

Effects of 5-Ammonium Valeric Acid Iodide as Additive on Methyl Ammonium Lead Iodide Perovskite Solar Cells

Daming Zheng ¹, Changheng Tong ^{1,2}, Tao Zhu ¹, Yaoguang Rong ² and Thierry Pauporté ^{1,*}

- ¹ Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), UMR8247, 11 rue P. et M. Curie, F-75005 Paris, France; daming.zheng@chimieparistech.psl.eu (D.Z.); tch13986581570@gmail.com (C.T.); tao.zhu@chimieparistech.psl.eu (T.Z.)
- ² Wuhan National Laboratory for Optoelectronics, China-EU Institute for Clean and Renewable Energy, Huazhong University of Science & Technology (HUST), 430074, Hubei, China; ygrong@hust.edu.cn
- * Correspondence: thierry.pauporte@chimieparistech.psl.eu

Figure S1. (a) TRPL of *1mp*-MAPI and *1mp*-AVA layers deposited on glass. (b) TRPL of *3mp*-MAPI and *3mp*-AVA layers deposited on mesoporous ZrO₂/glass.

	Fitting function: $y = A_1 \exp(-x/\tau_1) + A_2 \exp(-x/\tau_2) + A_3 \exp(-x/\tau_3) + y_0$									
	y_0	A_1	τ _{fast} (ns)	RC fast ^a	A_2	$ au_{int}$ (ns)	RCint ^a	Аз	$ au_{slow}$ (ns)	RCslow ^a
MAPI on glass	7.6E-4	0.39	3.21	0.03	0.40	25.17	0.25	0.19	153.51	0.72
AVA on glass	1.6E-3	0.452	5.31	0.05	0.39	42.14	0.36	0.12	227.45	0.59
MAPI on ZrO ₂ /Glass	3.8E-4	0.31	6.93	0.05	0.58	39.31	0.49	0.24	88.01	0.46
AVA on ZrO ₂ /Glass	5.6E-4	0.41	9.85	0.09	0.61	51.47	0.65	0.07	181.4	0.26
AVA on ZrO ₂ /Glass	5.6E-4	0.31	9.85	0.05	0.58	51.47	0.49	0.24	181.4	0.46

Table S1. Fitting parameters by a triple exponential function of the TRPL curves of Figure S1.

^a Relative contribution

Figure S2. Pictures of PVK layers: fresh and after 20 h and 120 h aging at \geq 90% RH/RT. The black/grey aspect of the *3mp* samples is due to the carbon back electrode. (a) *1mp*-MAPI, (b) *1mp*-AVA, (c) *3mp*-MAPI and (d) *3mp*-AVA.

Figure S3. Forward and reverse *J-V* curves of (**a**) *1mp*-MAPI, (**b**) *1mp*-AVA, (**c**) *1mp*-MAPI-NoHTM and (**d**) *3mp*-AVA best cells.

Figure S4. External quantum efficiency, EQE, spectra and Jsc integration curves of the various cells.

Figure S5. Effect of the light intensity in sun% on the impedance spectra measured at the $V_{oc.}$ (**a**) *1mp*-MAPI, (**b**) *1mp*-AVA, (**c**) *1mp*-AVA-NoHTM and (**d**) *3mp*-AVA.

Figure S6. (**a**,**b**) Equivalent electrical circuits employed to fit impedance spectra of PSCs. See the core text for explanation. R_s, R₁, R₂, R₃ and R₄ are resistances. CPE₁, CPE₂, CPE₃ and CPE₄ are constant phase elements.

Figure S7. Effect of the applied voltage on the impedance spectra of the investigated cells. (a) *1mp*-MAPI, (b) *1mp*-AVA (c) *1mp*-AVA-NoHTM, (d) *3mp*-AVA low voltage and (e) *3mp*-AVA high voltage.

Figure S8. Effect of *V*_{appl} on (**a**) *R*_s, (**b**) R₃ and (**c**) C₃ parameters.

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).