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Abstract: In this study, the high-efficiency phase control Si metasurfaces are investigated based on
aperiodic nanoarrays unlike widely-used period structures, the aperiodicity of which providing
additional freedom to improve metasurfaces’ performance. Firstly, the phase control mechanism of
Huygens nanoblocks is demonstrated, particularly the internal electromagnetic resonances and the
manipulation of effective electrical/magnetic polarizabilities. Then, a group of high-transmission Si
nanoblocks with 2π phase control is sought by sweeping the geometrical parameters. Finally, several
metasurfaces, such as grating and parabolic lens, are numerically realized by the nanostructures with
high efficiency. The conversion efficiency of the grating reaches 80%, and the focusing conversion
efficiency of the metalens is 99.3%. The results show that the high-efficiency phase control metasurfaces
can be realized based on aperiodic nanoarrays, i.e., additional design freedom.
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1. Introduction

Due to the restricted permittivity and permeability, natural materials cannot manipulate
electromagnetic waves arbitrarily and wilfully. Electromagnetic properties of metamaterials can
be designed artificially, breaking the limit of natural materials and having great potentials in the
applications of imaging [1,2], solar cells [3], holographic [4,5], etc. However, the disadvantages of high
loss, fabrication challenges and strong dispersion [6] limit the possible applications of 3D metamaterial,
resulting in the appearance of metasurfaces, i.e., sub-wavelength nanostructure (meta-atom) arrays.
Metasurfaces can compress the thickness of traditional optical elements [7] to the sub-wavelength level,
performing an arbitrary manipulation of amplitude [8–11], phase [12–16], and polarization [17–19].
Unlike plasmonic ones [20–24], dielectric metasurfaces [25] have made significant breakthroughs in
optical refractive index sensors [26], biochemical sensing devices [27], and microwave sensors [28],
particularly based on semiconductor materials like Si, have lower loss and higher efficiency [29], and
compatibility with the CMOS facility.

Electromagnetic fields can excite both electric and magnetic dipoles in dielectric
nanostructures [29,30]. It is shown that the simultaneous manipulation of electric and magnetic
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dipoles can achieve 2π phase control in a single-layer dielectric nanoarray. This kind of metasurface
has a theoretical transmittance approaching 100%, i.e., Huygens source [29,31–33]. Recently,
some reports have demonstrated that Huygens metasurface [29,31,34], using Si and TiO2 [35]
as low-loss semiconductor materials, can realize high efficiency in 2π phase wavefront control.
Metamaterials are expected to integrate with on-chip nanophotonic devices, and a variety of functional
materials incorporated to reconfigurable or tunable metasurfaces is also presented [36,37]. Moreover,
many studies have shown that MEMS tunable dielectric metasurfaces lenses pave the way for
MEMS-integrated metasurfaces, which can be fully used as a platform for tunable and reconfigurable
optical [38,39]. Existing studies on metasurfaces are mainly based on periodic nanoarrays of
meta-atoms [14,17,30], of which the optical properties will deviate from the designed values when
constructing metasurfaces, finally causing the undesired optical performance and low efficiency
of metasurfaces.

The 830 nm wavelength laser is widely used in clinical and medical applications [40–42]. In this
study, a method of constructing Huygens metasurfaces based on aperiodic Si nanoarrays is proposed
to approach phase manipulation of 830 nm light, in which the edge to edge distance keeps constant.
This approach can provide additional design freedom and improve metasurfaces’ performance.
The studied metasurfaces can replace traditional gratings and lenses to conduct optical deflection,
focusing, imaging, etc. Firstly, the optical properties of Si meta-atoms are studied by finite-difference
time-domain (FDTD) simulations and the internal phase control mechanism is demonstrated based on
the coupling of electric/magnetic dipoles. Then, a group of Si meta-atoms with 2π phase control is
sought by sweeping the geometrical parameters. Finally, two example metasurfaces of grating and
parabolic lens are constructed and analyzed numerically in the near-infrared range. The results show
that the high-efficiency phase control metasurfaces can be realized based on aperiodic nanoarrays.

2. Design of Meta-atoms and Methods

All simulations in this study were implemented using FDTD Solutions, a commercial software
package provided by Lumerical Solutions, Inc. The simulation region of meta-atoms was surrounded
with periodic boundaries in the x-axis and y-axis directions and perfectly matched layers in the z-axis
direction. The size of the nanoblocks was set from 180nm to 430nm. The height of nanoblocks was set
at 132nm. The size effect on transmittance and phase was calculated. All objects, sources (S parameter),
and monitors were laid in this simulation region. The PML boundary was used to the x-axis, y-axis,
and z-axis for simulating optical devices. The TFSF (total-field scattered-field) source, all objects, and
monitors were limited in the simulation region. The refractive indexes of silicon (Si) and glass (SiO2)
come directly from the database of the FDTD software.

According to the analytical model of Huygens meta-atoms, the transmittance and reflection
coefficients [29] can be expressed as below:

t = 1 +
2i·γeω

ω2
e −ω2 − 2iγeω

+
2i·γmω

ω2
m −ω2 − 2iγmω

(1)

r =
2i·γeω

ω2
e −ω2 − 2iγeω

−
2i·γmω

ω2
m −ω2 − 2iγmω

(2)

where ωe and ωm represent the resonant frequencies of the electric dipole and the magnetic dipole,
respectively. γe and γm represents the damping coefficient of the electric/magnetic dipole. When
ω = ωe = ωm and r = 0, the individual non-reflective nanoblock can be regarded as an ideal Huygens
source. Metasurfaces are composed of nanoblocks (i.e., meta-atom) with different sizes, arrangements,
etc. Thus, the array of meta-atoms with the same parameters is investigated firstly, as shown in Figure 1.
An array of nanoblocks, with height H = 132 nm, width W = 370 nm, length L = 330 nm, and the period
P = 460 nm, is on top of silica substrate. The incidence is assumed to be a plane wave, propagating
along the z-axis and being polarized along the x-axis. For light propagating through the array, the
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transmittance spectrum has two dips caused by the magnetic (λm = 827 nm) and electric (λe = 910 nm)
resonances. The corresponding electromagnetic distributions are presented in Figure 1c–f, showing
the patterns of magnetic/electric dipoles. When the two dipoles overlap via changing the nanoblocks’
geometrical parameters, 100% transmission can be realized theoretically.

Nanomaterials 2020, 10, x FOR PEER REVIEW 3 of 10 

 

in Figure 1c–f, showing the patterns of magnetic/electric dipoles. When the two dipoles overlap via 

changing the nanoblocks’ geometrical parameters, 100% transmission can be realized theoretically.  

 

Figure 1. Schematic of meta-atoms and internal electromagnetic excitation. (a) Three-dimensional 

view of meta-atoms, i.e., a nanoblock array on top of the silica substrate. Nanoblocks’ height H = 

132nm, width W = 370nm, length L = 330nm, and period P = 460nm. (b) Transmittance spectrum of 

meta-atoms with two dips for magnetic (λm = 827 nm) and electric (λe = 910 nm) resonances. (c,d) 

Electric/magnetic field distribution of the magnetic dipole, which is indicated by the vortex-like 

electric pattern, on two orthogonal cross-sections of the nanoblocks. (e,f) Electric/magnetic field 

distribution of the electric dipole, which is indicated by the vortex-like magnetic pattern, on two 

orthogonal cross-sections of the nanoblocks. Electric and magnetic field amplitudes are normalized 

to their maximum values in the study. 

By tuning 𝜔𝑒, 𝜔𝑚, 𝛾𝑒 and 𝛾𝑚 via blocks’ sizes, 𝑟 can be 0, i.e., the magnetic/electric dipoles 

overlap and the impedance matches with the surrounding medium. In the case, the transmission 

coefficient 𝑡 is 100%, where a non-reflective Huygens source appears. Tuning the nanoblocks in the 

vicinity of the parameters at the match point, the phase of 𝑡  can cover the 0-2π range and the 

transmittance is still near 100%. Transmittance and phase variation of light are calculated as a 

function of nanoblocks’ width W and length L with high H and period P are parameters that need to 

be optimized, as shown in Figure 2. To avoid the deviation of optical properties in constructing 

metasurfaces, the edge to edge distance D is kept constant when tuning the nanoblocks. The highest 

transmittance achieved by the nanoblocks in the 0–2π full-phase space is shown in Figure 2c. Eight 

points marked by stars are selected to construct metasurfaces. The transmittance and phase of the 

selected meta-atoms with size errors are shown in Figure A2. 

 

Figure 2. Design of meta-atoms. (a) Transmittance for nanoblocks on silica substrate as function of 

nanoblocks’ width W and length L with H = 132 nm and P = max(W,L) + 90 nm. (b) Corresponding 

phase variation of transmitted light through nanoblocks. (c) The highest transmittance achieved by 

Figure 1. Schematic of meta-atoms and internal electromagnetic excitation. (a) Three-dimensional
view of meta-atoms, i.e., a nanoblock array on top of the silica substrate. Nanoblocks’ height H =

132 nm, width W = 370 nm, length L = 330 nm, and period P = 460 nm. (b) Transmittance spectrum
of meta-atoms with two dips for magnetic (λm = 827 nm) and electric (λe = 910 nm) resonances. (c,d)
Electric/magnetic field distribution of the magnetic dipole, which is indicated by the vortex-like electric
pattern, on two orthogonal cross-sections of the nanoblocks. (e,f) Electric/magnetic field distribution
of the electric dipole, which is indicated by the vortex-like magnetic pattern, on two orthogonal
cross-sections of the nanoblocks. Electric and magnetic field amplitudes are normalized to their
maximum values in the study.

By tuning ωe, ωm, γe and γm via blocks’ sizes, r can be 0, i.e., the magnetic/electric dipoles overlap
and the impedance matches with the surrounding medium. In the case, the transmission coefficient t is
100%, where a non-reflective Huygens source appears. Tuning the nanoblocks in the vicinity of the
parameters at the match point, the phase of t can cover the 0-2π range and the transmittance is still near
100%. Transmittance and phase variation of light are calculated as a function of nanoblocks’ width W
and length L with high H and period P are parameters that need to be optimized, as shown in Figure 2.
To avoid the deviation of optical properties in constructing metasurfaces, the edge to edge distance D
is kept constant when tuning the nanoblocks. The highest transmittance achieved by the nanoblocks in
the 0–2π full-phase space is shown in Figure 2c. Eight points marked by stars are selected to construct
metasurfaces. The transmittance and phase of the selected meta-atoms with size errors are shown in
Figure A2.

The optical properties of meta-atoms are controlled by manipulating the charge oscillation with
nanoboundaries. The effective optical properties are different from the bulk. The effective electrode
rate αe f f

e and the effective magnetic polarizability αe f f
m are respectively expressed [31] as:

jωαe f f
e =

2 ∗ (1− t− r)√
µ/ε(1 + t + r)

(3)

jωαe f f
m =

2 ∗
√
µ/ε(1− t + r)
(1 + t− r)

(4)
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Here, ω is an angular frequency, ε and µ represent a dielectric constant and magnetic permeability
in a vacuum, and t and r are transmission and reflection coefficients, respectively.

The effective electric/magnetic polarizability of the selected eight meta-atoms in Figure 2 are
shown in Figure 3. The solid red lines indicate the real part of the ideal effective polarizability when
the transmittance is 100% while the blue one is the imaginary part. The red circles indicate the real
part of the actual effective polarizability of the selected meta-atoms while the blue diamonds are the
imaginary part. Moreover, we find that the real part of the meta-atomic polarizability designed in
this paper is basically consistent with the ideal values, and there is a small amount of deviation in the
imaginary part, which may be related to the absorption inside the meta-atoms. We calculated our Q
factors and dephasing times of all the electromagnetic resonances of the Si nanoblocks, as shown in
Figure A3.
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Figure 2. Design of meta-atoms. (a) Transmittance for nanoblocks on silica substrate as function of
nanoblocks’ width W and length L with H = 132 nm and P = max(W,L) + 90 nm. (b) Corresponding
phase variation of transmitted light through nanoblocks. (c) The highest transmittance achieved by the
nanoblocks in the 0–2π full-phase space. The period P keeps constant max(W,L) + 90 nm. The black
star markers indicate the eight meta-atoms selected to construct metasurfaces.
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Figure 3. Effective (a) electric and (b) magnetic polarizabilities αeff
e /αeff

m of the selected eight meta-atoms.
The solid line is the ideal electromagnetic polarizabilities of Huygens meta-atoms.

3. Metasurface Construction and Simulation

Since the phase distribution function of the metasurface can be independently controlled by every
single nanostructure in each microscopic region, independent phase manipulation can be performed
on each point constituting the wavefront of the target beam. Therefore, we can design arbitrary phase
functions based on the selected meta-atoms. We built a beam deflector (Figure 4) and simulated
its performance. The phase function of abnormal refraction is ϕ(x) = kx × x, where kx is the phase
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gradient of the metasurface. The simulation results are shown in Figure 4b, which is the phase
distribution on the x-z plane. The incident plane light is deflected. The theoretical angle of deflection
θ = arcsin[(dϕ/dl)/(2πn/λ)] ≈ 9.5

◦

(where, λ is the wavelength of light in free space, and dϕ/dl is the
phase gradient in the x-direction), which is consistent with the simulation results. The transmitted light
conversion efficiency of the sample reaches 80%. The transmission comparison between non-periodic
and periodic arrays of meta-atoms is shown in Figure A1.
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Figure 4. Metasurfaces of grating. (a) Top: schematics of grating composed of the eight meta-atoms
in Figure 3, having the digital phase shift with π/4 increments covering the 2π range. Bottom: phase
distribution function of the metasurface. (b) Phase distribution when a plane wave passes through the
metasurface, showing deflection with angle 9.5◦.

Furthermore, according to the phase function of the two-dimensional lens:

ϕ(r,λ) = −
2π
λ

(√
r2 + f 2 − f

)
+ ϕ0(λ) (5)

where f is the focal length, λ is the wavelength, and ϕ0(λ) is an arbitrary phase. The corresponding
phase distribution is shown in Figure 5a. Based on the selected meta-atoms, a plane lens was constructed
with focal length f = 120 µm, aperture D = 150 µm, as in Figure 5b,c. The plane light is focused at
the focal plane position, as shown in Figure 5d,e. Figure 5d shows the power distribution of the
focusing spot on the x-z plane, and the focal spot appears at the position of z = 115.1 µm. Figure 5e
shows the power distribution of the focusing spot in the x-y plane, i.e., the focal plane. The upper
part of Figure 5f is the x-y plane power distribution. The lower part is the power distribution with
y = 0, and the half peak full width (FWHM, 768 nm) of the focal spot reaches the sub-wavelength
magnitude. Compared to the metasurface based on periodic meta-atoms, our structure effectively
avoids diffraction and interference. Furthermore, due to the sub-wavelength scale, the scattering of
light is also reduced. Therefore, it achieved a focusing conversion efficiency (the power in the focused
light spot (with diameter 3 × FWHM divided by the total power on the focal plane) of 99.3% for all the
transmitted light. It is worth noting that the focal plane position is at z = 115.1 µm, which is slightly
different from the designed focal length (120 µm), which may be related to the position of the main
plane of the lens. On the other hand, it may also be related to the height of the meta-atoms.
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Figure 5. Metasurfaces of parabolic lens. (a) Phase-distribution function of the metalens in radial
direction. (b) Top view of metalens composed of the eight meta-atoms in Figure 3, introducing the
digital phase shift with π/4 increments covering the 2π range. (c) Partial enlarged details of the
metasurface, which is marked by the red box in (b). (d,e) Power distributions of the focusing spot in the
x–z (y = 0 nm) and x–y (z = 115.1 µm) planes, respectively. (f) Full width at half maximum (FWHM) of
the focusing spot.

When changing the focus length of the meta-lens, i.e., f = 60 µm (D = 100 µm), f = 80 µm
(D = 100 µm), and f = 120 µm (D = 150 µm), the corresponding focusing efficiency increases, as shown
in Figure 6. A larger focal length f means a smaller phase gradient of the meta-lens, and therefore
the phase function digitalization of lens has higher accuracy spatially based on the eight selected
meta-atoms. The F-numbers of the three meta-lens are 0.6, 0.8, and 0.8, respectively. Therefore, the
latter two lenses have similar FWHM values, 804 nm and 768 nm, bigger than the first one at 660 nm.
Moreover, all the FWHM values are smaller than the wavelength of 830 nm.
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4. Conclusions

To sum up, based on aperiodic Si nanoarrays, metasurfaces with 2π phase control are investigated.
An abnormal refraction device with a deflection angle 9.5

◦

is realized, and the conversion efficiency
of transmitted light is up to 80%. Based on the phase function of the plane lens, a two-dimensional
meta-lens is designed to achieve the perfect focusing with a focal length of 115.1 µm, an F-number of
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0.8, a focal spot size of 768 nm, and the focusing conversion efficiency of the transmitted light reaches
99.3%. Most notably, we use aperiodic meta-atomic structures that greatly reduce the diffraction and
interference effects of the source at the focal plane. Similarly, we can design corresponding optical
metasurface devices according to any phase function. By combining with the current mature CMOS
processing technology, large-scale industrial production of metasurface devices can be realized at a
low cost, which can be widely used in industrial, military, and other fields.
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Appendix A

The transmission comparison between non-periodic and periodic arrays of meta-atoms is shown
in Figure A1. We can design more parameters without being limited by periodicity. As shown
Figure A1a, compared with the periodic meta-atoms, the transmittance of aperiodic structures is higher.
Moreover, for the far-field radiation intensity of the grating, compared with the periodic meta-atoms,
the first-order diffraction order efficiency of the metasurfaces composed of aperiodic meta-atoms is
higher, and the efficiency of the other orders is lower, which shown the advantage of the aperiodic
meta-atoms, as shown Figure A1b.
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Figure A1. (a)The highest transmittance achieved by the comparison of periodic (blue) and aperiodic
(red) nanoblocks in the 0–2π full-phase space, which shows that aperiodic significantly improves the
corresponding efficiency. (b) Contrast diagram of far-field radiation intensity. The inserted red image
is the grating composed of aperiodic meta-atoms, and the blue image is the grating composed of
periodic meta-atoms.

The transmittance and phase of the selected meta-atoms with size errors are shown in Figure A2.
The red curves with stars show the ideal case in which the selected meta-atoms have the sizes in
Figure 2. If the fabrication has an error of ±4 nm, the transmittance and phase are shown by the blue
and green curves. The transmittance of meta-atoms numbered 1, 2, 7, and 8 stays almost the same
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while the others show a drop of 20%. When the error increases to −6 nm, the transmittance decreases
to 25%. However, the error of +6 nm introduces the transmittance change is similar to the error case of
±4 nm. In terms of phase, a bigger error brings a bigger offset from the desirable phase. The positive
error makes the phase bigger than the desired value while the negative error brings a phase smaller
than the desired value.
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We calculated our Q factors and dephasing times [43,44] of all the electromagnetic resonances of
the Si nanoblocks. As shown in Figure A3a, the Q factors and dephasing time of the electromagnetic
resonances of the Si nanoblock in Figure 1 are calculated. Figure A3b,c shows the Q factors and
dephasing time of the electromagnetic resonances of the eight selected meta-atoms in Figure 2.
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