## Supplementary Materials: Bulk-Like SnO<sub>2</sub>-Fe<sub>2</sub>O<sub>3</sub>@Carbon Composite as a High-Performance Anode for Lithium Ion Batteries

Jie Deng 1,+, Yu Dai 2,+, Zhe Xiao 3, Shuang Song 2, Hui Dai 2,4, Luming Li 1,5,\* and Jing Li 2,\*

- <sup>1</sup> College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China; dengjie@cdu.edu.cn
- <sup>2</sup> Department of Chemical Engineering, Sichuan University, Chengdu 610065, China; daiyuscu@163.com (Y.D.); 2016323050027@stu.scu.edu.cn (S.S.); daihui18@cdut.edu.cn (H.D.)
- <sup>3</sup> Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu 610207, China; 2017226220007@stu.scu.edu.cn
- <sup>4</sup> College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610065, China;
- <sup>5</sup> Institute of Advanced Study, Chengdu University, Chengdu 610106, China
- \* Correspondence: liluming@cdu.edu.cn (L.L.); jingli0726@g.ucla.edu (J.L.)
- <sup>+</sup> These authors contributed equally to this work.



Figure S1. XPS spectra of C 1s for B-SFO@C sample.

Table S1. The weight fractions of SnO2 and Fe2O3 in B-SFO@C sample calculated different methods

| methods | SnO <sub>2</sub> | Fe <sub>2</sub> O <sub>3</sub> |
|---------|------------------|--------------------------------|
| ICP     | 63.5%            | 9.2%                           |
| XPS     | 47.2%            | 7.5%                           |



Figure S2. TGA curves of the B-SFO@C sample.



Figure S3. Raman spectrum of the B-SFO@C sample.



Figure S4. EDX mapping images of the B-SFO@C sample.



Figure S5. Nitrogen adsorption-desorption isotherms of B-SFO@C sample.



Figure S6. (a) SEM images of B-SO@C sample, (b) Low-resolution and (c) High-resolution SEM image of B-SFO sample.



Figure S7. Magnified TEM image of the B-SFO@C sample.



Figure S8. Cyclic performance of carbon matrix at 0.2 A  $g^{-1}$  in the range of 0.005–3.0 V.

**Table S2.** The electrochemical performances of B-SFO@C and SnO<sub>2</sub>-based composites anode materials in the previous reports.

| Sample                                                | Current<br>density<br>(A g <sup>-1</sup> ) | Initial coulombic<br>efficiency | Remained<br>Capacity<br>(mAh g <sup>-1</sup> ) | Cycle<br>number | Ref. |
|-------------------------------------------------------|--------------------------------------------|---------------------------------|------------------------------------------------|-----------------|------|
| Bulk                                                  | 0.2                                        | 46.3%                           | 885.8                                          | 360             | 1    |
| SnO <sub>x</sub> @C                                   | 1                                          |                                 | 637.2                                          | 1000            |      |
| Carbon-Encapsulated<br>Porous SnO <sub>2</sub>        | 0.05                                       | 41.6%                           | 870.9                                          | 120             | 2    |
| Honeycomb-like                                        | 0.2                                        | 66.2%                           | 940                                            | 150             | 3    |
| SnO <sub>2</sub> @C                                   | 1                                          |                                 | 400                                            | 500             |      |
|                                                       | 0.2                                        |                                 | 546                                            | 100             | 4    |
| 51102@CIN1                                            | 1                                          | 02.3%                           | 398                                            | 150             | 4    |
| 3D h-SnO2-Fe2O3@RGO                                   | 0.2                                        | 61.3%                           | 830                                            | 100             | 5    |
| rGO/ Fe2O3/ SnO2                                      | 0.4                                        | 63%                             | 700                                            | 100             | 6    |
| Fe2O3@SnO2/GS                                         | 0.1                                        | 60.8%                           | 1015                                           | 200             | 7    |
| SmOr /EarOr /BCO                                      | 0.2                                        | 169/                            | 795                                            | 220             | 0    |
| ShO <sub>2</sub> /Fe <sub>2</sub> O <sub>3</sub> /KGO | 1                                          | 40%                             | 690                                            | 1000            | 8    |
| SnO2-Fe2O3/SWCNTs                                     | 0.2                                        | 64.9%                           | 692                                            | 50              | 9    |
|                                                       | 1                                          |                                 | 553                                            | 100             |      |
|                                                       | 0.2                                        |                                 | 927                                            | 100             | Thic |
| R SEO@C                                               | 1                                          | 70%                             | 701                                            | 500             | THIS |
| D-JFO@C                                               | 3                                          |                                 | 429                                            | 1800            | WOIK |



Figure S9. Cyclic performance of B-SFO@C electrode at 0.2 A g<sup>-1</sup> in the range of 0.005–1.0 V.



**Figure S10.** The corresponding fitted *R*<sup>*e*</sup> at different SOC.



Figure S11. EIS spectra of fresh B-SO@C and B-SFO electrodes the corresponding fitted R<sub>et</sub> (inset).

## References

- 1 Tian, Q.H.; Hong, Z.M.; Chen, P.; Zhang, Z. X.; Li, Y. Bulk SnOx@C composite for improved lithium storage. *J. Alloy. Compd.*, **2018**, 740, 312–320.
- 2 Huang, B.; Li, X.H.; Pei, Y.; Li, S.; Cao, X.; Masse, R.C., Cao, G.Z. Novel carbon-encapsulated porous SnO<sub>2</sub> anode for lithium-ion batteries with much improved cyclic stability. *Small*, **2016**, *12*, 1945–1955.
- 3 Wang, H.K.; Wang, J.K.; Cao, D.X.; Gu, H.Y.; Li, B.B.; Lu, X.; Han, X.G.; Rogach, A.L.; Niu, C.M. Honeycomb-like carbon nanoflakes as a host for SnO<sub>2</sub> nanoparticles allowing enhanced lithium storage performance. *J. Mater. Chem. A*, **2017**, *5*, 6817–6824.
- 4 Cheng, Y.Y.; Huang, J.F.; Qi, H.; Cao, L.Y.; Yang, J.; Xi, Q.; Luo, X.M.; Yanagisawa, K.; Li, J.Y. Adjusting the chemical bonding of SnO<sub>2</sub>@CNT composite for enhanced conversion reaction kinetics. *Small*, 2017, 13, 1700656–1700666.
- 5 Zhao, B.; Xu, Y.T.; Huang, S.Y.; Zhang, K.; Yuen, M.M.F.; Xu, J.B.; Fu, X.Z.; Sun, R.; Wong, C.P. 3D RGO frameworks wrapped hollow spherical SnO<sub>2</sub>-Fe<sub>2</sub>O<sub>3</sub> mesoporous nano-shells: fabrication, characterization and lithium storage properties. *Electrochim. Acta*, **2016**, 202, 186–196.
- 6 Xia, G.F.; Li, N.; Li, D.Y.; Liu, R.Q.; Wang, C.; Li, Q.; Lu, X.J.; Spendelow, J.S.; Zhang, J.L.; Wu, G. Graphene/Fe<sub>2</sub>O<sub>3</sub>/SnO<sub>2</sub> ternary nanocomposites as a high-performance anode for lithium ion batteries. ACS Appl. Mater. Interfaces, **2013**, *5*, 8607–8614.
- 7 Liu, S.; Wang, R.H.; Liu, M.M.; Luo, J.Q.; Jin, X.H.; Sun, J.; Gao, L. Fe<sub>2</sub>O<sub>3</sub>@SnO<sub>2</sub> nanoparticle decorated graphene flexible films as high-performance anode materials for lithium-ion batteries *J. Mater. Chem. A*, 2014, 2, 4598–4604.
- 8 Lee, K.; Shin, S.; Degen, T.; Lee, W.; Yoon, Y.S. In situ analysis of SnO<sub>2</sub>/Fe<sub>2</sub>O<sub>3</sub>/RGO to unravel the structural collapse mechanism and enhanced electrical conductivity for lithium-ion batteries. *Nano Energy*, 2017, 32, 397–407.
- 9 Wu, W.L.; Zhao, Y.; Li, J.X.; Wu, C.X.; Guan, L.H. A ternary phased SnO<sub>2</sub>-Fe<sub>2</sub>O<sub>3</sub>/SWCNTs nanocomposite as a high-performance anode material for lithium ion batteries. *J. Energy Chem.*, 2014, 23, 376–382.