Supplementary Materials: Influence of Dextran Molecular Weight on the Physical Properties of Magnetic Nanoparticles for Hyperthermia and MRI Applications

Oliver Strbak ^{1,*}, Iryna Antal ², Iryna Khmara ², Martina Koneracka ^{2,*}, Martina Kubovcikova ², Vlasta Zavisova ², Matus Molcan ², Alena Jurikova ², Petra Hnilicova ¹, Jan Gombos ³, Nina Kadasova ⁴ and Dusan Dobrota ³

Figure S1. *T*₁-weighted MRI images of DEX-coated MNPs at different concentration of magnetite (from top left: 0, 0, 2.5, 5, 7.5, 10, 15 µg/mL of magnetite). Dextran coating: 40 kDa (**A**); 70 kDa (**B**); 150 kDa (**C**).

Figure S2. *T*₂-weighted MRI images of DEX-coated MNPs at different concentration of magnetite (from top left: 0, 0, 2.5, 5, 7.5, 10, 15 µg/mL of magnetite). Dextran coating: 40 kDa (**A**); 70 kDa (**B**); 150 kDa (**C**).

Figure S3. *T*¹ mapping of DEX-coated MNPs at different concentration of magnetite (from top left: 0, 0, 2.5, 5, 7.5, 10, 15 µg/mL of magnetite). Dextran coating: 40 kDa (**A**); 70 kDa (**B**); 150 kDa (**C**).

Figure S4. *T*² mapping of DEX-coated MNPs at different concentration of magnetite (from top left: 0, 0, 2.5, 5, 7.5, 10, 15 µg/mL of magnetite). Dextran coating: 40 kDa (**A**); 70 kDa (**B**); 150 kDa (**C**).

Figure S5. Longitudinal relaxivity *r*¹ determination using a linear fit of the longitudinal relaxation rate *R* dependence on the iron concentration. Dextran coating of DEX-coated MNPs: 40 kDa (**A**); 70 kDa (**B**); 150 kDa (**C**).

Figure S6. Transversal relaxivity *r*² determination using a linear fit of the transversal relaxation rate *R* dependence on the iron concentration. Dextran coating of DEX-coated MNPs: 40 kDa (**A**); 70 kDa (**B**); 150 kDa (**C**).

Figure S7. Correlation coefficients between relaxivity values and diameter of DEX-coated MNPs, determined by various techniques: *D*_{HYDR} (**A**), *D*_{DCS} (**B**), *D*_{SEM} (**C**), *D*_{MAG} (**D**)

Figure S8. Comparison of the linear fit slopes of all diameters established by different measurement techniques - D_{HYDR} , D_{DCS} , D_{SEM} and D_{MAG} , with transversal relaxivity r_2 and relaxivity ratio r_2/r_1 (**A**); Course of the D_{HYDR} and r_2/r_1 curves of the DEX-coated MNPs with different MWs of DEX coating (**B**)

Figure S9. Linear regression analysis of the longitudinal relaxivity *r*₁ dependence on the diameter of DEX-coated MNPs determined by various techniques. *D*_{HYDR} (**A**), *D*_{DCS} (**B**), *D*_{SEM} (**C**), *D*_{MAG} (**D**)

Figure S10. Linear regression analysis of the transversal relaxivity *r*² dependence on the diameter of DEX-coated MNPs determined by various techniques: *D*_{HYDR} (**A**), *D*_{DCS} (**B**), *D*_{SEM} (**C**), *D*_{MAG} (**D**)

Figure S11. Linear regression analysis of the *r*₂/*r*₁ ratio dependence on the diameter of DEX-coated MNPs determined by various techniques: *D*_{HYDR} (**A**), *D*_{DCS} (**B**), *D*_{SEM} (**C**), *D*_{MAG} (**D**).