

Supplementary

Star-Shaped Fe_{3-x}O₄-Au Core-Shell Nanoparticles: From Synthesis to SERS Application

Thi Thuy Nguyen 1,2,3,4,*, Stephanie Lau-Truong 1, Fayna Mammeri 1,* and Souad Ammar 1

- ¹ Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, 75013 Paris, France; stephanie.lau@univ-paris-diderot.fr (S.L.-T.); ammarmer@univ-paris-diderot.fr (S.A.)
- ² Department of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 10000 Hanoi, Vietnam
- ³ Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 10000 Hanoi, Vietnam
- ⁴ Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 10000 Hanoi, Vietnam
- * Correspondence: thuynt@iop.vast.ac.vn (T.T.N.); fayna.mammeri@u-paris.fr (F.M.)

Received: 27 December 2019; Accepted: 06 February 2020; Published: date

Figure S1. DLS measurements of Fe_xO₄-Au NSs using hydroquinone as reducing agent with different *r* ratios: a) Fe_xO₄-NH₂, b) r = 10, c) r = 4, d) r = 2, and e) r = 0.5.

Table S1. Summary of the main data: size (SEM), hydrodynamic diameter, PDI and SPR of FexO4-Au
NSs using hydroquinone as reducing agent with different r ratios of 10, 4, 2 and 0.5.

Sample	dseм (nm)	ddls (nm)	PDI	λ(nm)
Fe40-NH ₂	180	189.0	0.07	-
Fe40-AuR10	210	225.4	0.12	530
Fe40-AuR4	240	265.7	0.24	600
Fe40-AuR2	260	324.5	0.30	650
Fe40-AuR0.5	280	422.2	0.45	680