K are presented in Figure 3, in which
magnetization dependence of temperature is observed. The magnetization in M-H curves shows
a ferromagnetic behavior for low isothermal temperatures and a paramagnetic behavior for high
isothermal temperatures, which is related to a ferromagnetic to paramagnetic (FM-PM) transition
around Curie temperature (TC) [3] with corresponding increment of magnetization saturation for
samples under high thermal treatments.
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Figure 3. Magnetization isotherms for La0.7Ca0.23Sr0.07MnO3 nanofibers heat treated at (a) 973 K,
(b) 1073 K and (c) 1173 K under applied field of µoH = 3T.

Using the magnetization isotherms data as obtained for all samples, the magnetic entropy change
can be calculated using thermodynamic Maxwell relation, as described by Tola et al. [14], as follows:

∣∣∣∆Sm(T, H)
∣∣∣ = ∫ H

0

(
δM(T, H)

δT

)
H

dH (1)

where δM is change on magnetization, and T and H are temperature and applied magnetic
field, respectively. Due the discrete data of isothermal magnetization acquired from experimental
measurements, a numerical approach to thermodynamic Maxwell relation using Equation (2) as
described by Khlifa et al. [15] is taken, as follows:

∆SM(T, µ0H) =
∑(

Mi −Mi+1

Ti+1 − Ti

)
∆µ0Hi (2)

where Mi and Mi+1 are the magnetization values measured at Ti and Ti+1 temperature, respectively, for
a corresponding applied magnetic field µ0Hi. Moreover, to identify any efficiency of a magnetocaloric
material in a refrigeration cycle, it is important to consider the refrigerant cooling power (RCP) parameter.
The expression to obtain RCP is displayed by Equation (3), in agreement with Iqbal et al. [16]:

RCP = ∆Smax
M × δTFWHM (3)

where ∆SM
max is the maximum magnetic entropy change value and δTFWHM the full width at half

maximum of the magnetic entropy curve. The magnetic entropy change as a function of temperature
is presented in Figure 4 for sample under thermal treatment of 973 K. The curves are depicted for
magnetic fields applied of µ0H = 1, 2 and 3 T, where a maximum magnetic entropy change occurs near
293 K and remains invariable when applied magnetic field increases. This temperature is pointed out
as TC, where the magnetic phase changes from a ferromagnetic to a paramagnetic state as discussed for
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Figure 3. Besides, an increase of the magnetic entropy change is noticed as the magnetic field increases
from µ0H = 0 T to 3 T.Nanomaterials 2020, 9, x FOR PEER REVIEW 6 of 10 
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Figure 4. (a) Magnetic entropy change for thermal treatment of 973 K. (b) Magnetic entropy change
for thermal treatment of 1073 K and (c) magnetic entropy change for thermal treatment of 1173 K.
As measured under applied magnetic field of µ0H = 1, 2 and 3 T.

This behavior can be described with the Maxwell relation expressed in Equation (1), as the
change in magnetization with respect to temperature is proportional to the magnetic field applied.
The maximum values of magnetic entropy change for sample at 973 K are 0.28, 0.53 and 0.74 J/kgK for
applied magnetic fields of µ0H = 1, 2 and 3 T respectively, as presented in Figure 4a. On the other
hand, the RCP obtained increases with applied magnetic field, having values of 15, 32 and 49 J/kg in
presence of external fields of µ0H = 1, 2 and 3 T.

Figure 4b presents data of magnetic entropy change for sample under thermal treatment of 1073 K.
It was possible to determine an increment of MEC as function of applied magnetic field, having
maximum values of 0.66, 1.20 and 1.65 J/kgK for applied magnetic fields of 1, 2 and 3 T. Those maximum
MEC values remain for TC~293 K and increase when compared with, sample under thermal treatment
of 973 K, which is strongly correlated with coalescence among colonies of La0.7Ca0.23Sr0.07MnO3 to
conform nanofibers. Also, RCP increases with values of 29, 62 and 96 J/kg found for applied magnetic
fields of 1, 2 and 3 T. At last, MEC values for sample at 1173 K are displayed in Figure 4c, with maximum
magnetic entropy changes of 1, 1.82 and 2.51 J/kgK and RCP maximum values of 46, 94 and 143 J/kg,
which determine that La0.7Ca0.23Sr0.07MnO3 nanofibers under thermal treatment (1173 K) possess
maximum values of magnetic entropy change and RCP, when compared to the other two samples at
973 K and 1073 K, respectively. The latter are attributed to higher applied temperature and total time
of heat treatment due to granule interconnexion from coalescence of La0.7Ca0.23Sr0.07MnO3, attributed
to nanoscale phenomena, which improvesmagnetic homogeneity causing long-range ferromagnetic
order, as extensively described for manganites by Baaziz et al. [17] and Tang et al. [18].
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The results for ∆SM
max, δTFWHM and RCP parameters for all samples are summarized in Table 2

according to magnetic fields applied of µ0H = 1, 2 and 3 T. An increase of magnetic entropy change
and RCP is clearly observed, caused by heat treatments and confirmed when applied magnetic field is
present. When closely analyzing the δTFWHM parameter, it is possible to prove that −∆SM peak narrows
as processing temperature increases. Interestingly, RCP increases even when the δTFWHM becomes
smaller if the values are compared for same applied magnetic field, this could be attributed to an
improvement of magnetic homogeneity and long-range ferromagnetic order [5]. A comparison of the
magnetic entropy change in the three samples is presented in Figure 5, but only for data corresponding
to applied magnetic field of µ0H = 3T.

Table 2. Summary of magnetocaloric parameters for La0.7Ca0.23Sr0.07MnO3 nanofibers under thermal
treatment of 973, 1073 and 1173 K, respectively.

µ0H (T) −∆SM
max (J/kgK) δTFWHM (K) RCP (J/kg)

Sr0.07 (973 K)
1 0.28 53.63 15
2 0.53 60.45 32
3 0.74 66.24 49

Sr0.07 (1073 K)
1 0.66 43.82 29
2 1.2 51.87 62
3 1.65 58 96

Sr0.07 (1173 K)
1 1 45.64 46
2 1.82 51.74 94
3 2.51 56.82 143
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Figure 5. Magnetic entropy change for applied magnetic field of µ0H = 3 T for La0.7Ca0.23Sr0.07MnO3

nanofibers. It is possible to observe relative cooling power (RCP) increment by the broad shape on
all curves.

In addition, Gd metal represents the benchmark material for refrigeration at room temperature
because of its suitable magnetocaloric and RCP values, as extensively described by Khlifa et al. [3,15].
The maximum RCP obtained in this work is 143 J/kg, which represents a sizable value compared with
187 J/kg (µ0H = 2 T) or 120 J/kg (µ0H = 2 T), both for Gd element, as described extensively in the
literature by Wang et al. [19] and by Pecharsky and Gschneidner [20], respectively.

The magnetic phase transition order for all samples was determined by Arrot plots (µ0H⁄M vs. M2)
displayed in Figure 6. These plots were obtained from magnetization isotherms data shown in Figure 3.
Based in Banerjee criterion, a positive or negative slope in µ0H/M vs. M2 curves determine the order
of the magnetic phase transition. A positive slope indicates a second-order magnetic phase transition,
whereas a negative slope indicates a first order magnetic phase transition [21]. From the data obtained,
a positive slope is noticed for La0.7Ca0.23Sr0.07MnO3 nanofibers with heat treatments at 973 K, 1073 K
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and 1173 K, which is a proof of second-order magnetic phase transition. The second-order nature of the
magnetic phase transition around room temperature indicates that no thermal or magnetic hysteresis
are present for this system [13], which is favorable for magnetic refrigeration. Hence, according to
the results exposed, La0.7Ca0.23Sr0.07MnO3 nanofibers can be considered an interesting alternative for
magnetic refrigeration at room temperature.Nanomaterials 2020, 9, x FOR PEER REVIEW 8 of 10 
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Figure 6. The Arrot plots for all La0.7Ca0.23Sr0.07MnO3 nanofibers subjected to thermal treatment of
(a) 973 K, (b) 1073 K and (c) 1173 K, respectively. It was possible to observe a positive value on the
slopes corresponding to a second order magnetic phase transition.

4. Conclusions

A successful synthesis of La0.7Ca0.23Sr0.07MnO3 nanofibers was obtained using the electrospinning
technique. An orthorhombic single-phase crystal structure (Pnma) was identified on samples under
thermal treatment of 973, 1073 and 1173 K, by Rietveld refinement. Magnetic entropy change and RCP
increases as function of heat treatment temperature. Then, magnetic homogeneity was improved via
coalescence effect and a long range ferromagnetic order came up sequentially with higher temperatures.
Maximum magnetic entropy change values of 0.74, 1.65 and 2.51 J/kgK for 973, 1073 and 1173 K,
respectively were obtained near Curie temperature of ~293 K. The relative cooling power (RCP) with
maximum values of 49, 95 and 143 J/kg was obtained for 973, 1073 and 1173 K samples, respectively.
A second-order magnetic phase transition was determined according to Banerjee criterion in Arrot
plots. The results demonstrate that the dimensionality and composition of La0.7Ca0.23Sr0.07MnO3

nanofibers can be convenient for magnetic refrigeration at room temperature and low magnetic fields,
and for potential applications in low dimension electronics, sensors and other important devices.
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