

Supplementary

Transition Metal-Hyperdoped InP Semiconductors as Efficient Solar Absorber Materials

Gregorio García ^{1,2,*}, Pablo Sánchez-Palencia ^{1,2}, Pablo Palacios ^{1,3} and Perla Wahnón ^{1,2}

- ¹ Instituto de Energía Solar, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria, s/n, 28040 Madrid, Spain; p.sanchez-palencia@upm.es (P.S.-P.); pablo.palacios@upm.es (P.P.); perla@etsit.upm.es (P.W.)
- ² Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria, s/n, 28040 Madrid, Spain
- ³ Departamento de Física aplicada a las Ingenierías Aeronáutica y Naval, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pz. Cardenal Cisneros, 3, 28040 Madrid, Spain.
- * Correspondence: ggmoreno@etsit.upm.es

Received: 14 January 2020; Accepted: 04 February 2020; Published: date

Table S1. Crystal Structure of TM (TM = Ti, V, Cr, Mn), In and P atoms.

Atom	Space Group	Unit cell parameters
In	123	a = b = 3.25 Å
		c = 4.95 Å
		$lpha=eta=\gamma=90^{ m o}$
Ti	187	a = b = 2.95 Å
		c = 4.69 Å
		$\alpha = \beta = 90^{\circ}$
		$\gamma = 120^{\circ}$
V	221	a = b = c = 3.03 Å
		$\alpha = \beta = \gamma = 90^{\circ}$
Cr	221	a = b = c = 2.91 Å
		$\alpha = \beta = \gamma = 90^{\circ}$
Mn	217	a = b = c = 8.92 Å
		$\alpha = \beta = \gamma = 90^{\circ}$
Р	2	a = 7.86 Å
		b = 5.50 Å
		c = 11.26 Å
		$\alpha = 73.38^{\circ}$
		$\beta = 90.53^{\circ}$
		$\gamma = 71,62^{\circ}$

Experimental data take from: https://periodictable.com/Properties/A/CrystalStructure.an.wt.html.

Figure S1. Calculated bandgap at Γ -point for InP by using PBE+*U* formalism (U_{eff} = 5, 8, 10, 15, 18 eV). Crystal structure optimizations were performed using the PBEsol. Blue and green dotted lines stand for G_0W_0 and experimental value.

Figure S2. Electronic band structure (left) and Density of States (right) of InP calculated within G_0W_0 approach along to main energy differences at Γ -point. The zero energy has been set to the Fermi level (black dotted line). Spin-up and spin-down bands and DOS are not given separately as both contributions are the same for the native InP material.

Figure S3. Electronic band structure of TM@InP (TM = Ti, V, Cr, Mn) calculated within G_0W_0 approach along to main energy differences at Γ -point. The zero of energy has been set at the Fermi level (black dotted line).

Figure S4. Density of States of TM@InP (TM = Ti, V, Cr, Mn) calculated within *G*₀*W*₀ approach. The zero of energy has been set at the Fermi level (black dotted line).