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Abstract: As lithium-ion battery (LIB) anode materials, porous carbons with high specific surface area
are highly required because they can well accommodate huge volume expansion/contraction during
cycling. In this work, hierarchically porous carbon (HPC) with high specific surface area (~1714.83 m2

g−1) is synthesized from biomass reed flowers. The material presents good cycling stability as an LIB
anode, delivering an excellent reversible capacity of 581.2 mAh g−1 after cycling for 100 cycles at a
current density of 100 mA g−1, and still remains a reversible capacity of 298.5 mAh g−1 after cycling
for 1000 cycles even at 1000 mA g−1. The good electrochemical performance can be ascribed to the
high specific surface area of the HPC network, which provides rich and fast paths for electron and
ion transfer and provides large contact area and mutual interactions between the electrolyte and
active materials. The work proposes a new route for the preparation of low cost carbon-based anodes
and may promote the development of other porous carbon materials derived from various biomass
carbon sources.
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1. Introduction

With the excessive consumption of nonrenewable resources, the energy crisis spreads around
the world. Therefore, it is urgent to explore new ways for storing energy [1,2]. As one of effective
energy-storage devices, lithium ion batteries (LIBs) have attracted broad attention due to its high
energy density, long cycling life, and light weight [3–5]. The property of an anode material has a
significant effect on the final performances of a total LIB. At present, anode materials mainly include
conversion reaction type, alloy-type, and carbonaceous materials [6–9]. However, the applications
of both conversion-reaction-type and alloy-type anodes are restricted by their low conductivity and
serious volume expansion during cycling [10–13]. Compared with these kinds of anodes, carbon-related
materials (such as graphite, graphene, activated carbon, carbon nanotubes, carbon fibers, etc.) present
good characteristics including high safety, high conductivity, low cost, excellent electrochemical
stability, and high mechanical firmness [14–19]. Therefore, carbon materials have become mainstream
materials for commercial LIB anodes for many years. In particular, porous carbon materials with
plenty of network structure can provide short diffusion pathways for ion and electron transport and
large active regions for electrochemical reactions [20–23]. In this situation, the preparation methods
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of porous carbon materials were studied by scientists from all over the world with great enthusiasm.
Among various ways, it is a green and environmentally friendly route to fabricate porous carbon
from biomass wastes [24,25]. In recent years, the synthesis methods towards porous carbon derived
from different biomass materials have been developed successfully. Many biomasses such as walnut
shell, duckweed, coir pith, and bean-dreg [26–28] are developed into porous carbon materials. These
materials show good electrochemical performance as anodes for LIBs. However, it is difficult to
collect some biomass materials in a relatively concentrated region, which limits the mass production of
biomass carbon materials.

As we know, reed widely grew near lakes and rivers, so that reed flowers can be collected
easily, which provides abundant feedstock to prepare biomass carbons with unique morphologies
for large-scale production. As the starting materials, reed flower possesses the following advantages
compared with other biomass materials. Firstly, compared with other biomasses such as dandelion,
loofah, and jute [29,30], reed flowers can be collected in a larger area. In special, higher harvesting
quality can be obtained per unit time. In addition, compared with biomasses [31,32] such as banana
peel, prunus persica, and coconut shell, the natural fluffy structure of reed flower is beneficial to the
synthesis of porous carbon materials with high specific surface area. Moreover, compared with a large
number of edible biomass carbon sources [33,34], reed flowers can be utilized directly and do not need
to wait after they finish the edible value. In this study, we fabricate hierarchically porous carbon (HPC)
with high specific surface area from reed flowers by a multistep calcination method. When the HPC is
applied to anode materials for LIBs, it exhibits good cycling capability and rate performance. The paper
provides us an idea for developing low-cost porous carbon materials derived from biomass and may
promote the development of porous biomass carbon-based materials in energy-storage applications.

2. Materials and Methods

2.1. Material Preparation

The HPC was obtained from biomass reed flower. The typical synthesis process is shown in
Figure 1. Firstly, 40 mL deionized water (DI-water) was introduced into the 100 mL Teflon-lined
autoclave, and then, 1 g reed flowers was dispersed in the deionized water. The mixture was heated
to 220 ◦C for 12 h. When the Teflon-lined autoclave cooled to 25 ◦C, the hydrothermally synthesized
product was taken out and centrifugally separated with DI-water. After the products were dried in a
drying oven at 80 ◦C for 10 h, black powders were obtained. Then, 1 g powders and 1 g KOH were
mixed evenly and added into 20-mL DI-water with magnetic stirring for 1 h. The mixture was dried
at 80 ◦C for 10 h. In the next step, the compound was multistep calcinated at different temperatures
(450 ◦C for 30 min, 650 ◦C for 30 min, and 800 ◦C for 1 h) under Ar protection with a heating rate of 5 ◦C
min−1, so that the products were fully activated and carbonized, creating plenty of pores in different
sizes. After the furnace cooled to 25 ◦C, the products were washed by 10% HCl for 10 min and then
washed by DI-water for 5 times. At last, the products were dried at 80 ◦C for 12 h for further testing.
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2.2. Characterization

The phase of as-prepared samples was analyzed by X-ray diffraction (XRD, Rigaku-TTRIII, Tokyo,
Japan) using Cu Kα radiation. The Raman spectra was identified on a Lab RAM HR800 (Horiba,
Kyoto, Japan) with a 632-nm laser. Scanning electron microscopy (SEM, Hitachi S-4800, Tokyo, Japan)
and transmission electron microscopy (TEM, JEM 2100, Tokyo, Japan) were used to characterize
the microstructure and morphology of the sample. Nitrogen adsorption-desorption isotherm was
performed on V-Sorb 2800P (Jinaipu, Beijing, China). The specific surface was analyzed by the
Brunauer–Emmett–Teller (BET) method, and the Barrett–Joyner–Halenda (BJH) method was performed
to obtain pore size distributions.

2.3. Electrochemical Measurements

Seventy percent of the HPC materials, 20% of the Ketjen black, and 10% of the carboxymethyl
cellulose (CMC) binder was mixed in DI-water to form slurry. Then, the anode was fabricated by
painting the slurry on Cu foil and was dried at 60 ◦C for 10 h. The HPC anode, lithium cathode,
celgard 2400 separator, and the electrolyte (1 M LiPF6 in a mixed solution of ethylene carbonate and
diethyl carbonate, EC/DEC = 1:1 by volume) were encapsulated into 2025 coin cells in a glovebox
under an Ar atmosphere (H2O < 0.01 ppm and O2 < 0.01 ppm). The electrochemical impedance
spectroscopy (EIS) and cyclic voltammetry (CV) of the batteries were performed on an electrochemical
workstation (Princeton, VersaSTAT 4, Oak Ridge, TN, USA) at 0.1 mV s−1 from 0.01 to 3 V. Galvanostatic
charge-discharge were tested on a NEWARE battery tester (Shenzhen, China) in the voltage window of
0.01–3 V (vs. Li+/Li).

3. Results and Discussion

Figure 2a shows the XRD patterns of the HPC. Two broad peaks at about 26◦ and 44◦ can be clearly
found. The broad peak at 26◦ is ascribed to the (002) crystal plane of graphite (JCPDS No. 65-6212),
while the peak around 44◦ relates to the (100) crystal plane of sp2-hybridized carbon [35–37]. These
results demonstrate that the as-prepared HPC possess a graphitic structure [38–40]. Figure 2b presents
Raman spectroscopy of the HPC material. Two peaks at ~1342 cm−1 and ~1599 cm−1 correspond
to the D band and G band, respectively [30,31]. The D band represents defect and disorder [41,42],
while the G band corresponds to the existence of SP2-hybridized carbon [43]. The intensity ratio of
D to G is 1.0, which suggests that the HPC possesses a large number of defects and good electrical
conductivity [44,45]. These characteristics are good for electron transfer and rate performance [46].

In order to evaluate the specific surface area and porosity of the HPC, nitrogen
adsorption-desorption isotherms and the pore size distributions curves were measured and
shown in Figure 2c,d, respectively. As shown in Figure 2c, the curve displays a typical type-IV
adsorption-desorption isotherm with a type-H4 hysteresis loop [38], demonstrating the existence of
both micropores and mesopores. A relatively high specific surface area of ~1714.83 m2 g−1 and a big
pore volume (~1.13 cm3 g−1) are obtained based on the BET test. These data are much greater than
those of other biomass carbon material [26–28,38]. It can be seen from Figure 2d that the pore sizes
of the HPC mainly distribute between 2 and 5 nm, presenting obvious mesoporous characteristics.
These mesopores, as second-class pores, together with the first-class pores (macropores, ~70 nm),
form a hierarchically porous structure. The large specific surface area makes the electrolyte–electrode
interface large enough to accumulate rich charges and ions [47,48]. Moreover, the hierarchically porous
structure can provide a fast channel for the migration of Li ions and electrons and provides enough
space for the volume expansion/contraction during cycling to obtain a stable Li storage [49].

Figure 3a shows a SEM image of the HPC. It is clearly shown that the HPC exhibits a typically
porous structure with rich macropores (a few hundred nanometers in diameter). Figure 3b–e presents
TEM images of the HPC. A large number of pores (tens to hundreds of nanometers in diameter) can
be found in Figure 3b,c, forming the first class pores. Plenty of mesopores with a diameter of a few
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nanometers can be seen in Figure 3d, constituting the second-class pores. In this situation, a hierarchical
porous structure containing the first-class pores (macropores) and the second-class pores (mesopores)
is successfully obtained. This result is coincidence with the pore size distribution result (Figure 2d).
Furthermore, the lattice fringe spacing of 0.36 nm marked in Figure 3e is consistent with the (002)
planes of the graphite (JCPDS No. 65-6212), corresponding well with the XRD result.
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CV curves (Figure 4a) towards the HPC anode were measured at a scan rate of 0.1 mV s−1 in the
voltage range of 0.01–3 V. A broad reduction peak is found in the first cycle, suggesting the formation
of the solid electrolyte interface (SEI) film on the HPC electrode surface [50]. An obvious cathodic peak
between 0.01 and 2.0 V can be found, corresponding to reversible insertion of lithium into the carbon
layers and nanopores [51]. The intensity of the above cathodic peak in the first loop is much higher
than that of the rest, which may be due to the formation of the SEI, the electrolyte decomposition, and
the irreversible insertion of Li+ into special sites of carbon material [52]. Figure 4b shows the discharge
and charge curves from the 1st to 100th cycle of the HPC anode under a current density of 100 mA
g−1 in a voltage range of 0.01–3 V. The HPC anode presents the 1st discharge and charge capacities of
1062.5 and 649.2 mAh g−1, respectively. The primary coulombic efficiency of HPC anode is about 61.1%.
The irreversible capacity loss could be attributed to the formation of SEI, the irreversible lithium-ion
intercalation on the new-formed surfaces, and even disordered carbon binder [53–56]. In the first
discharge curve, a plateau is found at about 0.5 V and then disappears in the subsequent discharge
curves. This phenomenon is also in line with the CV result. The discharge and charge capacities of the
2nd cycle are 662.5 and 641.7 mAh g−1, respectively, and the coulombic efficiency increases to 97.7%.
Compared with the 50th and 100th discharge and charge curves, they almost overlap with each other,
showing an outstanding cycling stability.
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Figure 4. (a) Cyclic voltammetry (CV) curves measured at 0.1 mV s−1 between 0.01–3 V and
(b) galvanostatic charge-discharge (GCD) curves measured under 100 mA g−1 for the lithium-ion
battery (LIB) device with the anode material of HPC.

The rate property of the HPC anode is shown in Figure 5a. Reversible capacities of 604, 512, 399,
279, and 175 mAh g−1 are achieved at different current densities from 100 to 2000 mA g−1. When the
current density comes back to 100 mA g−1, the specific capacity returns to 460 mAh g−1, revealing a
goodish rate performance. To further improve the rate performance, some previous reported methods,
including nitrogen/phosphorus doping, conductive metal doping, and forming a three-dimensional
conductive cross-linked carbon network, can be adopted [29,57–59]. The related work can be carried
out in the future. The HPC electrode also exhibits good cycling performances (Figure 5b). When
cycled for 50 cycles, the reversible capacity of the HPC anode reaches 593.4 mAh g−1. After cycling for
100 cycles, the reversible capacity of the HPC anode can be stabilized at 581.2 mAh g−1. Even cycling
at a high current density of 1000 mA g−1, the HPC anode shows a discharge capacity around 300 mAh
g−1 invariably, revealing an outstanding cycling stability. After 1000 cycles, a reversible capacity of
298.5 mAh g−1 still remains (Figure 5c). The good rate and cycling performance could be ascribed to
the unique hierarchical porous structure of the biomass carbon material.
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Figure 6a displays the EIS of the HPC anodes before and after cycling at 1000 mA g−1 for 1000 cycles.
The semicircles in the high-frequency region are contact with the interface charge-transfer process,
and the straight lines in the low-frequency region correspond to the Warburg diffusion inner the
networks [48,49]. It can be found that the semicircle of the electrode becomes smaller and that the slope
of the straight line becomes larger after 1000 cycles, which is due to the dissolution and redistribution
of the active material. The SEM image of the HPC anode after 1000 discharge/charge cycles at 1000
mA g−1 is shown in Figure 6b. Many macropores maintain their initial shapes and sizes after cycling
at such a high current density, which is favourable for obtaining good cycling stability. Figure 6c,d
presents digital photographs of a yellow light emitting diode (LED) bulb propelled by an HPC half
battery. The bulb darkens gradually. After 5 min, the brightness of the LED bulb decreases obviously
compared with its initial state, while the bulb still can work.
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Figure 6. (a) Nyquist plots for HPC anode before and after 1000 cycles; (b) SEM image of HPC anode
after cycling at 1000 mA g−1 for 1000 cycles; and digital photographs of a yellow LED bulb propelled
by an HPC battery: (c) Initial and (d) after 5 min.
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Table 1 [27,28,38,44–46,53,60–62] compares the electrochemical performance of the current study
with the previously reported works. It can be seen that the electrochemical performance of the HPC
anode is superior to most of reported biomass-based carbon materials. The outstanding electrochemical
property can be ascribed to the following aspects. Firstly, the HPC with high specific surface area can
make the electrolyte–electrode interface large enough to accumulate rich charges and ions. In addition,
it also can provide large contact area and mutual interactions between the electrolyte and active
materials. Secondly, the first-class pores in the hierarchically porous structure can relieve the volume
change during the cycling procedure while the second-class pores can provide rich and fast paths for
the transfer of ions and electrons. Thirdly, the value of ID/IG is 1.0, indicating that the materials contain
both defects and good electrical conductivity. The defects are good for electron transfer, and the great
electrical conductivity is beneficial to improve the rate property of the battery. Based on the above
discussions, we can conclude that the HPC synthesized from biomass material in this study has great
potential as anodes for LIBs. Moreover, this paper also provides us a new proposal for the fabrication
of low-cost carbon-based anode materials, and the route is expected to be extended and applied to
various biomasses in future.

Table 1. Comparison of electrochemical performances for various biomass-derived carbons as
LIB anodes.

Biomasses
(Corresponding Carbon Materials)

Current Density
(mA g−1)

Cycle
Number

Reversible Capacity
(mAh g−1)

Ref.

Coir pith waste (porous carbon) 100 50 837 [27]
Bean-dreg (graphitic sheet) 100 100 396 [28]
Waste green tea (graphitic carbon nanoflakes) 100 100 400 [38]
Rice husks (carbon-decorated silicon spheres) 100 100 429 [44]
Coffee waste (nonporous carbons) 100 100 285 [53]
Wheat flour (carbon particles) 1000 100 217 [45]
Orange peel (porous carbon) 1000 100 301 [46]
Loofah (three-dimensional porous carbon
framework) 100 100 225 [60]

Waste green tea (nanoparticles) 100 100 498 [61]
walnut shell (porous carbon nanofiber) 100 200 280 [62]

Reed flowers (hierarchical porous carbon) 100
1000

100
1000

581.2
298.5 This work

4. Conclusions

Hierarchical porous carbon (HPC) was successfully synthesized by multistep calcination of
biomass reed flowers in this work. The HPC anode exhibits a high specific surface of ~1714.83 m2 g−1

and a big pore volume (~1.13 cm3 g−1). Owing to the advantages of the hierarchically porous structure,
the HPC electrode displays good electrochemical property with a discharge capacity of 581.2 mAh
g−1 at 100 mA g−1 after 100 cycles, allowing for a promising prospect of further practical application
in the battery industry as one of the effective and cheap alternatives of graphite. Moreover, the HPC
anode achieves good rate performance. Even at a large current density of 1000 mA g−1, the specific
capacity could also retain at 298.5 mAh g−1 after 1000 cycles. The above property of the as-fabricated
HPC reveals its great potential as an LIB anode. This work not only visualizes the possible application
of biomass carbon as an anode material for LIBs but also proposes a new route for the preparation of
low-cost carbon-based anodes and may promote the development of other porous carbon materials
derived from various biomass carbon sources.
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