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Abstract: In this study, the charge transport mechanism of Pd/Si-based FS-GaN Schottky diodes was
investigated. A temperature-dependent current–voltage analysis revealed that the I-V characteristics
of the diodes show a good rectifying behavior with a large ratio of 103–105 at the forward to
reverse current at ±1 V. The interface states and non-interacting point defect complex between
the Pd metal and FS-GaN crystals induced the inhomogeneity of the barrier height and large
ideality factors. Furthermore, we revealed that the electronic conduction of the devices prefers the
thermionic field emission (TFE) transport, not the thermionic emission (TE) model, over the entire
measurement conditions. The investigation on deep level transient spectroscopy (DLTS) suggests
that non-interacting point-defect-driven tunneling influences the charge transport. This investigation
about charge transport paves the way to achieving next-generation optoelectronic applications using
Si-based FS-GaN Schottky diodes.
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1. Introduction

Gallium nitride (GaN)-related alloys hold great promise for futuristic optoelectronic applications,
owing to their prominent physical properties [1–4]. To enhance the characteristics of GaN-based
devices, the introduction of freestanding (FS) GaN substrates into the applicable devices is essential.
To achieve high crystalline freestanding GaN crystals, a number of researchers have studied various
growth methods [5–10]. Of these methods, the outstanding characteristics of hydride vapor phase
epitaxy (HVPE) growth, with a high growth rate and a high crystalline growth capability, can provide
significant advances to achieve freestanding GaN crystals with a large scalability and economic
advantages [11]. However, challenges such as size limits (<6 inch diameter) and manufacturing
expenditure have restricted the successful introduction of HVPE freestanding GaN wafers into the
commercial community [12]. Recently, we realized Si-based homoepitaxial InGaN/GaN multi-quantum
well (MQW) light-emitting diodes (LEDs) with a large scalability and a desirable production cost [13–16].

To optimize the optoelectronic device using Si-based FS-GaN, it is necessary to understand
the electronic transport characteristics of Schottky contact on the Si-based freestanding GaN. Their
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exploration, however, has never been inspected. Even though the literatures explained the conduction
mechanism of metal/freestanding GaN, it does not provide information on S-based FS Schottky
barrier diodes.

In this paper, we explored the charge transport characteristics of the Pd/Schottky diode on Si-based
freestanding GaN crystals, thus elucidating how these influence GaN-based device performance.

2. Materials and Methods

Si-based FS-GaN crystals were prepared by the in situ removal method of a Si substrate by HVPE.
The details are described in [13]. For the electrical measurement of the Schottky diodes on Si-based
FS-GaN, the ohmic and Schottky contacts were achieved. A 150 nm thick and 3 mm diameter Al
ohmic contact was constructed on the Ga-face of the Si-based freestanding GaN, using a thermal
evaporator (Infinity vacuum, Seoul, Korea). Subsequently, the Schottky contacts with 1.2 mm in
diameter were formed by an electron beam evaporator (Sorona, Seoul, Korea) using Pd (80 nm) metal
on the Ga-surface of the template, after which rapid thermal annealing in Ar ambient at 550 ◦C was
employed. Al and Pd were deposited by a thermal evaporator and an e-beam evaporator under a
vacuum level of 7 × 10−6 Torr using a metal mask with a hole, respectively. The deposition rate of both
metals is 5 Å/sec. Figure 1 shows the detailed fabrication procedure. It was confirmed from the shape
of the I-V curve that Al contact is ohmic. The electronic transport behaviors of the Schottky diodes
were analyzed via temperature-dependent current–voltage (IV) characteristics in a temperature range
from 220 K to 380 K. The dislocation density of Si-based FS-GaN was estimated to be 1 × 106/cm2,
evaluated by photoluminescence (PL) mapping analysis (not shown). Furthermore, a homemade DLTS
system was used. The pulse voltage in the DLTS measurement was −2 V. The filling pulse widths used
were 10 ms, 100 ms, and 500 ms, respectively. The DLTS data were obtained in the temperature range
from 100 K to 420 K with increments of 0.1 K. Various emission rates with 3.66–0.93 Hz were used to
find the DLTS signal. The interval between the filling pulse widths was 50 ms under all conditions.
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Figure 1. The fabrication procedure of the Pd/Si-based FS-GaN Schottky diode used in this study.

3. Results and Discussion

The temperature-dependent current–voltage (T-I-V) behaviors of the Pd/Si-based FS-GaN Schottky
diodes are illustrated in Figure 2. One can clearly observe that the forward voltage in the T-I-V plots
starts linearly at the initial voltage range (see the I-V curve at 300 K in the inset of Figure 2). However,
the series resistance (Rs) drives the distortion of the initial linearity over 0.3 V in the entire temperature
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range. Furthermore, it is noticeable that the charge flux increased by increasing the temperature,
which is attributed to thermally generated current carriers [17]. On the other hand, the rectifying
characteristics in the reverse bias clearly suggest the formation of Schottky diodes of the Pd/Si-based
FS-GaN crystals in the whole temperature range. The large ratio of the forward to reverse current at
±1 V, spread over the range of 100–102, clearly proves the good rectification behavior of the diodes.
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peeled off from a Si substrate.

To shed light on the electronic transport characteristics of the diodes, the thermionic emission (TE)
theory was applied to extract the electrical parameters of the devices as follows [18]:

I = AA∗∗T2exp
(
−
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kT

)[
exp

(
qV
nkT

)
− 1

)
f or V ≥ 3kT/q (1)

I0 = AA∗∗T2 exp
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−
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kT

)
(2)

where I0 is the saturation current, A the contact area, A** the Richardson constant (26.4 A·cm−2
·K−2

for n-type GaN), k the Boltzmann constant, T the absolute temperature, q the electron charge, n the
ideality factor, φB the zero-bias Schottky barrier height, and V is the applied voltage.

Figure 3a represents the extracted ideality factors and barrier heights of the Pd/Si-based FS-GaN
Schottky diodes. It is essential to state that the inhomogeneity of the barrier height in the contact
induces the gradient of the barrier height and the ideality factor of the diodes at ~260 K [19,20].
Furthermore, it was found that the drastic increment of current at 260 K in T-I-V curves also supports
this behavior. This is commonly observable in Schottky diodes. Typically, most electrons cannot
jump the barrier height in low temperatures since they do not have sufficient energy to leap it in a
temperature-activated process, thus driving the lower barrier height values. However, the dominant
electrons with a sufficient thermally activated energy can overcome the higher barrier height. This
assigns the higher prevailing barrier height to a high temperature [21]. The TE model proposes
that the ideality factors are distributed from 0.42 K to 0.70 K in the measured temperature area.
Furthermore, the ideality factors in TE transport varied from 6.7 K to 8.2 K in a temperature range of
220–380 K. We attribute this to the spatially undulated barrier height in the contacts between the Pd
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contact and Si-based FS-GaN crystals, inherited from the surface defects embedded in the FS-GaN
crystals [22,23]. In addition, these significant discrepancies of the ideality factors from the unity in the
TE model definitely demonstrate that the charge transport mechanism of Si-based FS-GaN Schottky
diodes includes another electronic tunneling conduction, such as thermionic field emission (TFE), field
emission (FE), and multi-step tunneling. Given that TFE governs the tunneling conduction of the
devices, the charge transport can be expressed as follows [24,25]:

I = I0exp
(

qV
E00coth(E00/kT)

)
= I0exp

(
qV
E0

)
(3)

I0 =
AA∗∗T

√
πE00q(φB −V − ξ)

kcosh(E00/kT)
× exp

(
−

qξ
kT
−

q(φB − ξ)

E00coth(E00/kT)

)
(4)

where E00 = (qh̄/2) (ND/m*εs)1/2, V, ξ, h, m*, and εs indicate the characteristic energy related to
the tunneling probability of a potential barrier, the applied bias voltage, EC-EF, corresponding to
kT/qln(NC/ND), where NC is the effective density of states in the conduction band (NC = 2.53 × 1018 cm−3

in GaN) [26], the Planck’s constant, the effective mass, and the dielectric constant, respectively.
E0 = nkT = E00 coth (E00/kT). The calculated Schottky barrier heights and ideality factors were 0.68–0.91 eV
and 1.14–1.35 eV, respectively. The TFE conduction model provides a much closer value to the unity,
indicating that Poole–Frenkel emission is a more plausible explanation for the tunneling mechanism of
Pd/Si-based FS-GaN Schottky devices. This behavior is similar to the results of other studies [27,28].
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Figure 3. Plots of the barrier height and ideality factor as a function of temperature in (a) TE, and (b) the
TFE model of the Si-based FS-GaN Schottky diode with Pd contact.

It is well established that tunneling, high series resistance, and interface states can give rise to the
increased ideality factors or inhomogeneity of φB. In addition, the growth characteristics of HVPE
FS-GaN crystals exhibit a large quantity of nitrogen-related surface states, VGa point defect complex,
and nitrogen anti-sites (NGa) [29–33]. The charges can go through these tunneling sites and affect the
characteristics of ideal Schottky diodes. Deep level transient spectroscopy (DLTS) measurements were
employed to clarify the effects on conduction sites, as shown in Figure 4. Two deep trap levels were
embedded into the FS-GaN stripped from a Si substrate, as shown in Figure 4. Table 1 summarizes the
fingerprints of the electronic deep levels in the FS-GaN. The deep levels were positioned at ~0.24 eV,
and ~1.06 eV below the conduction band edge. Non-variation of DLTS signals vs. pulsing time
confirmed that these traps were related to the non-interacting point defects [34,35]. At low climate,
the carriers of the deep levels built up, and released around 260 K, thereby augmenting the barrier
heights. We must take into account that there was an abrupt increase of DLTS signals at 260 K. This
indicates that the electronic deep trap carrier influenced the charge transport in Si-based FS-GaN. This
agrees with the results of the T-I-V curves in Figure 2. Therefore, we believe that deep level defects
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embedded in Si-based FS-GaN can dominate the variation in ΦB and n. One can obviously observe that
the intensities of DLTS signals as a function of temperature are negligible, indicative of no variation of
the trap concentrations [36]. It is noticeable that the characteristics of the electronic deep level traps in
Si-based FS-GaN crystals are comparable to those of conventional FS-GaN (see Table 1). This clearly
proves that the FS-GaN materials extracted from the in situ removal of substrate are desirable materials
for futuristic applications.
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Table 1. The defect parameters for the Pd/Si-based FS-GaN Schottky diodes and their comparison to
other works.

Reference Activation
Energy (eV)

Capture Cross
Section (cm2)

Trap Density
(cm−3)

This study 0.24 1.65 × 10−17 1.07 × 1014

1.06 1.76 × 10−14 2.19 × 1015

[37] 0.25, 0.53, 0.65, 0.69, 1.40, 1.55 10−12–10−16 ~1012–2.2 × 1015

[38] 0.25, 0.35, 0.59, 0.66, 1.0 6.7 × 10−14–9.0 × 10−16 Mid-1014

[39] 0.6 2.0−10−17 -

4. Conclusions

The current transport mechanism of Pd/Si-based FS-GaN crystal Schottky diodes was investigated
using the I-V-T analysis. The TE conduction model shows a larger deviation of the ideality factors from
the unity, indicative of the involvement of another transport mechanism. We proved that the carrier
transport in the Schottky diodes is dominated by the TFE conduction, not only the TE one. In addition,
tunneling via non-interacting point defect complex plays a key role in charge transport, which was
confirmed by the DLTS measurements. The electronic characteristics of the Pd/Schottky contacts to the
Si-based FS-GaN layers stand comparatively with those of conventional FS-GaN grown using other
methods. This study clearly suggests that the fabrication of Pd/Si-based FS-GaN Schottky diodes can
provide a promising way to achieve GaN-based futuristic devices with high performances.
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