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Abstract: Polymer hydrogels have been suggested as dressing materials for the treatment of cutaneous
wounds and tissue revitalization. In this work, we report the development of a hydrogel composed
of natural polymers (sodium alginate and gelatin) and silver nanoparticles (AgNPs) with recognized
antimicrobial activity for healing cutaneous lesions. For the development of the hydrogel, different
ratios of sodium alginate and gelatin have been tested, while different concentrations of AgNO3

precursor (1.0, 2.0, and 4.0 mM) were assayed for the production of AgNPs. The obtained AgNPs
exhibited a characteristic peak between 430–450 nm in the ultraviolet-visible (UV–Vis) spectrum
suggesting a spheroidal form, which was confirmed by Transmission Electron Microscopy (TEM).
Fourier Transform Infra-red (FT–IR) analysis suggested the formation of strong intermolecular
interactions as hydrogen bonds and electrostatic attractions between polymers, showing bands at
2920, 2852, 1500, and 1640 cm−1. Significant bactericidal activity was observed for the hydrogel,
with a Minimum Inhibitory Concentration (MIC) of 0.50 µg/mL against Pseudomonas aeruginosa and
53.0 µg/mL against Staphylococcus aureus. AgNPs were shown to be non-cytotoxic against fibroblast
cells. The in vivo studies in female Wister rats confirmed the capacity of the AgNP-loaded hydrogels
to reduce the wound size compared to uncoated injuries promoting histological changes in the healing
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tissue over the time course of wound healing, as in earlier development and maturation of granulation
tissue. The developed hydrogel with AgNPs has healing potential for clinical applications.

Keywords: sodium alginate; gelatin; silver nanoparticles; antimicrobial activity; healing

1. Introduction

In 1962, G.D. Winter pioneered the development of occlusive dressings with healing agents for
skin regeneration [1,2]. For wound healing, the dressing should be able to keep the temperature
constant, favor the healing process, protect new cells, and exhibit antimicrobial activity [3–5].

Biopolymers, such as sodium alginate and gelatin, are interesting materials for wound healing
because they are biocompatible, biodegradable, and bioabsorbable [6]. Sodium alginate is a natural
polymer derived from brown algae Phaeophyta, formed by monomers of residues of L-guluronic acid
and D-mannuronic present in the cell wall and intercellular space [7]. Gelatin is a protein derived from
the denaturation of collagen, obtained from the skin and bones of animals. Collagen denaturation
occurs due to the breakdown of hydrogen interactions, and the triple helices are separated from each
other assuming a random structure. It exhibits relevant characteristics such as plasticity, adhesiveness,
cell adhesion capacity, and the possibility for tissue growth. The association of these two biopolymers
has been studied due to their unique characteristics, namely, low toxicity, elasticity and capacity for
reabsorption of constituent materials [8]. The ionic interaction between sodium alginate and gelatin
occurs due to the presence of ionizable amino and carboxyl groups, in addition to the hydrogen
interactions between the amine and carboxyl group [9]. According to Peppas et al. (2000), hydrogels
are the result of hydrophilic polymeric networks capable of absorbing large amounts of water or
biological fluids [10]. In the case of gelatin, the crosslinking can be chemical in nature, formed by
irreversible covalent bonds, or physical if formed by reversible covalent bonds. As an example, ionizing
or non-ionizing radiation can be used to crosslink polymer chains and prepare a hydrogel.

Polymeric hydrogels containing silver nanoparticles (AgNPs) have attracted great attention for
a set of applications in the biomedical field, attributed to the antimicrobial and healing properties
of silver [11,12]. The antimicrobial activity of silver has been known for many years, and literature
shows that in small concentrations, it is considered safe for human use. Studies suggest that the
decrease of the particle size changes the electronic structure of AgNPs, favoring their antimicrobial
activity. Such property is associated with the slow release and oxidation of Ag+ in the biological
environment. Besides its capacity to cross the cellular membrane, Ag+ affects cell division, directly
causing the death of the microorganism [13]. Various methodologies have been proposed for the
production of AgNPs [14,15], while the most common approach is based on the stirring of one or
more polymers with silver nitrate [16]. The choice of the polymer to stabilize AgNPs is based on its
capacity to create voids within the polymeric network during the swollen phase, which will serve as
the nucleation site and growth of the nanoparticles. For application onto the wound, the dressing may
be applied in the form of a hydrogel, which can be produced from natural, synthetic, or semi-synthetic
polymers. Those of natural origin are the most commonly used because of their biodegradability and
biocompatibility with the human body [17]. Examples are alginate, chitosan, heparin, chondroitin,
proteoglycans, collagen, gelatin, fibrin, keratin, and silk fibroin [18]. The use of alginate and gelatin
in tissue engineering, drug delivery, and wound dressings [11,19–24] is very well documented in the
literature. If formulated with AgNPs, a hydrophilic environment is required to facilitate the release of
the nanoparticles from the polymeric network, maintaining the wound hydrated to promote better
healing. The aim of this work has been the development and characterization of an AgNPs-containing
alginate/gelatin nanocomposite to be used in the healing of cutaneous wounds.
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2. Materials and Methods

2.1. Materials

Sodium alginate (Protonal®RF6650, FMC Corporation, Philadelphia, Pennsylvania, USA) was
donated by FMC (Campinas, São Paulo, Brazil). Silver nitrate was purchased from Química
Contemporânea (Indaiatuba, São Paulo, Brazil). Bovine gelatin was obtained from Gelnex (Itá,
Santa Catarina, Brazil). Other chemicals of analytical grade were obtained from Sigma-Aldrich
(Darmstadt, Germany). Water from Millipore Milli®-Q system (Merck KGaA, Darmstadt, Germany),
home supplied, was used for the preparation of the aqueous solutions.

2.2. Production of AgNPs-Composing Alginate/Gelatin Hydrogel

The production of AgNPs-composing alginate/gelatin hydrogel was adapted from Rescignano et al. [25].
Briefly, sodium alginate and gelatin were firstly solubilized, separately, in water at the concentration of 2%
(m/v) each, followed by the production of a solution of sodium alginate and gelatin in different proportions
(i.e., 80:20, 50:50 or 20:80) by homogenization for 2 h at 500 rpm with a mechanical stirrer (Biomixer 78HW-1,
Biomex Biotecnologia, Ribeirão Preto, São Paulo, Brazil), to obtain a hydrogel. AgNO3 was simultaneously
dissolved in water in different concentrations (1.0, 2.0, and 4.0 mM) and slowly added to the hydrogel,
under mechanical stirring for 2 h at 500 rpm to produce AgNPs.

2.3. UV–VIS Spectrophotometer Analysis

UV–VIS absorption spectra were recorded on a UV–Vis spectrophotometer (FEMTO 800Xi, Femto
Indústria e Comércio de Instrumentos Ltda., São Paulo, Brazil) in a scan range of 300–700 nm. All
samples were previously dispersed in water, and analysis was run at room temperature.

2.4. Fourier-Transform Infra-Red Analysis

Fourier Transform Infra-red (FT–IR) analysis was used to investigate the chemical interaction
between components of the formulations (Agilent, Cary 630, Santa Clara, CA, USA) with 32
accumulations of 4000–500 cm−1, with resolution 2 cm−1 in potassium bromide (KBr) tablets.

2.5. Thermal Analysis

The thermal behavior was assessed by DSC (DSC Q20 TA Instruments, New Castle, DE, USA). The
samples were previously weighted (3–5 mg) in an aluminum pan and sealed hermetically. Analyses
were carried out under an inert atmosphere (45 mL/min of N2). DSC thermograms were scanned in
the first heating run at a constant rate of 10 ◦C/min and a temperature range of 25–500 ◦C. TGA was
conducted in a dynamic nitrogen atmosphere (50 mL/min) at a heating rate of 10 ◦C/min (Shimadzu
DTG 60, Tokyo, Japan). The percentage of mass loss was recorded from the ambient temperature up to
800 ◦C.

2.6. Transmission Electron Microscopy (TEM)

Micrographs were obtained by TEM-MSC JEOL 2100 (JEOL Ltd., Tokyo, Japan) operating with
200 kV acceleration. Aqueous dispersions were dripped directly onto the copper grid, while the
semi-solid hydrogels were previously dispersed in water, applying ultrasounds for 60 min and then
dripped onto carbon-coated (carbon electrolyte 400 mesh Copper grids) (~4 nm).

2.7. Biological Assays

2.7.1. Viability Assays

The test was performed based on ISO 10993-5 [26]. The cytotoxicity assay was carried out
against human fibroblast L929 cell lines [27,28]. Samples of AgNO3, pure gelatin, pure alginate,
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and alginate-gelatin with AgNPs were evaluated. Briefly, L929 cells were seeded in 96-well culture
plates (2 × 104 cells/well) and cultured in Dulbecco’s Modified Eagle Medium (DMEM) medium
containing NaHCO3 (1.2 g/L,), ampicillin (0.025 g/L), streptomycin (0.1 g/L), supplemented with 10%
fetal bovine serum (FBS). The negative control group was treated with the vehicle used to dilute the
drug (DMSO 5%). For positive control, doxorubicin solution (100 µg/mL) was used [29]. Cell viability
was assessed by the colorimetric method using Methyl-thiazolyl-tetrazolium (MTT). All reagents used
in cell culture have been supplied by Sigma Chemical Co. (St. Louis, MO, USA). MTT solution (0.05%)
was placed in contact with the cells, which were incubated at 37 ◦C for 3 h. After that, MTT was
removed and added dimethyl sulfoxide (DMSO) for 10 min for solubilization of the tetrazolium salt
crystals, and then the optical density (OD) reading was performed on an automated plate reader
(ELISA) at a wavelength of 570 nm. The tests were conducted in quadruplicate and then normalized.
The percentage of cell viability was calculated using the following equation, in which Abs stands for
the absorbance of each respective solution:

%Cell viability =
Abs (treated cells) −Abs (blank)

Abs (negative control) −Abs (blank)
× 100 (1)

2.7.2. Minimum Inhibitory Concentration (MIC)

Staphylococcus aureus (ATCC 25923) and Pseudomonas aeruginosa (ATCC 27853) strains were used
for MIC assay. Colonies were harvested and resuspended to 1.5 × 108 CFU/mL (turbidity equivalent
to 0.5 McFarland standard scale). The bacterial solution was diluted to 1 × 105 CFU/mL in Mueller
Hinton Broth with 100 µL of gelatin, sodium alginate, AgNO3, and hydrogel (1, 2, and 4 mM). The
negative control was 0.1 mL of Mueller Hinton Broth, and the positive control was 0.05 mL Mueller
Hinton Broth and 0.05 mL bacterial solution at 1 × 105 CFU/mL dilution. The microdilution method
has been used [30]. Plates were incubated at 37 ◦C for 20 h.

2.7.3. Wound Healing Test

Adult Females Wistar rats (250 ± 50 g) were used. The Animal Research Ethics Committee of the
Tiradentes University approved the in vivo procedures set in the Protocol No. 011116R, in compliance
with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes
of Health. The animals were divided into three groups (n = 9, total 27 animals) and housed under
conditions of controlled temperature (22 ± 1 ◦C) with a light/dark cycle of 12/12 h with free access
to food and water. It was anesthetized with intraperitoneal injection composed of 1 mL ketamine
(50 mg/kg) and 1 mL xylazine (20 mg/kg). The dorsal region was trichotomized, sterilized with a
solution of polyvinylpyrrolidone-iodine, and the wound was done with a punch with 8 mm of width. In
the immediate postoperative period, the animals received 10 mg/kg of ketoprofen intramuscularly for
three days as a prophylactic dose of postoperative symptomatology, and the formulation was applied in
the wound. Groups and each group identified all animals according to the number of days for analysis
of the cicatricial process (3rd, 7th, and 14th day) until euthanasia in a CO2 chamber. The groups were
divided into Control Group (GCTR), Group hydrogel sodium alginate/gelatin (80:20) (GH), and Group
hydrogel with AgNP 4 mM AgNO3 (GHP) [31]. In the postoperative period, the lesions were controlled
with photographic images (Sony brand camera, 10.1 megapixels) and measured with a digital caliper
at the inner edges of the diameter at zero, three, seven, and fourteen postoperative days. The images
were processed with the ImageJ® software. After the animals were sacrificed, the equivalent specimens
were removed from the scar area with margins of 3.0 mm for histological characterization.

2.7.4. Histomorphology Analysis

Removal of the specimens was equivalent to a scar area with a 0.5 cm margin of whole skin around
the lesion, with depth up to the first muscle layer. The removed samples were fixed in 10% buffered
formalin solution (pH 7.4) for 48 h. Subsequently, they were dehydrated in ethanol solutions at 70, 95,
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and 100 ◦GL (Gay-Lussac degrees), diaphanized in xylol to make the tissue transparent, and embedded
in paraffin. Histological sections (5 µm thick) were obtained from paraffin-embedded samples and
subsequently subjected to Hematoxylin/Eosin (HE) staining. All the histological analyses were carried
out by two observers, blinded to the treatment.

2.8. Statistical Analyses

The data collected from in vitro and in vivo experiments were expressed as the mean ± standard
error of the mean (SEM), and the differences among experimental groups were evaluated using
one-way analysis of variance ANOVA followed by the Tukey’s test. Values of p < 0.05 were considered
statistically significant. All statistical analyses were carried using the GraphPad program (Intuitive
Software for Science, San Diego, CA, USA).

3. Results and Discussion

Hydrogels of different sodium alginate/gelatin ratios (80:20, 50:50, and 20:80) have been produced
and characterized. The ratio 80:20 exhibited higher consistency, suitable for topical application.
The dressings should be flexible enough to allow adherence to the skin/tissue to be treated for a
prolonged period, offering more comfort and convenience to the patient [32]. The formation of strong
intermolecular interactions between sodium alginate and positively charged polymers is responsible
for the increased consistency, including hydrogen bonds and electrostatic attractions that occur at
higher concentrations of both polymers [7,28]. According to Li et al., the interaction between alginate
and gelatin occurs due to the presence of amino and carboxyl ionizable groups, as well as hydrogen
interactions formed by the functional carboxylic and hydroxyl group [9]. The use of sodium alginate
and gelatin hydrogels, as these are simple, efficient, and reproducible pharmaceutical dosage forms,
becomes feasible in the field of tissue repair.

After producing the hydrogels, silver nitrate was incorporated in the hydrogel in distinct
concentrations (1.0, 2.0, and 4.0 mM), showing increasing changes in color, from white to dark brown.
The dark brown indicates nanoparticle production. AgNPs have been synthesized applying a green
approach and using a natural biopolymer. The polymers show the presence of hydroxyl and carboxylic
acid groups in their polymeric units favoring the Ag+ chelate production by the adjacent –OH and
–COOH groups of alginate and gelatin. The Ag+ also acts as a potent oxidizing agent for organic
compounds [33].

The light incident on the nanoparticles produces oscillations in the electrons that are on their
surface, with the consequent absorption of electromagnetic radiation. The optical properties of the
AgNPs-loaded hydrogels were evaluated by measuring the spectrum of UV–Vis spectroscopy (Figure 1).
It identifies the evolution of the plasmon band as a function of the concentration of Ag+. In the
analysis of a spectrum UV–Vis, the bands of the plasmons are characterized by the absorption of
the AgNPs showing a maximum wavelength, which indicates the presence of AgNPs caused by the
excitation of electromagnetic waves (plasmon) in the surface. The spheroidal AgNPs absorb at a
wavelength between 390–440 nm, which may vary depending on the size and interaction between
the particles. The nanoparticle absorption spectra of this analysis showed a maximum band around
430–450 nm suggesting a spheroidal form. Other researchers developed hydrogel with natural polymer
incorporating AgNPs and obtained similar results [34,35].

FT–IR was used to identify the characteristic bands of the present groups and to observe the
possible interaction between the functional groups of the molecules composing the formulation.
Figure 2 shows the FT–IR spectra of sodium alginate, gelatin, and hydrogel with silver nanoparticles
(1 mM, 2 mM, and 4 mM). The characteristic absorption bands at 1602 cm−1 and 1424 cm−1 shown in
the FT–IR spectrum of sodium alginate correspond to the amide carbonyl group [36]. Also, the bands
around 1650 cm−1 (C=C stretching), 1250 cm−1 (C–O–C stretching), and 1250 and 1100 cm−1 (C–O
stretching) are attributed to the polysaccharide structure (arrows of spectrum A, Figure 2). The
spectrum of gelatin is characterized by 1640 cm−1 and 1510 cm−1 (arrows of spectrum B, Figure 2),
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corresponding to amide carbonyl (C=O and C=N stretching vibration). The bands from 1207 cm−1 to
1020 cm−1 are references of amino and alkyl chains. From the spectra of the hydrogel (square of spectra
C, D, and E), the band around 1600–1500 cm−1 shifts toward higher wavenumbers, and the intensity of
bands increase. Comparing the pure polymer with the blend of sodium alginate and gelatin (80:20),
these changes suggest the formation of strong intermolecular interactions as hydrogen bonds and
electrostatic attractions between polymers [37]. The bands around 2920, 2852, 1500, and 1640 cm−1 are
typically found in hydrogels [38].
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Figure 2. Fourier Transform Infra-red (FT–IR) spectra of (A) sodium alginate, (B) gelatin, and of
hydrogels with silver nanoparticles at different concentrations (C) 1 mM, (D) 2 mM, and (E) 4 mM.
Arrows of spectrum A correspond to the bands around 1650 cm−1 (C=C stretching), 1250 cm−1 (C–O–C
stretching); arrows of spectrum B correspond to 1640 cm−1 and 1510 cm−1 of amide carbonyl (C=O
and C=N stretching vibration); spectra of the hydrogel (square of C, D, and E) are the bands around
1600–1500 cm−1.

The thermal behavior of the hydrogel was analyzed using DSC and TGA [39]. Samples of hydrogel
sodium alginate/gelatin (80:20) and hydrogel with AgNP 4 mM AgNO3 are shown in Figure 3. The
endothermic peaks at 230–250 ◦C (Figure 3a) were attributed to the fusion of the samples. However,
a hydrogel with AgNPs showed peaks of lower intensity. Martins et al. [40] suggest that the AgNPs
surface has a passive layer, which increases the charge density of hydrogel. This fact stabilizes the
hydrogel, and the endothermic peak intensity decreased.

As shown in Figure 3b, for all tested samples, the mass loss occurred in two phases. The first
phase was characterized by a discrete loss of initial mass that occurred at a temperature of 100 ◦C,
due to the evaporation of water. The second mass decrease was identified at the temperature threshold
between 230–260 ◦C, attributed to the thermal decomposition of the hydrogels. Upon reaching the
maximum decomposition peak (260 ◦C), the samples lose approximately 50% of their initial mass.

Comparing with the literature [41], sodium alginate and gelatin showed less thermal stability than
the produced hydrogel. The higher thermal stability of the hydrogel suggests that crosslinked provided
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thermal resistance and might be the lower release of small molecules like CO2. Sabadini et al. [42]
reported similar thermogravimetric results in hydrogel analysis consisting of sodium alginate and
chitosan. At a temperature close to 83 ◦C, the evaporation of water occurred, a chemical process
facilitated by the high affinity of these polymers to the aqueous medium. In their study, the initial
mass loss occurred at a temperature of 100 ◦C, which corroborates similar activities of the hydrogel,
consisting of sodium alginate and gelatin. The peaks of degradation of the hydrogel mass occurred
in temperatures between 239–248 ◦C, values close to those recorded in our study with the variance
between 230–260 ◦C.
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alginate/gelatin (80:20) and (B) hydrogel with silver nanoparticles (AgNPs) (4 mM); Thermogravimetric
(TGA) analysis (right-hand panel) of (A) hydrogel alginate/gelatin (80:20), and (B) hydrogel with
AgNPs (4 mM).

TEM was performed to determine the morphology of the AgNPs (Figure 4), which exhibited
a spherical shape and size dependent on the concentration of silver nitrate. Figure 4a,b shows the
hydrogel with 1 mM AgNPs of approximately 7.5 to 8.3 nm. Figure 4c,d shows the hydrogel with
4 mM AgNPs of approximately 20 and 34 nm.

Sodium alginate and gelatin act directly as stabilizers, thereby avoiding aggregation of the particles.
AgNPs, on the other hand, prevent degradation of the hydrogel either by exposure to light or by
oxidation, avoiding possible chemical reactions. The spherical shape of AgNPs has also been reported
in the literature [43]. At the nanoscale, most metals tend to agglomerate due to their high surface
tension since the particle size results in a large surface area, and most of them have a size around 27 nm
but vary in a parameter of 5–50 nm.

Biological evaluation of nanoparticles-based formulations is a way of verifying the potential
toxicity arising from wastes formed during the production process. To be used as a biomaterial,
the system must be biocompatible, i.e., it must interact with the physiological environment without
undergoing changes or causing tissue damage (ISO E. 10993-5, 2009). ISO 10993-5 suggests that the
in vitro cytotoxicity test is the first to evaluate the biocompatibility of a material and in this case,
the toxic effects are assessed in normal cells.

A viability assay was carried out on human fibroblast L2929 testing all components used for the
production of silver nanoparticles at the maximum concentration of 150 µg/mL in DMSO 5%. The
results are shown in Figure 5. From all tested samples, only the silver nitrate induced the inhibition
of cell proliferation, showing a statistically significant difference (p < 0.05) when compared to the
negative control (DMSO). None of the remaining samples showed statistically significant differences
when compared to the negative control (p > 0.05). The negative control group was treated with DMSO
5% only and presented 100% cell viability. Sodium alginate, gelatin, and 4 mM silver nanoparticles
treated cells resulted in 100%, 96.66%, and 96% cell viability, respectively. On the other hand, pure
silver nitrate induced 47.33% of living cells, thus demonstrating its cytotoxic potential on fibroblasts.
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The results indicate the safety and biocompatibility of the samples tested in this cell line. Any cytotoxic
effect of these compounds may be due to their adhesion to the cell membrane, internalization and
degradation of products in the cell culture medium or inside the cells.Nanomaterials 2020, 10, x FOR PEER REVIEW 8 of 16 

  
(a) (b) 

  
(c) (d) 

Figure 4. Electron micrographs of the hydrogels with silver nanoparticles at different concentrations: 
1 mM on the 200 nm scale (a) and 50 nm scale (b); 4 mM on the 200 nm (c) and 100 nm scale (d). 

Biological evaluation of nanoparticles-based formulations is a way of verifying the potential 
toxicity arising from wastes formed during the production process. To be used as a biomaterial, the 
system must be biocompatible, i.e., it must interact with the physiological environment without 
undergoing changes or causing tissue damage (ISO E. 10993-5, 2009). ISO 10993-5 suggests that the 
in vitro cytotoxicity test is the first to evaluate the biocompatibility of a material and in this case, the 
toxic effects are assessed in normal cells. 

A viability assay was carried out on human fibroblast L2929 testing all components used for the 
production of silver nanoparticles at the maximum concentration of 150 µg/mL in DMSO 5%. The 
results are shown in Figure 5. From all tested samples, only the silver nitrate induced the inhibition 
of cell proliferation, showing a statistically significant difference (p < 0.05) when compared to the 
negative control (DMSO). None of the remaining samples showed statistically significant differences 
when compared to the negative control (p > 0.05). The negative control group was treated with DMSO 
5% only and presented 100% cell viability. Sodium alginate, gelatin, and 4 mM silver nanoparticles 
treated cells resulted in 100%, 96.66%, and 96% cell viability, respectively. On the other hand, pure 
silver nitrate induced 47.33% of living cells, thus demonstrating its cytotoxic potential on fibroblasts. 
The results indicate the safety and biocompatibility of the samples tested in this cell line. Any 

Figure 4. Electron micrographs of the hydrogels with silver nanoparticles at different concentrations:
1 mM on the 200 nm scale (a) and 50 nm scale (b); 4 mM on the 200 nm (c) and 100 nm scale (d).

Nanomaterials 2020, 10, x FOR PEER REVIEW 9 of 16 

cytotoxic effect of these compounds may be due to their adhesion to the cell membrane, 
internalization and degradation of products in the cell culture medium or inside the cells. 

 
 
 

 

 
 
 
 
 
 
 

Figure 5. Cell viability assay of gelatin, hydrogel containing 4 mM of AgNPs, sodium alginate, and 
silver nitrate of human L929 fibroblasts, determined by the methyl-thiazolyl-tetrazolium (MTT) assay 
after 24 h of incubation. The vehicle used to dilute the drug (dimethyl sulfoxide, DMSO 5%) was used 
as the negative control (100% viability). The data correspond to the mean ± SEM of four independent 
experiments. * p < 0.05 compared to the control group using one-way analysis of variance followed 
by Tukey’s test. 

The antimicrobial activity test was performed in vitro using Gram-positive (Staphylococcus 
aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria. MIC tests performed with gelatin, 
sodium alginate, silver nitrate, and hydrogel (1, 2, and 4 mM) are shown in Table 1. Gelatin and 
sodium alginate alone (without the incorporation of AgNPs) did not exhibit antimicrobial activity; 
the bacterial growth was therefore expected. These natural polymers contribute both to achieve the 
adequate consistency of the hydrogel through hydrogen bonds interaction, formed between the 
functional carboxylic and hydroxyl group. All tested concentration ratios of AgNPs incorporated in 
the hydrogel showed bactericidal activity. The Minimum Inhibitory Concentration (MIC) values 
recorded for the treatment with Hydrogels at 1.0 mM and 2.0 mM remained constant for gram-
negative and gram-positive bacteria. The increased hydrogel concentration up to 4.0 mM induced the 
reduction of the MIC values in both strains. A significant bactericidal action was observed both 
against Pseudomonas aeruginosa with a minimum bacterial increase of 0.50 µg/mL and against 
Staphylococcus aureus with a minimum bacterial increase of 53 µg/mL (Table 1). This result 
corroborates the study of Rescignano et al. [44] in which all hydrogels incorporating AgNPs showed 
inhibition of bacterial growth, suggesting that the antimicrobial activity is associated with the direct 
contact of the AgNPs with bacteria. 

Table 1. MIC of the gelatin, sodium alginate, and silver nitrate solutions, hydrogels with silver 
nanoparticles at different concentrations (1 mM, 2 mM, and 4 mM). 

Bacteria Gelatin Sodium 
Alginate AgNO3 Hydrogel 

1 mM 
Hydrogel 

2 mM 
Hydrogel  

4 mM 
Gram-negative 

Pseudomonas 
aeruginosa 

ATCC 27853 

Bacterial 
Growth 

Bacterial 
Growth 

No 
bacterial 
growth 

1.050  
µg.mL−1 

1.050 
µg.mL−1 

00.50 
µg.mL−1 

Gram-positive 
Staphylococcus 

aureus 
ATCC 25923 

Bacterial 
Growth 

Bacterial 
Growth 

No 
bacterial 
growth 

130  
µg.mL−1 

130  
µg.mL−1 

53.0  
µg.mL−1 

Contro
l

Gela
tin

 Hyd
rogel 

4 m
M

Sodium al
ginate

 Silv
er 

nitra
te

0

20

40

60

80

100

120

*

Vi
ab

ili
ty

 (%
)

Commented [1]:  Figure 5. Cell viability assay of gelatin, hydrogel containing 4 mM of AgNPs, sodium alginate, and
silver nitrate of human L929 fibroblasts, determined by the methyl-thiazolyl-tetrazolium (MTT) assay
after 24 h of incubation. The vehicle used to dilute the drug (dimethyl sulfoxide, DMSO 5%) was used
as the negative control (100% viability). The data correspond to the mean ± SEM of four independent
experiments. * p < 0.05 compared to the control group using one-way analysis of variance followed by
Tukey’s test.

The antimicrobial activity test was performed in vitro using Gram-positive (Staphylococcus aureus)
and Gram-negative (Pseudomonas aeruginosa) bacteria. MIC tests performed with gelatin, sodium
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alginate, silver nitrate, and hydrogel (1, 2, and 4 mM) are shown in Table 1. Gelatin and sodium alginate
alone (without the incorporation of AgNPs) did not exhibit antimicrobial activity; the bacterial growth
was therefore expected. These natural polymers contribute both to achieve the adequate consistency
of the hydrogel through hydrogen bonds interaction, formed between the functional carboxylic and
hydroxyl group. All tested concentration ratios of AgNPs incorporated in the hydrogel showed
bactericidal activity. The Minimum Inhibitory Concentration (MIC) values recorded for the treatment
with Hydrogels at 1.0 mM and 2.0 mM remained constant for gram-negative and gram-positive
bacteria. The increased hydrogel concentration up to 4.0 mM induced the reduction of the MIC values
in both strains. A significant bactericidal action was observed both against Pseudomonas aeruginosa
with a minimum bacterial increase of 0.50 µg/mL and against Staphylococcus aureus with a minimum
bacterial increase of 53 µg/mL (Table 1). This result corroborates the study of Rescignano et al. [44] in
which all hydrogels incorporating AgNPs showed inhibition of bacterial growth, suggesting that the
antimicrobial activity is associated with the direct contact of the AgNPs with bacteria.

Table 1. MIC of the gelatin, sodium alginate, and silver nitrate solutions, hydrogels with silver
nanoparticles at different concentrations (1 mM, 2 mM, and 4 mM).

Bacteria Gelatin Sodium
Alginate AgNO3

Hydrogel
1 mM

Hydrogel
2 mM

Hydrogel
4 mM

Gram-negative
Pseudomonas

aeruginosa
ATCC 27853

Bacterial
Growth

Bacterial
Growth

No bacterial
growth

1.050
µg.mL−1

1.050
µg.mL−1

00.50
µg.mL−1

Gram-positive
Staphylococcus

aureus
ATCC 25923

Bacterial
Growth

Bacterial
Growth

No bacterial
growth

130
µg.mL−1

130
µg.mL−1

53.0
µg.mL−1

As AgNO3 is toxic to microorganisms, it already exhibits bactericidal action. Therefore, the use of
AgNO3 was also evaluated in this study, obtaining an expected result with the absence of bacterial
growth when tested against Pseudomonas aeruginosa and Staphylococcus aureus. Thus, the antimicrobial
activity related to the use of AgNPs occurs in Gram-positive and Gram-negative bacteria, which
determines that this formulation has a bactericidal action of broad-spectrum, offering potential
antimicrobial activity [45].

Our results show that AgNPs synthesized from AgNO3 require concentration around micrograms
for bacterial growth inhibition. The results of the present study were similar to those reported
by Kanmani et al. [46], which gelatin/AgNPs nanocomposite films (30 and 40 mg) showed potent
antimicrobial activity against Gram-positive and Gram-negative foodborne pathogens. AgNPs are
capable of interacting physically with the cell surface of several bacteria. It is particularly important in
the case of Gram-negative bacteria, where numerous studies report the adhesion and accumulation of
AgNPs on the bacterial surface. Many studies have reported that AgNPs may impair cell membranes
leading to structural changes, which make bacteria more permeable [47,48].

Mekkawy et al. [49] developed AgNPs stabilized with polymer, for which the MIC values were
in the range of 0.93–7.5 and 3.75–15 µg/mL, respectively, Gram-positive (Staphylococcus aureus) and
Gram-negative bacteria (Escherichia coli). Similar studies were also done by Ashmore et al. [50] showing
that AgNP inhibited the growth of E. coli only at 0.621 mg/mL; and by Rath et al. [51] who obtained
MIC of AgNPs against S. aureus and P. aeruginosa 5.8 ± 0.3 mg/ml and 7.4 ± 0.2 mg/mL, respectively.

The wound healing capacity of the developed hydrogels was studied over 14 days, and the results
are shown in Figure 6. The area of the wound has gradually decreased over time. Since no splinted
wound model has been used to prevent contraction nor induce healing by re-epithelization, the healing
shown in Figure 6 has been mainly by contraction mediated by myofibroblasts. As seen in the chart,
the wound areas progressively decreased in both treated groups (GHP and GH) significantly. The
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wound size was found to be reduced considerably in GHP, and GH-coated wounds on days 3, 7, and 14
of the postoperative period, compared to uncoated injuries (GCTR, p < 0.05, respectively). The effective
action of the hydrogel with the incorporation of AgNPs in the group corresponding to GHP has been
observed, specifically on the third and seventh postoperative days. On the third day, the area of the
wound was reduced by 46.03% when compared to the GCTR groups, which decreased by 17.61% and
GH with a reduction of the wound area by 30.63%. On the seventh day, the GHP was also effective in
reducing the total area of the wound by 81.14%, while the GH decreased by 65.11% higher than the
GCTR with 45.66% reduction of the injured area 45.66%. On the fourteenth day, the effective action
of the GHP and GCTR hydrogels are possibly associated with the formation of the granulation tissue,
characteristic of the last cicatricial phase, and because it is no longer corresponding to the inflammatory
period, which is more sensitive to the action of microorganisms. It corroborates with the resolution of
the use of AgNPs incorporated in the hydrogel, their antimicrobial activity made possible the reduction
in the area of the wound mainly on the third and seventh day (Figure 6, left).
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Figure 6. Non-splinted model showing the percentage of the non-epithelialized surface of the wound of
the groups: GCTR (Control Group), GH (Group with hydrogel sodium alginate/gelatin (80:20), and GHP

(Group hydrogel with AgNP 4 mM AgNO3). All values are mean ± S.E. Statistical analysis comprised
ANOVA followed by Tukey’s test. * P < 0.05 in relation to GCTR, GH, and GHP groups, respectively
(n = 21/group).

The histological wound healing occurred without intercurrence over the time-course of the
experiment in all the studied groups (Figure 7). On day 3, an intense inflammatory infiltrate composed
by polymorphonuclear neutrophils (PMN), and macrophages were observed throughout the wounded
area of all groups. Interstitial edema was remarkable, particularly in GCTR and GH. Interestingly,
there was a more conspicuous chronic lymphocytic infiltrate in the bottom of GH wounds, whereas
GHP presented the formation of immature granulation tissue, rich in hyperemic capillary vessels and
proliferative endothelial-like spindle cells, in the bottom of the wounds.

On day 7, granulation tissue containing plump, active fibroblasts forms was observed in all groups
but at different maturation grades. The inflammation remained intense in GCTR, but there was a balance
in the content of PMN, macrophages, and lymphocytes, which characterized a “persistent” subacute
inflammatory infiltrate. Narrowed (slit-shaped) capillary vessels were concentrated on the edges
and bottom of the wounds. In GH, the inflammatory response was essentially lymphocytic (chronic
inflammation). The stromal spindle cells, interpreted as fibroblasts and endothelial cells, were densely
dispersed throughout the wound area and arranged parallel to the wound surface. Most vessels were
widely dilated and hyperemic. In GHP, the granulation tissue had more mature morphological features,
such as reduction of the inflammatory response, higher content of hyperemic blood vessels, and more
intense proliferation of fibroblast-like spindle cells.

On day 14, there was the persistence of vascular granulation tissue in GCTR, whereas GH and GHP

presented a cellular fibrous scar. All groups exhibited full epithelization, but only GH and GHP showed
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epithelial buddings compatible with the neoformation of rudimentary cutaneous appendages. Also,
such buddings were limited to the scarred edges in GH but scattered over the wound surface in GHP.
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Figure 7. Photomicrographs of hematoxylin/eosin-stained histological sections representative of
histological wound healing versus the time course of the experiment. Day 3: Wounds present
intense edema (ed) and infiltration of polymorphonuclear neutrophils; note the lymphocyte-rich
infiltrate (lym) and immature granulation tissue (igt) in the bottom of GH and GHP, respectively
(100×). Polymorphonuclear neutrophil (small lobular nuclei) and lymphocytes (dark round nuclei) are
highlighted in higher magnification (800×). Day 7: Thick strips of granulation tissue are observed in all
groups (dashed arrows); irregular and slit-shaped capillary blood vessels concentrated in the edge are
seen in GCTR (thin arrows), whereas dilated hyperemic vessels (thick arrows) are observed throughout
the wound areas in GH and GHP (100×). Note the lower content of inflammatory cells in GHP. Stromal
spindle cells (fibroblast and endothelial-like cells) are highlighted at higher magnification (800×). Day
14: Residual vascular granulation tissue (right) is observed in GCTR, but a cellular primary fibrous scar
(cfb) is seen in GH and GHP. Epithelial buddings (compatible with rudimentary cutaneous appendages)
(white arrows) are found in the edges of the wound area in GH but over the full epithelial surface in
GHP (100×). Stromal spindle cells (fibroblast-like cells) are highlighted in higher magnification (800×).
GCTR (Control Group), GH (Group with hydrogel sodium alginate/gelatin (80:20), and GHP (Group
hydrogel with AgNP 4 mM AgNO3).

The pathological findings observed in GCTR over the time-course of the experiment, expressed
by acute inflammation, granulation tissue formation and primary scar development on day 3, 7 and
14, respectively, suggest that wound healing has occurred without intercurrences, which is also an
indication that the control group can be used as an entirely acceptable parameter of normality of the
pathophysiological steps of wound healing.

The use of hydrogels containing AgNPs promoted histological changes in the healing tissue
over the time course of wound healing, such as earlier development and maturation of granulation
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tissue. Synthetic products impregnated with silver used as dressings for the treatment of wounds
have been demonstrated to act as a mechanical barrier against exogenous microorganisms, preserving
the local temperature and maintaining the humidity of the wound environment [52]. Therefore, the
application of sodium alginate/gelatin hydrogels containing AgNPs on the surface of the wounds may
work as a biomechanical barrier, protecting the ulcerated bed from the microbial contamination. The
silver-induced antibacterial effect has been associated with its ability to interact with bacterial plasma
membranes, proteins, and enzymes involved in vital cellular processes, such as the electron transport
chain [53]. AgNPs incorporated into dressings have significantly decreased wound-healing time likely
as a result of increased bacterial clearance from infected wounds [54,55].

However, other silver nanoparticles-derived biological properties might have played a role in the
acceleration of granulation tissue formation and maturation on the initial stages of wound healing.
AgNPs have been demonstrated to reduce the production of the inflammatory cytokines, such as nitric
oxide and prostaglandin E2, in lipopolysaccharide-induced RAW264.7 cells [56]. Hence, the silver
nanoparticles-induced reduction of the inflammatory cytokines release might have also played a role
in the improvement of granulation tissue formation.

The dermal connective tissue of the GHP group showed earlier formation of mature hypovascular
primary scars, but no pathological signs of hypercollagenization was observed. It has been previously
reported that silver nanoparticles can reduce the levels of transforming growth factor β (TGF-β)
expression while increasing interferon (IFN)-γ levels until full wound closure [57]. IFN-γ has been
demonstrated to inhibit fibroblast proliferation and matrix production [58] and induce myofibroblasts
apoptosis [59], whereas enhanced expression of TGF-β1 mRNA was found in both keloids and
hypertrophic scars [60]. Hence, the modulation of TGF-β/ IFN-γ production may play a role in the
positive effects of silver on wound healing.

At the final stages of wound healing, healed skin treated with sodium alginate/gelatin hydrogels
containing AgNPs presented a well-stratified epidermis, complete with basal, spinous, granular,
and cornified layers, with epithelial buddings interpreted as rudimentary cutaneous appendages. Also,
collagen tissue was well-formed, with long thick gross collagen fibers parallel-arranged. These results
suggest that the silver-containing hydrogels improved both dermal and epidermal re-establishment.
The precise mechanisms underlying such biological effects are not fully clarified yet. It has been
demonstrated that silver nanoparticles can induce contraction of the wounds in mice as a result of
increased keratinocyte migration and proliferation [61]. However, further studies are needed to find
out whether the formation of rudimentary cutaneous appendages in the GHP group, but not in the
others, result from AgNPs-induced stimulation of keratinocyte proliferation and differentiation or
would be an indirect response secondary to the improvement of the early phases of wound healing.

Our study suggests that hydrogels containing AgNPs provide significant benefits on wound
healing in a rodent model; herein, we provide the evidence that AgNPs can accelerate granulation
tissue formation and maturation and earlier development of the primary collagen scar and rudimentary
cutaneous appendages.

4. Conclusions

This study aimed to produce a safe, biocompatible formulation based on AgNPs for wound
healing, for easy application and of low environmental impact. No inorganic solvents have been used
nor any complex methodology that needs high energy. The use of natural polymers as sodium alginate
and gelatin is a cost-effective approach for the production of a biocompatible hydrogel that can be
easily loaded with antimicrobial AgNPs with healing properties. Compared to synthetic ones, natural
polymers are of lower cost, non-toxic, less abrasive, and are environmentally friendly. The developed
hydrogels demonstrated to be non-cytotoxic against fibroblasts, and their antimicrobial activity
was confirmed in vitro using Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas
aeruginosa) bacteria. The wound healing capacity of AgNPs hydrogels was studied over 14 days in
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Wistar rats highlighting that AgNPs can accelerate tissue formation and promote earlier development
of primary collagen scars.
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