

Supporting Information

Rational design of an ion imprinted polymer for aqueous methylmercury sorption

Ruddy L. Mesa ¹, Javier E.L. Villa ^{2,3}, Sabir Khan ^{1,2,3}, Rafaella R. Alves Peixoto ⁴, Marcelo A. Morgano ⁵, Luís Moreira Gonçalves ⁶, Maria D.P.T. Sotomayor ^{2,3,*} and Gino Picasso ^{1,*}

- ¹ Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Lima 15333, Peru; a20156475@pucp.edu.pe (R.L.M.M.); sabir_chemist@yahoo.com (S.K.)
- ² Institute of Chemistry, State University of São Paulo (UNESP), Araraquara-SP 14800-060, Brazil; villa.javier03@gmail.com
- ³ National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara-SP 14800-060, Brazil
- ⁴ Department of Analytical Chemistry, Fluminense Federal University (UFF), Niterói-RJ 24020-150, Brazil; rafaellapeixoto@id.uff.br
- ⁵ Institute of Food Technology (ITAL), Campinas-SP 13070-178, Brazil; morgano.ital@gmail.com
- ⁶ Institute of Chemistry, University of São Paulo (USP), São Paulo-SP 05508-000, Brazil; lmgoncalves@iq.usp.br
- * Correspondence: m.sotomayor@unesp.br (M.D.P.T.S.); gpicasso@uni.edu.pe (G.P.); Tel.: +55-16-33019620 (M.D.P.T.S.)

Figure S1. FTIR spectra of (A) MBI, IIP-MBI-AA, NIP-MBI-AA, and NIP-AA; and (B) MBT, IIP-MBT-AA, NIP-MBT-AA, and NIP-AA.

Figure S2. Thermal gravimetric (blue) and differential thermal analysis (red) of IIP-MBI-AA, NIP-MBI-AA, NIP-MBT-AA and NIP-AA.

	hand's langths	theoretical	experimental	
material	bond's lengths	values	values	
	Hg(20)-C(1)	2.232	-	
MeHg⁺-MBI	Hg(20)-S(2)	2.698	-	
	S(2)-C(10)	1.739	-	
	C(10)-NH(11)	1.375	-	
	C(10)-N(9)	1.318	-	
MeHg+-MBT	Hg(11)-C(12)	2.223	2.062	
	Hg(11)-S(10)	2.717	2.369	
	S(10)-C(8)	1.736	1.713	
	C(8)-S(9)	1.784	1.782	
	C(8)-N(7)	1.297	1.323	

The theoretical calculations were performed by DFT M062X and the experimental analysis for MeHg+-MBT was performed by single-crystal X-ray diffraction (Bravo *et al.* 1985).

Table S2. Predicted binding energy of MeHg⁺-MBI and MeHg⁺-MBT with FMs.

pre-polymerization	ΔE with FM / kcal mol ⁻¹	ΔE with template MeHg ⁺ / kcal mol ⁻¹
MeHg+-MBI-2(AM)	-15.4	-14.8
MeHg+-MBI-2(AA)	-20.0	-13.3
MeHg+-MBI-2(MAA)	-18.9	-12.7
MeHg+-MBI-1(4vp)	-5.9	-13.4
MeHg ⁺ -MBI-1(1vim)	-5.9	-14.2
MeHg+-MBI-2(2HM)	-14.9	-10.4
MeHg ⁺ -MBT-1(AM)	-5.4	-9.9
MeHg+-MBT-1(AA)	-12.2	-11.0
MeHg+-MBT-(MAA)	-12.1	-11.2
MeHg+-MBT-1(2HM)	-9.8	-9.3

AM: acrylamide, AA: acrylic acid, MAA: methacrylic acid, 4vp: 4-vinylpyridine, 1vim: 1-vinylimidazole, 2HM: 2-hydroxyethyl methacrylate

material	ion	Kd (MeHg⁺)	Kd (ion)	k	Ι
IIP-MBI-AA		0.98	1.11	0.89	2.5
NIP-MBI-AA	II~ ²⁺	0.35	1.01	0.35	
IIP-MBT-AA	Hg	4.38	5.07	0.86	1.0
NIP-MBT-AA		3.48	3.89	0.89	1.0
IIP-MBI-AA		0.74	0.04	19.8	3.6
NIP-MBI-AA	C 12+	0.47	0.08	5.5	
IIP-MBT-AA	Ca	10.15	0.04	261	1 1
NIP-MBT-AA		7.5	0.03	230	1.1
IIP-MBI-AA		0.72	0.12	5.8	1.2
NIP-MBI-AA	DL 2+	0.50	0.10	5.0	
IIP-MBT-AA	r D ²¹	7.85	0.03	288	1.0
NIP-MBT-AA		6.21	0.02	278	1.0
IIP-MBI-AA		0.76	0.02	35.2	2.8
NIP-MBI-AA	7 2+	0.42	0.03	12.4	
IIP-MBT-AA	Zu ₂ ,	19.26	0.01	1510	1 0
NIP-MBT-AA		8.79	0.01	1164	1.3

Table S3. Selectivity parameters for the adsorption of Hg^{2+} , Zn^{2+} , Cd^{2+} and Pb^{2+} ions with respect to $MeHg^{+}$.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).