

Supporting Information

Electroactive Ultra-Thin rGO-Enriched FeMoO₄ Nanotubes and MnO₂ Nanorods as Electrodes for High-Performance All-Solid-State Asymmetric Supercapacitors

Kugalur Shanmugam Ranjith ¹, Ganji Seeta Rama Raju ¹, Nilesh R. Chodankar ¹, Seyed Majid Ghoreishian ², Cheol Hwan Kwak ², Yun Suk Huh ^{2,*} and Young-Kyu Han ^{1,*}

- ¹ Department of Energy and Material Engineering, Dongguk University-Seoul, Seoul 04620, Korea; ranjuphy@buc.edu.in (K.S.R.); gseetaramaraju7@dongguk.edu (G.S.R.R.); chodankarnilesh@dongguk.edu (N.R.C.)
- ² Department of Biological Engineering, Inha University, Incheon 22212, Korea; m.ghoreishian.1985@inha.edu (S.M.G.); kwakch@krict.re.kr (C.H.K.)
- * Correspondence: yunsuk.huh@inha.ac.kr (Y.S.H.); ykenergy@dongguk.edu (Y.-K.H.)

Received: 10 January 2020; Accepted: 5 February 2020; Published: 9 February 2020

Abstract: A flexible asymmetric supercapacitor (ASC) with high electrochemical performance was constructed using reduced graphene oxide (rGO)-wrapped redox-active metal oxide-based negative and positive electrodes. Thin layered rGO functionality on the positive and the negative electrode surfaces has promoted the feasible surface-active sites and enhances the electrochemical response with a wide operating voltage window. Herein we report the controlled growth of rGO-wrapped tubular FeMoO4 nanofibers (NFs) via electrospinning followed by surface functionalization as a negative electrode. The tubular structure offers the ultrathin-layer decoration of rGO inside and outside of the tubular walls with uniform wrapping. The rGO-wrapped tubular FeMoO4 NF electrode exhibited a high specific capacitance of 135.2 F g⁻¹ in Na₂SO₄ neutral electrolyte with an excellent rate capability and cycling stability (96.45% in 5000 cycles) at high current density. Meanwhile, the hydrothermally synthesized binder-free rGO/MnO2 nanorods on carbon cloth (rGO-MnO2@CC) were selected as cathode materials due to their high capacitance and high conductivity. Moreover, the ASC device was fabricated using rGO-wrapped FeMoO4 on carbon cloth (rGO-FeMoO4@CC) as the negative electrode and rGO-MnO2@CC as the positive electrode (rGO-FeMoO4@CC/rGO-MnO2@CC). The rationally designed ASC device delivered an excellent energy density of 38.8 W h kg⁻¹ with a wide operating voltage window of 0.0–1.8 V. The hybrid ASC showed excellent cycling stability of 93.37% capacitance retention for 5000 cycles. Thus, the developed rGO-wrapped FeMoO4 nanotubes and MnO2 nanorods are promising hybrid electrode materials for the development of wide-potential ASCs with high energy and power density.

Keywords: electrospinning; FeMoO₄ nanotubes; rGO wrapping; MnO₂-rGO; asymmetric supercapacitors

Figure S1. SEM image of the as-spun (a, c, e) and annealed (b, d, f) nanofibers with different polymer precursors. (a, b) FeMo-PAN, (c, d) FeMo-PAN/PMMA and (e, f) FeMo-PMMA.

Figure S2. Raman analysis of the pristine and rGO wrapped FeMoO4 tubular nanofibers.

Figure S3. TEM images of the ultra-thin rGO nanoflakes prepared throught the thermal reduction of GO.

Figure S4. TEM images of the pristine FeMoO₄ tubular nanofibers, inset shows the HRTEM images of the respective tubular nanofiber.

Figure S5. TEM images of the pristine rGO wrapped FeMoO₄ tubular nanofibers, inset shows the SEAD pattern of the respective tubular nanofiber. .

Figure S6. EDAX results of the rGO wrapped FeMoO₄ nanofibers.

Figure S7. N₂ adsorption-desorption isotherm of rGO wrapped FeMoO₄ nanofibers. Inset shows the corresponding pore size distribution curve of the tubular nanofibers.

Figure S8. CV curve of the FeMoO₄, and rGO-FeMoO₄ electrodes at 10 mV s⁻¹ in a three-electrode cell.

Figure S9. CV and GCD curve of the FeMoO₄ with different loading density of rGO (20, 40, 60 % and 80 %).

Figure S10. SEM image of the rGO-FeMoO4@CC electrode after electrochemical cyclic performances.

Table S1. Comparison of the energy density of the rGO-MnO₂//rGO-FeMoO₄ ASC device with previously reported MnO₂ based and other ASC systems.

ASC device	Voltage (V)	E (W h kg ⁻¹)	P (W kg ⁻¹)	Ref.
ZnCo ₂ O ₄ -MnO ₂ //AC	1.6	69	867	[1]
ZnCo ₂ O ₄ /NG//AC	1.6	28.3	500	[2]
ZnCo ₂ O ₄ @Ni _x Co _{2x} (OH)6 _x //AC	1.7	26.2	511.8	[3]
Co ₃ O ₄ @MnO ₂ //MEGO	1.6	17.7	158	[4]
ZnCo ₂ O ₄ @MnO ₂ //AC	1.5	29.41	628.42	[5]
ZnCo ₂ O ₄ @ZnWO ₄ //AC	1.6	24	400	[6]
$MnO_2//Fe_2O_3$	1.6	0.55		[7]
CaMoO ₄ //AC	1.6	18.7	362	[8]
$MnO_2//Fe_2O_3$	1.8	53.55	1280	[9]
MnO ₂ -GNS//FeOOH-GNS-CNTs	1.7	30.4	237.6	[10]
CNT@NiO//CNT@Fe ₂ O ₃	1.6	63.3	1600	[11]
MnO2-MWCNT//VN-MWCNT	1.8	38.7	730	[12]
GNR/MnO ₂ //GNR	2.0	29.4	12.1	[13]
MnO ₂ //FeOOH	1.85	24	450	[14]
MnO ₂ nanowire//graphene	2	30.4	100	[15]
rGO-MnO ₂ //rGO-FeMnO ₄ *	2.2	31.8	1099	This work*

References

- V. S. Kumbhar, D. H. Kim, Hierarchical coating of MnO₂ nanosheets on ZnCo₂O₄ nanoflakes for enhanced electrochemical performance of asymmetric supercapacitors, *Electrochim. Acta*, 271 (2018) 284-296.
- X. W. Ma, P. Zhang, Y. Y. Zhao, Y. Liu, J. Li, J. Y. Zhou, X. J. Pan, E. Q. Xie, Role of N doping on the electrochemical performances of ZnCo₂O₄ quantum dots/reduced graphene oxide composite nanosheets, *Chem. Eng. J.*, 327 (2017) 1000-1010.
- 3. W. Fu, Y. Wang, W. Han, Z. Zhang, H. Zha, and E. Xie, Construction of hierarchical ZnCo₂O₄@Ni_xCo_{2x}(OH)_{6x} core/shell nanowire arrays for high-performance supercapacitors, *J. Mater. Chem. A*, 4 (2016) 173-182.
- 4. M. Huang, Y. Zhang, F. Li, L. Zhang, Z. Wen, Q. Liu, Facile synthesis of hierarchical Co₃O₄@MnO₂ coreshell arrays on Ni foam for asymmetric supercapacitors, *J. Power Sources*, 252 (2014) 98-106.
- D. Yu, Z. Zhang, Y. Meng, Y. Teng, Y. Wu, X. Zhang, Q. Sun, W. Tong, X. Zhao, and X. Liu, The synthesis of hierarchical ZnCo₂O₄@MnO₂ core-shell nanosheet arrays on Ni foam for high-performance all-solid-state asymmetric supercapacitors, *Inorg. Chem. Front.*, 5 (2018) 597-604.

- L. Xie, Y. Liu, H. Bai, C. Li, B. Mao, L. Sun, W. Shi, Core-shell structured ZnCo₂O₄@ZnWO₄ nanowire arrays on nickel foam for advanced asymmetric supercapacitors. *J. Colloid Interface Sci.*, 531 (2018) 64-73.
- P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li, P. Qiang, M. Ebrahimi, W. Mai, C. P. Wong, and Z. L. Wang, Low-cost high performance solid-state asymmetric supercapacitors based on MnO₂ nanowires and Fe₂O₃ nanotubes, Nano Lett. 14 (2014) 731–736.
- J. Bhagwan, S. K. Hussain, J. S. Yu. Facile Hydrothermal Synthesis and Electrochemical Properties of CaMoO₄ Nanoparticles for Aqueous Asymmetric Supercapacitors. *ACS Sustainable Chem. Eng.*, 7 (2019) 12340-12350.
- 9. W. Liu, M. Zhu, J. Liu, X. Li, J. Liu, Flexible asymmetric supercapacitor with high energy density based on optimized MnO₂ cathode and Fe₂O₃ anode, *Chinese Chemical Letters*, 30 (2019) 750-756.
- 10. C. Long, L. Jiang, T. Wei, J. Yan, and Z. Fan, High-performance asymmetric supercapacitors with lithium intercalation reaction using metal oxide-based composites as electrode materials, *J. Mater. Chem. A*, 2 (2014) 16678-16686.
- S. Zhang, X. Wang, Y. Li, X. Mu, Y. Zhang, J. Du, G. Liu, X. Hua, Y. Sheng, E. Xie, and Z. Zhang, Facile synthesis of carbon nanotube-supported NiO//Fe₂O₃ for all-solid-state supercapacitors, *Beilstein J. Nanotechnol.*, 10 (2019) 1923-1932.
- 12. X. Y. Yu, H. Hu, Y. Wang, H. Chen, X. W. Lou, Ultrathin MoS₂ Nanosheets Supported on N-doped Carbon Nanoboxes with Enhanced Lithium Storage and Electrocatalytic Properties, *Angew. Chem., Int. Ed.*, 54 (2015) 7395-7398.
- 13. Z. Wu, B. Li, Y. Xue, J. Li, Y. Zhang and F. Gao, Fabrication of defect-rich MoS₂ ultrathin nanosheets for application in lithium-ion batteries and supercapacitors J. Mater. Chem. A, 3 (2015) 19445–19454.
- 14. B. Xie, Y. Chen, M. Yu, T. Sun, L. Lu, T. Xie, Y. Zhang, Y. Wu, Hydrothermal synthesis of layered molybdenum sulfide/N-doped graphene hybrid with enhanced supercapacitor performance, *Carbon*, 99 (2016) 35-42.
- 15. M. Kim, Y. Hwang, J. Kim, Graphene/MnO₂-based composites reduced via different chemical agents for supercapacitors, J. Power Sources, 239 (2013) 225-233.