Supporting Information

Nitrogen doped intercalation TiO₂/TiN/Ti₃C₂T_x nanocomposite electrodes with enhanced pseudocapacitance

Ben Yang¹, Yin She^{1,2,*}, Changgeng Zhang¹, Shuai Kang³, Jin Zhou⁴, Wei Hu^{1,*}

- ¹ Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; <u>201908021058@cqu.edu.cn</u> (B. Y.); <u>shevin@cqu.edu.cn</u> (Y. S.); <u>SillerZ@cqu.edu.cn</u> (C. Z.); <u>weihu@cqu.edu.cn</u> (W. H.)
- ² Key Laboratory of Fundamental Science Micro/Nano Device System Technology, Micro System Research Center of Chongqing University, Chongqing 400044, China
- ³ Intelligent Manufacturing Technology Institute, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; <u>Kangshuai@cigit.ac.cn</u> (S. K.)
- ⁴ Chongqing Academy of Metrology and Quality Inspection, Chongqing 401121, China; <u>zhoujin1203@163.com</u> (J. Z)
- * Correspondence: sheyin@cqu.edu.cn; Tel.: +86-18602361894; weihu@cqu.edu.cn; Tel.: +86-18802361894; weihu@cqu.edu.cn; Tel.: +86-13896111800

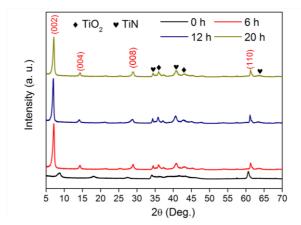


Figure S1. XRD patterns of $Ti_3C_2T_x$ and 6 h, 12 h, 20 h N-TiO₂/TiN/Ti₃C₂T_x.

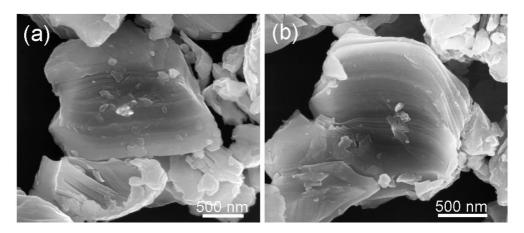


Figure S2. High-magnification SEM images of pristine Ti₃AlC₂.

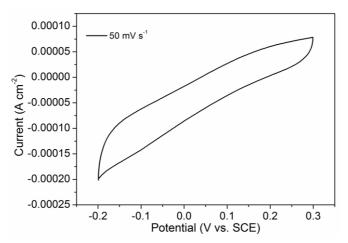
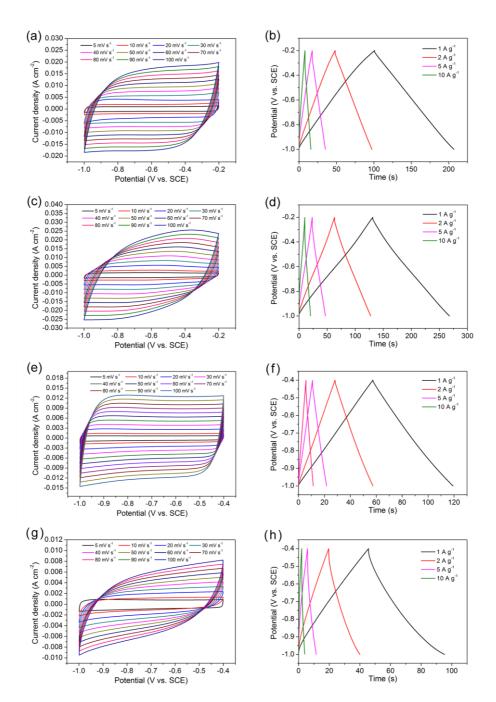
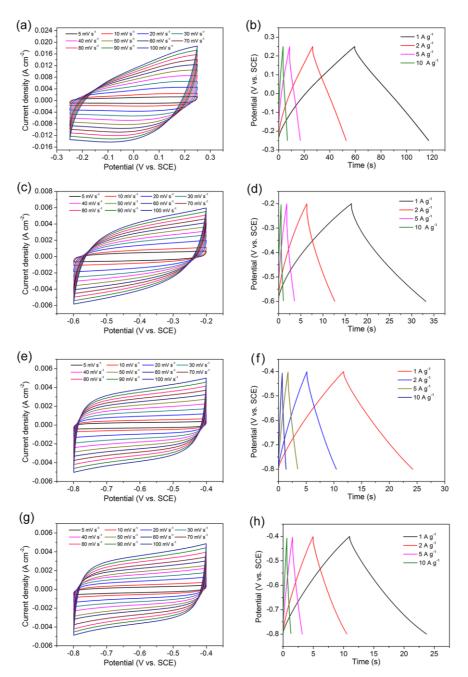




Figure S3. CV curves at scan rate of 50 mV $\rm s^{-1}$ of conductive carbon paper.

Figure S4. CV and GCD curves of Ti₃C₂T_× in different electrolytes of (a-b) Na₂SO₄, (c-d) Li₂SO₄, (e-f) KOH and (g-h) LiOH.

Figure S5. CV and GCD curves of 20 h N-TiO₂/TiN/Ti₃C₂T_× in different electrolytes of (a-b) Na₂SO₄, (c-d) Li₂SO₄, (e-f) KOH and (g-h) LiOH.

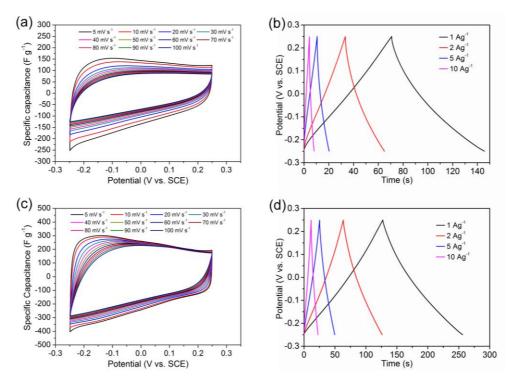
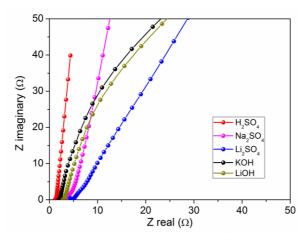
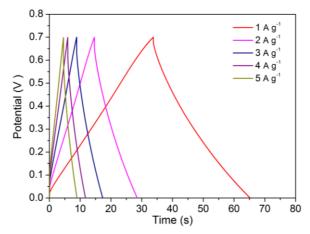




Figure S6. CV and GCD curves of (a-b) 6 h, (c-d) 12 h N-TiO₂/TiN/Ti₃C₂T_x in H₂SO₄ electrolyte.

Figure S7. Nyquist plots of 20 h N-TiO₂/TiN/Ti₃C₂T_x in different electrolytes. 1M H₂SO₄ have lower resistance of the bulk electrolyte solution compared with Na₂SO₄, Li₂SO₄, KOH and LiOH.

Figure S8. GCD plots at different current densities of the symmetric 20 h N-TiO₂/TiN/Ti₃C₂T_x//20 h N-TiO₂/TiN/Ti₃C₂T_x supercapacitor in 1 M H₂SO₄.

Calculation of specific capacitance

CV tests

The specific capacitances Cs was calculated by integrating the discharge portions of the CV plot.

$$C_s = \int I dV / (msV) \tag{1}$$

where Cs is the specific capacitance of the electrode (F g^{-1}), I is the response current under the integrated area of the CV curves (A), m is the mass of the electrode material (g), s is the scan rate (V s^{-1}), and V is the potential window (V).

GCD tests

Based on the charge-discharge curve, the specific capacitances *C*^s of the electrode can be calculated using:

$$C_{\rm s} = I\Delta t \,/\,(m\Delta V) \tag{2}$$

where I is the discharge current (A), t is the discharge time (s), m is the mass of the electro-active material (g), and V is the potential window (V).

Calculation of energy and power densities

The energy (*E*) and power densities (*P*) for the supercapacitors was calculated from CV curves at different current densities using equations (3) and (4), respectively.

$$E = \int V dQ = \int V I dt = I \int V dt = 0.5C_s \times V^2 / 3.6(Wh / kg)$$
(3)
$$P = \frac{E}{t} = E \times \frac{s \times 3.6}{V} (kW / kg)$$
(4)

Where Cs is the specific capacitance (F g^{-1}), I is the current density (A g^{-1}), s is the scan rate (V s^{-1}), V is the potential window (V).