
nanomaterials

Review

Microfluidic High-Throughput Platforms for
Discovery of Novel Materials

Peipei Zhou 1,2, Jinxu He 1, Lu Huang 1,*, Ziming Yu 1, Zhenning Su 1, Xuetao Shi 3 and
Jianhua Zhou 1,*

1 Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of
Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510006, China; peip.zhou@foxmail.com (P.Z.);
hejx55@mail2.sysu.edu.cn (J.H.); Absurd1999@163.com (Z.Y.); yuzm@mail2.sysu.edu.cn (Z.S.)

2 School of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China
3 National Engineering Research Centre for Tissue Restoration and Reconstruction, School of Material Science

and Engineering, South China University of Technology, Guangzhou 510640, China; shxt@scut.edu.cn
* Correspondence: huanglu39@mail.sysu.edu.cn (L.H.); zhoujh33@mail.sysu.edu.cn (J.Z.);

Tel./Fax: +86-20-3938-7890 (J.Z.)

Received: 7 November 2020; Accepted: 2 December 2020; Published: 15 December 2020
����������
�������

Abstract: High-throughput screening is a potent technique to accelerate the discovery and
development of new materials. By performing massive synthesis and characterization processes
in parallel, it can rapidly discover materials with desired components, structures and functions.
Among the various approaches for high-throughput screening, microfluidic platforms have attracted
increasing attention. Compared with many current strategies that are generally based on robotic
dispensers and automatic microplates, microfluidic platforms can significantly increase the throughput
and reduce the consumption of reagents by several orders of magnitude. In this review, we first
introduce current advances of the two types of microfluidic high-throughput platforms based
on microarrays and microdroplets, respectively. Then the utilization of these platforms for
screening different types of materials, including inorganic metals, metal alloys and organic polymers
are described in detail. Finally, the challenges and opportunities in this promising field are
critically discussed.

Keywords: high-throughput platforms; materials screening; microarray; microfluidic droplet;
micro/nano-structures

1. Introduction

The development of novel materials is of great importance to solve many industrial and social
problems. However, seeking new materials and bringing them to industrial applications are usually
time- and cost-consuming. Although the traditional method of “trial and error” is still the main
approach to discover new materials, it cannot satisfy the increasing need for functional materials in
current society. Therefore, it is of great urgency to develop high-throughput screening (HTS) that
can reduce time and trial cycles for material discovery. HTS techniques are defined as approaches
able to perform ten to a hundred thousand tests per day [1–4]. Additionally, the high-throughput
platforms (HTPs) and high-throughput computational techniques are the most common methods of
HTS techniques [5]. The capability of high-speed synthesis and analysis shows great potential to
promote the development in material science, chemistry, pharmaceutical industry and biomedical
engineering [6–17].

As an excellent example of high-efficiency experiments, HTPs can realize rapid synthesis,
characterization and testing of numerous samples in a short period of time, screening out new
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materials with preferred performance. The approach of HTPs for material synthesis was pioneered
over fifty years ago by Kennedy in 1965 [18], which allowed rapid and reliable screening of
ternary-alloy isothermal sections. Subsequently, multiple-sample concept [19], parallel reactors [20]
and combinatorial approach [21] were successively reported, and gradually applied for material
production and screening [22–25]. To further overcome the disadvantages of high cost in time and
price, great efforts were made to explore more effective and rapid approaches. Recently, microfluidic
technology has become an attractive option owing to its superior properties, such as low consumption
of reagents, excellent control of experimental conditions, high reaction efficiency, easy integration with
online analysis, etc. [26–33].

In this review, recent advances in HTPs-based material discovery are discussed in detail. We start
with an overview of two mainstream microfluidic screening strategies based on microarray and
microfluidic droplets, respectively. Then, efforts focused on the applications of HTPs in discovering
micro/nano-structured inorganic metals, metal alloys and polymers are reviewed, and several
representative examples are highlighted. Finally, future challenges and opportunities in the promising
research field are critically discussed.

2. High-Throughput Microfluidic Platforms

Compared with traditional microplate-based HTPs that require samples of at least several
microliters in each well, microfluidic platforms consume much less reagents with the scale of nanoliters
to picoliters, which significantly reduces the cost and is beneficial to save rare samples. Microarray
is one of the major microfluidic platforms, which integrates a large quantity of isolated reactors on
one substrate. Additionally, each reactor is microscaled with volumes ranging from nanoliters to
picoliters. It allows multiple parameters to be tested in parallel by simultaneously performing tens to
thousands of experiments per batch. For example, Zhang and his coworkers developed a hydrogel
microarray (Figure 1a), in which 2000 individual microgels with varying bioactivities were regularly
patterned on a standard microscope slide, providing a high-throughput platform to rapidly screen
desired polymers with thermal-responsive properties [34]. Perera et al. developed an automatic
synthetic platform for drug discovery, which integrated commercially available components into
a highly integrated module unit to perform both nanomole-scale reactions and micromole-scale
syntheses [35]. This setup allows screenings of more than 1500 homogeneous reactions within 24 h
under different temperature, pressure, and solvent, which has the advantages of real-time analysis,
sufficient mixing, and avoidance of solvent evaporation. Due to the application of microarray-based
HTPs, reactions were performed in parallel under a broad range of experimental parameters so
that appropriate conditions for generating nanostructures with specific morphologies can be rapidly
identified. Moreover, Duffy et al. described a hydrogel microarray that integrated 80 unique holes
on a single microscope slide using three-dimensional (3D) printing [36]. By filling the holes with
double network hydrogels, the novel platform offered a powerful tool to screen hydrogels with
desired compressive and tensile properties, which could be further optimized for drug delivery, cell
encapsulation, and tissue engineering. Microarrays have also been widely applied in a wide range
of biomedical applications, such as pharmaceutical discovery, small molecule and protein screening,
toxicity tests, etc. [37–42]. For example, Hay et al. used the polymer microarray with high content
screening system and Pathfinder software to screen and discover new extracellular substrates, which
can promote hepatic endoderm, drug-inducible metabolism and toxicology [38]. Additionally, Khan
et al. proposed a microarray platform combined with a high-throughput screening approach to
screen and analyze the biological functionality of 135 polymer blends, leading to the identification
of cell-compatible biopolymers permissive for human skeletal stem cell growth in both in vitro and
in vivo applications [40].
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Figure 1. (a) A representative high-throughput platform (HTP) based on microarrays. A polymer
hydrogel microarray with 2436 polymers (28 × 87 hydrogel spots) were prepared by inkjet printing.
Subsequently, the microarray was incubated with HeLa cells for 48 h. Mosaic (the middle column
in Figure 1a), and enlarged fluorescent images of cells were obtained. Reproduced with permission
from [34]. Copyright Elsevier, 2009. (b) A representative HTP based on microdroplets. A microfluidic
device was used to prepare colloid-filled hydrogel granules with different sizes and shapes by changing
the flow rate of reagent 1 (Q1), reagent 2 (Q2) and oil (Q3). Reproduced with permission from [43].
Copyright American Chemical Society, 2006. (c) A representative continuous-flow microfluidic system
was used to produce Au-Pd dumbbell nanoparticles. Reproduced with permission from [44]. Copyright
American Chemical Society, 2017. (d) A digital microfluidic circuit and the four fundamental droplet
operations: creating, cutting, joining and transporting. Reproduced with permission from [45].
Copyright IEEE Xplore, 2002.

Despite the improvement in throughput, microarray-based HTPs are still limited in many
cases that required higher screening efficiency. To address the issue, microdroplet technology has
drawn increasing attention and been developed for high-throughput screenings [46]. Microfluidic
droplet chips can be divided into continuous microfluidic chips (Figure 1b,c) [47–51] and digital
microfluidic chips (Figure 1d) [52–54]. Shepherd’s group provided a continuous microfluidic device
(Figure 1b) to generate monodisperse colloid-filled hydrogel particles with different shapes and
compositions [43]. Additionally, Jensen et al. described a new device for the production of Au-Pd
dumbbell-like nanostructure with high electrocatalytic activity [44]. This device was integrated with
a sequential-addition microfluidic reactor and an ultrasonic to control the growth of Au onto the
both sides of Pd nanorods (Figure 1c). As the key platform of microdroplet technology, continuous
microfluidic chip can generate monodisperse droplets (usually at nano- or picoliters) at very high
frequencies (from tens to thousands of droplets per second) [55,56]. Additionally, each microdroplet
serves as an independent microreactor, in which synthesis of materials can be carried out without
interference under certain conditions. Digital microfluidics employed electrowetting to control and
discretize the continuous flow into individual droplets. Sung et al. fully reported the functional
digital microfluidic circuits and the four fundamental droplet operations mechanisms [45]. It provides
a promising experimental platform with advantages of a fast response, high precision, and digital



Nanomaterials 2020, 10, 2514 4 of 17

readouts. Microdroplet-based HTPs has many advantages [57–59]. Firstly, it consumes much less
reactants since the working volume of a plate well (e.g., 10 µL for each well of a 384-well plate) is
ten million times that of a single droplet (1.0 pL) [60]. Secondly, the high surface-to-volume ratio
of microdroplets and short diffusion distance in microdroplets result in pronounced acceleration
of reactions and thus can significantly shorten the screening time. Thirdly, it provides chemical
and physical confinement to avoid cross-contamination. Using this technique, a large quantity of
independent experiments can be easily performed within a very short period and only a small amount
of reagents are consumed.

3. Current Applications of HTPs for Material Synthesis

To date, HTPs have been extensively applied to discover novel materials including metal
nanoparticles, metal alloy nanoparticles, quantum dots, organic nanoparticles, combinational polymers,
metal-organic frameworks, perovskites and so on, which show promising applications in biosensing,
catalysis, energy storage and drug delivery. Herein, a comparison among the various HTPs is presented
in Table 1, including their types, platform materials, reactants, the screening materials and advantages.
Following the table, a few examples of HTPs-based material screening reported in recent years are
highlighted, which are ordered by inorganic metals, inorganic metal alloys, inorganic biomaterials and
organic polymers.

3.1. Inorganic Metals and Metal Alloys

High-throughput screening of metal materials is one of the attractive applications of HTPs.
As illustrated in Figure 2a, Zhou et al. described a simple microarray reactor with one- or
two-dimensional gradients, which can quickly screen the synthetic conditions for metal nanostructures
with desired morphologies [61]. In this approach, concentration gradients of four reagents were
established on one polydimethylsiloxane (PDMS) block containing an array of microwells. By using
the concentration gradients, metal nanoparticles prepared under 9 × 9 types of experimental conditions
were screened at the same time (Figure 2b). Utilizing the platform, metal nanostructures including
Au and Pd with various morphologies could be generated under different reagent concentrations,
pH values and temperature in one experiment. Additionally, the desired nanostructures and their
synthetic parameters could be rapidly obtained. In addition, an array microreactor has been developed
to screen a Pt-Pd-In ternary library of 66 compositions for the desired catalytic properties [83]. It was
also applied to identify the dehydrogenation of cyclohexane to benzene.

In addition to the microarray, microdroplet-based HTPs are also utilized for the syntheses
and selection of inorganic metals. Due to the flexible controllability in reaction stoichiometric
ratio, reaction time, temperature and other experimental parameters, HTPs based on microfluidic
droplets have been extensively applied in the preparation of micro-/nano-size metals and metal
alloys [85–89]. For example, Kim et al. demonstrated a simple droplet-based microreactor to
generate Pd nanocrystals with controlled shapes and sizes (Figure 2c) [84]. The microfluidic platform
was produced by commercial polytetrafluoroethylene (PTEE) tubes and silica capillaries that are
cost-effective. Additionally, a periodically pinched segmentation was introduced to improve the
efficiency of the mixer (Figure 2d). By adjusting the concentrations of L-ascorbic acid, different
morphologies of Pd nanocrystals were obtained. As the amount of L-ascorbic acid increased, the Pd
nanocrystals with round shape turned into nanobars with sharp corners (Figure 2e). The dimensions
of Pd nanocrystals were also tuned by adjusting capping agents. This simple and cost-efficient
setup provided a way to obtain nanocrystals with well-controlled sizes and shapes by screening
varying reaction conditions. Jensen et al. have successfully synthesized and characterized Au-Pd
dumbbell nanoparticles based on a continuous-flow microfluidic system [44]. It was integrated
with a sequential-addition microfluidic chip and an ultrasonic field. Additionally, the obtained
Au-Pd dumbbell nanoparticles showed better electrocatalytic performance than pure Pa particles.
Additionally, Kyoung et al. proposed a droplet-based microfluidic device that employed polymeric
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hydrogel and cell extracts to establish artificial cell bioreactors, in which in vitro biosynthesis of Fe, Au
and other metal nanoparticles were achieved [90]. In this bioreactor, two aqueous phases with different
reagents were flowed through the orifice of the microchannel, and subsequently massive droplets
were rapidly generated by shear-off force from the oil phase flow. The on-chip microdroplet-based
cellular bioreactor offered an efficient platform to synthesize and screen metal nanoparticles with high
biocompatibility and bioactivity, and could help to reveal the mechanisms of cellular detoxification.
Additionally, Zhang and his coworkers proposed a counter-flow mixer in a microfluidic droplet chip
to effectively accelerate the mixing process of solutions for the synthesis of Au, Pd and Pd-M with
different sizes [91]. This setup was different with regular microfluidic devices, which integrated
multiple functions including reaction, cooling, water and oil separation and purification. Additionally,
this setup can serve as a simple, scalable and cost-effective high-throughput platform to produce
uniform and well-controlled metal nanoparticles.

Figure 2. (a) Schematic of the fabrication process of a high-throughput array reactor for screening Au
nanostructures. The synthesis of Au nanostructures involves the mixing of the HAuCl4 solution with
cetyltrimethylammonium bromide (CTAB) solution. Then, addition of the L-ascorbic acid solution
reduces Au to Au(I), and addition of NaOH at Au(I) state boosts the reducing power of L-ascorbic
acid to further reduce Au(I) to elemental Au. (b) Scanning electron microscopy (SEM) images of
Au nanostructures that were formed in a two-dimensional array of reactors with gradients for the
concentrations of NaOH and CTAB. Reproduced with permission from [61]. Copyright John Wiley and
Sons, 2011. (c) High-throughput droplet platform integrated with the mixing tube (d) for screening
the synthesis of Pd. The preparation of Pd nanocrystals involves the reduction of Na2PdCl4 by
L-ascorbic acid in an aqueous solution at 80 ◦C, in the presence of KBr and poly(vinyl pyrrolidone)
(PVP); (e) Transmission electron microscope (TEM) (i,iii,v) and high resolution transmission electron
microscope (HRTEM) images (ii,iv,vi) of Pd nanocrystals with different morphologies. Reproduced
with permission from [84]. Copyright John Wiley and Sons, 2013.
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Table 1. Examples of high-throughput platforms and their advantages in materials screening.

Types of HTS Platforms Platform Materials Reactants The Screening Materials Advantages and Applications Year Ref.

A simple microarray reactor with
one- or two-dimensional gradients

PDMS microarray,
9 × 9 micro-pores

HAuCl4 solution +
cetyltrimethylammonium bromide
(CTAB) solution + NaOH solution

Au, Pd
The morphologies of metal
nanostructures under different
experimental conditions

2011 [61]

A microarray of polymer hydrogel Microscope slide Hydrogel + cells Smart polymer with desired
properties Cell encapsulation 2009 [34]

A high-throughput microarray
with ToF-SIMS

279 materials spots of
two-generation
microarray

Polymer materials spots 279 unique materials with
thermo-responsive properties

Discovery of novel switchable materials,
and development of new way for
high-throughput characterization

2013 [39]

A patterned superhydrophobic
platform with hydrophilic spots

Microarray based on
chitosan and alginate

Osteoblast-like, fibroblasts, the
scaffolds modified with fibronectin

The most favorable materials
for cells

Discovery of the most favorable
conditions for the culture of each cell
type, and rapid collection of reliable and
valid data

2013 [62]

High-throughput array of cells and
biomaterials via laser printing Sodium alginate Nano-HA + cells + sodium alginate

solution

HA nanocrystals, 577
patterns with EA. hy926 cells
after live/dead

Biopolymers, nano-sized particles of
HA, human endothelial cells and 3D
biostructures

2010 [63]

Combinatorial polymer microarray pHEMA and glass
slide

Homopolymers + 3 different green
fluorescent proteins (GFPs)-labeled
bacterial species

Biomaterials with unique
(meth)acrylate monomers

Discovery of novel materials with broad
resistance to bacterial attachment 2013 [64]

Microfluidic platform of
ultra-small gold

Thermoplastics (PE
and PEEK)

Mercaptobenzoic acid/CTAB +
HAuCl4 + NaBH4 + AgNO3 +
ascorbic acid

Au (spheres, 2–40 nm) and
Au (nanorods, 10 nm ×
50–100 nm)

Biosensing (chemical sensing, plasmonic
functionalities, proof-of-concept)

2013 [65]
2015 [66]
2016 [67]

A millimetric coaxial microfluidic
device PDMS FeCl3 + FeCl2 + TMAOH Fe3O4 (spheres, <7 nm) Open the way to other experiments, MRI

imaging 2008 [68]

A microfluidic platform using two
microreactors operating under
different temperature and flow
continuous

PDMS FeCl3 + FeCl2 + HCl + TMAOH Goethite Promoting a rapid homogeneity of
reactants, MRI imaging 2009 [69]

One-step synthetic microreactor
based on continuous droplets Glass FeCl3 + FeCl2 + HCl + ZnCl2 +

NH4OH
Zn doped Fe3O4 nanoparticle
with different sizes

Allowing greater control on the chemical
stoichiometry, Fluorescence imaging 2015 [70]

Microfluidic chips using a
staggered herringbone micromixer PDMS and glass slide PCDA + DMSO + DI water The fluorescence signal of

PDA under different sizes
Stimulus-responsive fluorescence,
improving the production for 2016 [71]

Microfluidic chips with different
junction reactor

Alloy (stainless steel)
Glass
PDMS

CFA + acetone + isopropyl ether;
PLGA + HPCS + AcDX + PTX
PLGA-PEG + CAN + H2O

Polymeric with different size
(spheres)

drug delivery
2010 [72]
2015 [73]
2008 [74]
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Table 1. Cont.

Types of HTS Platforms Platform Materials Reactants The Screening Materials Advantages and Applications Year Ref.

Multi-microfluidic platforms for
high-throughput production of
nanoparticles

PDMS
Ad-PEG + Ad-PEG-RGD +
As-PEG-TAT + CD-PEI + BSA-Cy5 +
HRP-RhB + pEGFP

Colloidal nanocrystals/TFs Immunotherapy, stem cell
reprogramming 2016 [75]

Gas-liquid multi-phase
microfluidic droplet platform for
shape-controlled continuous
synthesis

Spiral silicon/pyrex Oxygen + Pd precursor + ethylene
glycol + bromide ions

Pd with different
nanostructures

Catalysis, molecular detection and
biomedical
Phototherapies

2016 [76]

A microfluidic reactor with
segmented flow Spiral Na2PdCl4 + KBr + H2O + EG + PVP

+ Air Pd nanorods High activity catalytic hydrogenation of
styrene 2016 [77]

A microfluidic chip with
photoinitiated polymerization PDMS Hydrogel PEGDA + PEG + PI Photopolymerized hydrogels

encapsulated API crystals Drug delivery 2019 [78]

Digital microfluidic
high-throughput printing

Plates, ITO coated
glass and
hydrophobic
Teflon-AF Layer

Cu (II) dimers and
1,3,5-benzenetricarboxylate HKUST-1 crystals Huge production of MOF crystals with

different functionalities 2012 [79]

Digital microfluidics Glass substrates,
copper wire

CsPbBr3 NCs and a Hyflon AD 60
fluoropolymer CsPbBr3 NC-Hyflon films Temperature sensor 2020 [80]

An electrowetting-on-dielectric
digital microfluidic platforms

A glass wafer and an
indium tin oxide layer

Menthol+Triethylamine +
4-(dimethylamino)pyridine + acetic
anhydride

Engine-and-cargo droplets
with different shapes

Kinetics study, solvent screening,
catalyst loading optimization 2019 [81]

A reaction platform based on
digital microfluidics

Quartz glass,
polylactic and copper
wire

FeCl3·6H2O + FeCl2·4H2O + NaOH
+ PFOTES + Silica

Superparamagnetic
hydrophobic particles Bio-chemical analysis 2016 [82]
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In recent years, the alloy quantum dots have also been widely concerned, such as CdSeTe [92,93],
ZnSe/ZnS [94], etc. Doping new elements into alloy quantum dots would adjust their luminescence
characteristics and emission wavelengths, and widely improve their quantum yield as well. Since the
fascinating electronic and photonic properties of the alloy quantum dots are highly dependent on size
and shape of quantum dots, which are affected by the pyrolysis process during the production, it is
necessary to accurately control and screen the reaction parameters of pyrolysis. Yao et al. developed a
microfluidic droplet reactor to prepare a series of different colored fluorescent CdTe quantum dots by
precisely control the temperature and the time of crystal growth [95]. Furthermore, Chen et al. used a
microarray of 3 × 3 with the Taguchi method to screen the performance of the Li2SrSiO4 phosphor
under different concentrations of Eu2+, Ce3+ by evaluating the luminescence efficiency, color rendering
index and color temperature [96].

3.2. Inorganic Biomaterials and Organic Polymer

Apart from the screening of inorganic materials, HTPs have also been increasingly employed for
high-throughput screening of organic compounds, which show various applications in biosensing,
drug and gene delivery [97–101]. For instance, the screening tests of metal-organic frameworks
(MOFs) [102–106] have drawn immense attention due to their diverse structural topologies and tunable
chemical functionalities. Additionally, the conventional tests may take several hours or days for MOFs
synthesis with costly microdevices. In order to overcome these barriers, Carlos’s group developed
the technique of microfluidic pen lithography (MPL), which could create mixed femtolitre droplet
arrays using microfluidic pens (MPs) [107]. The working principles of MPL contained two steps
(Figure 3a). Firstly, an array of droplets containing the first type of solution was prepatterned by
MPs (step 1). Then, the second type of solution was delivered to the patterned area to mix and
react with the first one (step 2). The results showed that MPL enabled the independent synthesis of
MOFs at every spot and successfully created a multiplexed MOFs array (Figure 3b–d). This flexible
technique is also promising for high-throughput screening and discovering of other novel materials.
Additionally, in principle, it can realize syntheses of ten thousand samples of MOFs by MPL. Li et al.
have designed a microarray platform, which can rapidly screen the experimental conditions for
producing calcium phosphates (CaP), as shown in Figure 3e [108]. CaP was prepared by mixing a
Ca(NO3)2 solution with an (NH4)2HPO4 solution. In this technique, the gradients of concentration ratio
of Ca/P and NaOH concentration were achieved by applying microarray holes with different heights.
Figure 3f–k show the SEM images of CaP synthesized under different concentration ratios (Ca/P)
between two vital reactants of calcium nitrate tetrahydrate (Ca(NO3)2) and ammonium phosphate
dibasic [(NH4)2HPO4]. In their platform, the experimental conditions of reaction concentration and
pH values were manipulated, microparticles quickly screened and CaP micro/nanostructures with
diverse morphologies were synthesized under particular conditions. Additionally, this technique was
universal, which therefore was promising to be applied to other materials. In addition, Hook et al. also
developed a high-throughput microarray to screen thermo-responsive polymers by measuring water
contact angle (WCA) [39]. The WCA of each polymer was acquired by the circle-fitting method [109].
Additionally, the time-of-fight secondary ion mass spectrometry (ToF-SIMS) with surface sensitivity
and molecular specificity was adopted to study the surface enrichment of the molecular fragments
under different temperatures. This microarray was successfully used to identify 279 unique polymers
with thermo-responsive properties as the temperature was switched from 8 to 40 ◦C.
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Figure 3. (a) Schematic illustration of two-step microfluidic pen lithography method, showing an array
with precise delivery of different volume of a solution. (b) The synthesized HKUST-1 array. (c) The
4 × 4 array of the M-Prussian blue analogues, where M is Cd(II), Zn(II), Mn(II) and Ag(I). (d) The
SEM images of HKUST-1, Cd-PBA, Zn-PBA, Mn-PBA and Ag-PBA nanocrystals (from the left images
to the right, and scale bars are 2 µm). Reproduced with permission from [107]. Copyright Nature
Communications, 2013. (e) Schematic illustration of fabricating reactors based on microarrays, showing
an array with precise partially perforated holes used to deliver solutions. (f–k) SEM images of calcium
phosphates structures for screening the experimental concentration ratio of Ca(NO3)2 and (NH4)2HPO4

(scale bars are 2 µm), (f) Cca/Cp = 2.5/0.5; (g) Cca/Cp = 2.1/0.9; (h) Cca/Cp = 1.7/1.3; (i) Cca/Cp = 1.3/1.7
and (j) Cca/Cp = 0.9/1.3; (k) Cca/Cp = 0.5/2.5. Reproduced with permission from [108]. Copyright
Elsevier, 2020.

The microdroplet-based HTPs also make contributions to search polymeric materials with unique
micro/nanostructures. For example, Nisisako [110] utilized a ternary droplet structure to produce
various types of polymer particles, as shown in Figure 4a. A light-sensitive and two light-insensitive
fluids were introduced from three separated inlets as the inner phase. Then, the inner phase composed
by multifluids was dispersed by the continuous phase (i.e., aqueous stream) to generate the ternary
droplets. Lastly, the produced ternary droplets were prepared in the cylindrical microcapillary and
polymerized by ultraviolet light to obtain spherical and homogeneous concave particles. Leveraging
the capabilities of generating uniform and well-controlled biconcave particles, this device can also be
applied to synthesize functional microelements with concave structures for targeted drug delivery
and other applications. Um et al. [111] proposed an integrated platform to prepare colloids and Janus
microparticles with different structures (Figure 4i). The platform firstly used conventional nozzles to
dispense charged droplets into oil. Then, the positively charged droplets and the negatively charged
ones were merged by electric attraction. Afterwards, the mixed droplets were polymerized by UV light
to produce Janus droplets with anisotropic or isotropic structures. The structures can be controlled by
the concentration. This platform provided a useful and flexible technique to manipulate microparticle
synthesis. Moreover, a double-emulsion microfluidic chip composed of two connected droplet forming
stages was also designed and manufactured to produce particles with different morphologies [112].
The water–gel microparticles with shapes of meniscus or multipods were steadily prepared under the
synergistic effect of geometric restriction and the inhibition of interfacial polymerization reaction. Based
on the chip, particles with various novel shapes could be produced with a higher degree of flexibility.
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Figure 4. (a) On-chip synthesis of biconcave polymer microparticles with ternary components.
Additionally, SEM images of biconcave polymer microparticles with different structures, which were
produced from droplets by changing the flow-rate ratios of the droplet phases. Reproduced with
permission from [110]. Copyright John Wiley and Sons, 2015. (b) Fabrication of Janus microparticles
with different shaped via electric-field-induced droplet dispensing into oil based on digital microfluidics.
Reproduced with permission from [111]. Copyright Nature, 2016.

4. Conclusions and Prospective

In this review, we focused on recent advancements of microfluidic HTPs for searching materials
with novel micro/nanostructures. Firstly, two major formats of microfluidic HTPs based on microarrays
and microdroplets are described, respectively. Then the widespread utilizations of HTPs in discovering
inorganic and organic materials with desired micro/nanostructures are comprehensively compared and
summarized. Furthermore, a few examples of HTPs-based material screenings developed in recent
years are discussed in detail.

Both microarrays- and microdroplets-based HTPs can significantly increase the screening
throughput and accelerate development of material science. For microarray-based HTPs, the synthetic
parameters of each reaction can be precisely encoded by spatial coordinates, but the throughput is
limited by device area and density of reaction sites. For microdroplet-based HTPs, the throughput
greatly increases owing to the continuous and rapid generation of microdroplets. However, it remains
challenging to accurately encode the synthetic parameters of each microdroplet, thus limiting the
further increasement of its throughput. Recently, a novel high-throughput method called “droplet
library”, which combines a microfluidic droplet generator with microarrays, are proposed [75,113].
The basic principles are shown in Figure 5. Firstly, droplets containing small compounds are prepared
by parallel microfluidic devices and subsequently transported to microarray plates. Then the following
droplets with different compounds could be gathered in one tube as a droplet library. The droplet
library was then reinjected into another device to mix with a target for screening the compounds
with optimal antimicrobial activities. This integrated platform takes significantly less time than
conventional microdroplet-based HTPs. Although mainly applied for biological experiments, such as
investigations of antimicrobial activities, pharmacological screening, drug-resistance analysis, etc., the
novel integrated approach shows great potentials in screening materials with ultra-high throughput,
providing a promising approach towards the development of next-generation HTPs.

Moreover, to achieve truly high-throughput screening, it is necessary to establish highly integrated
HTPs with multiple functions of material synthesis, characterization and data analysis. Zhou et al. [114]
have proposed a high-throughput screening system. It combined a microfluidic reactor to generate
hydrogel droplets with different crystals of drugs, a camera to capture the optical images of the
droplets, and deep learning to analyze and classify the obtained images. Additionally, the microfluidic
chip was fabricated with a flow-focusing geometry to produce droplets. Their system offered a new
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high-throughput platform and could be applied to quickly synthesize the massive materials and
accurately analyze the data. With massive materials informatics and databases, it offers a potent
platform to accelerate the development of the new materials. Despite the great advancements in
material synthesis, the performance of current HTPs in high-throughput characterization is still far
from satisfactory. Therefore, developing compatible high-throughput characterization techniques to
combine with synthetic modules is one of the important trends of future HTPs. Additionally, as HTPs
usually produce massive data, approaches for high-throughput data processing are also in great
demand. Machine learning is a powerful tool to process and analyze massive information, which
shows promising applications in future HTPs. Since the application of HTPs has gradually played a
critical role in new material preparation, it will show significant impact on the development of material
science, biological science, biomedical engineering and military science in the future.

Figure 5. A demonstration of high-throughput-screening platform that combine droplet generator,
microarray and high-throughput characterization for screening material structures.
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