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Abstract: In this work, we demonstrate the enhanced synaptic behaviors in trilayer dielectrics
(HfO2/Si3N4/SiO2) on highly doped n-type silicon substrate. First, the three dielectric layers were
subjected to material and chemical analyses and thoroughly investigated via transmission electron
microscopy and X-ray photoelectron spectroscopy. The resistive switching and synaptic behaviors
were improved by inserting a Si3N4 layer between the HfO2 and SiO2 layers. The electric field within
SiO2 was mitigated, thus reducing the current overshoot in the trilayer device. The reset current
was considerably reduced in the trilayer device compared to the bilayer device without a Si3N4

layer. Moreover, the nonlinear characteristics in the low-resistance state are helpful for implementing
high-density memory. The higher array size in the trilayer device was verified by cross-point array
simulation. Finally, the multiple conductance adjustment was demonstrated in the trilayer device by
controlling the gradual set and reset switching behavior.

Keywords: resistive switching; X-ray photoelectron spectroscopy; synaptic device; metal oxide;
current overshoot

1. Introduction

Resistive switching memory is very attractive for a wide range of applications due to its various
resistive switching characteristics stemming from a number of resistive switching materials by easily
tunable resistive switching parameters such as on-resistance, off-resistance, and operation voltage [1–5].
Moreover, its simple structure, such as metal–insulator–metal (MIM) with 4F2 (F is feature size), can be
scaled down via a lithography process [1–6]. Further, the multiple resistance states triggered by
electrical pulses can be used for high-density memory. Finally, the good retention properties, such as
NAND flash and high endurance, provide an edge over other competing memory products. The types
of resistive switching should be characterized depending on the possible applications, such as in storage
class memory, neuromorphic devices, and logic devices. Among them, a neuromorphic device using
resistive switching memory is attracting considerable attention [7–10]. To meet the needs of efficient
data processing in the era of big data, neuromorphic computing provides a major breakthrough that can
replace the existing Von Neumann computing. In particular, neuromorphic systems are specialized in
data processing, such as complex pattern recognition. Moreover, they take an energy-efficient approach
by carrying out data processing in a parallel manner. In a neuromorphic system, the conductance
of the resistive switching memory cell placed on a cross-point array has multiple states and can
be updated and controlled by the input pulse from the neuron circuit. The conductance control of
resistive switching is similar to the synaptic weight adjustment in biological synapses in the human
nervous system.
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Resistive switching and artificial synaptic behaviors are observed in many insulators, such as
oxide [11–13], nitride [13–15], organic materials [16], and 2D materials [17]. Among them,
metal–oxide-based resistive switching memories such as HfO2 have proven to have the best resistive
switching performances in terms of, e.g., endurance, retention, and variability. Excellent resistive
switching has been reported when using metal bottom electrodes [18,19]. HfO2-based resistive switching
memory with ITO electrode can also be used for flexible and transparent electronic devices [20]. On the
other hand, the HfO2-based resistive memory with a silicon bottom electrode has not yet been
reported as superior to the metal bottom electrode. However, the metal–oxide–semiconductor structure
has other advantages, such as self-rectification and low-power operation. The most effective way
to enhance resistive switching is to design multiple dielectric stacks [21]. The use of an oxygen
reservoir, such as a TiOx layer, is popular in metal–oxide-based resistive switching memory. Abundant
oxygen vacancies are created in the main resistor for resistive switching. A tunnel barrier, such as
SiO2 and Al2O3, with a large band gap, can enhance the resistive switching properties by reducing
the operation current and increasing the nonlinearity of the I–V curve in the low-resistance state
(LRS) [22,23]. The SiO2 layer can be easily formed when using silicon substrate as the bottom electrode
and different methods such as native oxide, thermal oxide, and chemical vapor deposition (CVD).
Another advantage of inserting the tunnel barrier with a high band gap is a reduction in the LRS
current [21,22]. To employ the advantageous tunnel barrier in resistive switching, the insulating
property of the SiO2 layer is maintained after the forming and set processes. If the excess electric field
is applied on the tunnel barrier with a high compliance current, breakdown of the tunnel barrier can
occur. Therefore, the use of a careful device stack design is necessary to ensure a stable tunnel barrier
layer; for example, the thicknesses of the tunnel barrier and the main resistor are important. In addition,
the dielectric constant should be considered to properly distribute the electric field throughout multiple
dielectric layers.

In this work, we fabricated a trilayer (HfO2/Si3N4/SiO2) resistive switching memory device and
demonstrated low current switching by suppressing the current overshoot and nonlinear I–V curves
in the LRS. The trilayered dielectric stacks were confirmed via high-resolution transmission electron
microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) before electrical characterization.
Through a comparative study with a control group without a Si3N4 layer, it was verified that the Si3N4

layer can relieve the concentration of the electric field in SiO2. Finally, we demonstrated the improved
synaptic behaviors by achieving gradual conductance control in the trilayer structure compared to the
device without a Si3N4 layer.

2. Materials and Methods

The Ni/HfO2/Si3N4/SiO2/Si device was prepared as follows: The ion implantation was conducted
in the Si substrate to increase the conductivity on the single crystalline Si surface as the bottom electrode.
Phosphorus (P) as an impurity was used to form an n-type Si bottom electrode, where the dose and
energy were 5 × 1015 cm−2 and 40 keV, respectively. The Si lattice damage caused by ion implantation
was cured by the annealing process. Next, a 2.5-nm-thick SiO2 film was deposited via low-pressure
chemical vapor deposition (LPCVD) by reacting SiH2Cl2 (40 sccm) and N2O (160 sccm) at 785 ◦C
after removing native oxide through HF cleaning. Then, a 3.5-nm-thick Si3N4 layer was deposited via
LPCVD by reacting SiH2Cl2 (30 sccm) and NH3 (100 sccm) at 785 ◦C. After that, a 3.5-nm-thick HfO2

layer was deposited by atomic layer deposition (ALD) system by reacting tetrakis (ethylmethylamino)
hafnium (TEMAH) and ozone (O3) at 300 ◦C. Finally, a 100-nm-thick Ni top electrode was deposited
by a thermal evaporator and patterned by a shadow mask containing circular patterns with a diameter
of 100 µm. A Ni/HfO2/SiO2/Si device was prepared as a control device in the same way, except for the
Si3N4 layer.

The electrical properties were characterized both in DC mode using a Keithley 4200-SCS
semiconductor parameter analyzer (Keithley Instrumnets, Cleveland, OH, USA) and in pulse
mode using a 4225-PMU ultrafast module (Keithley Instrumnets, Cleveland, OH, USA) During
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the measurements, a bias voltage and pulse were applied to the Ni top electrode, while the Si bottom
electrode was grounded. XPS depth analysis was conducted with a Nexsa (ThermoFisher Scientific,
Waltham, MA, USA) with a Microfocus monochromatic X-ray source (Al-Kα (1486.6 eV)), a sputter
source (Ar+), an ion energy of 1 kV, and a beam size of 100 µm × 100 µm.

3. Results and Discussion

Figure 1a,b respectively shows the schematics and a TEM image of the Ni/HfO2/Si3N4/SiO2/Si
device. Single crystalline Si substrate and amorphous HfO2, Si3N4, and SiO2 layers could be observed
in the TEM image. In addition, the TEM image provides information about the exact film thicknesses of
HfO2 (3.5 nm), Si3N4 (3.5 nm), and SiO2 (2.5 nm). The energy-dispersive X-ray spectra (EDS) line scan
was obtained through scanning transmission electron microscopy (STEM) and is shown in Figure S1.
Next, the XPS depth profile of HfO2/Si3N4/SiO2/Si was investigated to determine the elements in each
layer. Figure 1c shows the XPS spectra Hf 4f of HfO2 as the first dielectric layer [24]; Hf 4f is typically
composed of a 4f 5/2 and 4f 7/2 spin–orbit doublet, which are respectively centered at 20 and 18.5 eV.
This result is consistent with existing literature about HfO2 on a Si substrate [24]. Figure 1d shows
the Si 2p spectra for the Si3N4 layer, SiO2 layer, and Si substrate. The peak intensity that is located at
about 99.5 eV is higher at the deeper etching level (level 11) than it is at level 7. This indicates that
the Si substrate is more exposed by X-ray beams at the deeper etching level (level 11) [21]. Moreover,
the peak point at etch level 11 is shifted to the right compared to that at etch level 7, indicating that the
Si–O bond located at 103.5 eV is increased at level 11 [25]. Figure 1e shows the N 1s spectra at level 7
and level 11, where the peak is centered at about 398 eV [26]. The peak intensity at level 11 is much
weaker than that at level 7. This result is consistent with the Si 2p result shown in Figure 1d.
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Figure 1. Device configuration and material analysis of the Ni/HfO2/Si3N4/SiO2/Si device. (a) Schematic
drawing of the device stack; (b) TEM image; (c) XPS Hf 4f spectra at etch level 3; (d) XPS Si 2p spectra
at etch levels 7 and 11; and (e) XPS N 1s spectra at etch levels 7 and 11.

Figure 2a,b shows the I–V characteristics of the Ni/HfO2/SiO2/Si and Ni/HfO2/Si3N4/SiO2/Si
devices. For a fair comparison, the compliance current (CC) of 5 µA is applied to both devices.
The initial cells are activated with the positive bias DC sweep. The current is significantly increased
during the reverse sweep, which indicates that soft breakdown occurs within the dielectrics. The CC
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can protect the device from permanent breakdown. Subsequently, the reset process is conducted by the
negative bias sweep, causing the state of the device to be changed to the high-resistance state (HRS).
This process can be explained by the rupture of the conducting path in dielectrics. Then, the set process
follows to make the state of device be the LRS again. The HRS and LRS of the device can be repeatedly
switched in the repetitive set and reset process. It should be noted that high current (~10 mA) flows
within the Ni/HfO2/SiO2/Si device in the LRS. The current is very high despite the fact that 5 µA is
applied on the Ni/HfO2/SiO2/Si device during the forward and reverse sweep in the LRS under the
positive bias. Subsequently, the high LRS current without CC in a negative bias is the real current level.
This suggests that current overshoot occurs during the set process, meaning that the LRS current cannot
be tightly controlled by CC. An abrupt transition is observed during the reset process, indicating that
the conducting path is ruptured at once. The I–V characteristics of the Ni/HfO2/Si3N4/SiO2/Si device
are substantially different from those of the Ni/HfO2/SiO2/Si device, as shown in Figure 2b. The LRS
current in a negative region is lower than the CC of 5 µA. This implies that the current overshoot is
suppressed during the set process at a positive region. The bipolar resistive switching is driven by
the temperature and electric field [27–30]. The Ni/HfO2/SiO2/Si device shows abrupt reset with high
current, indicating that Joule heating is the dominant mechanism of the reset process. On the other
hand, the electric field may be more important for the Ni/HfO2/Si3N4/SiO2/Si device considering the
switching at low current.
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Figure 2. I–V characteristics of the (a) Ni/HfO2/SiO2/Si device and (b) Ni/HfO2/Si3N4/SiO2/Si device
including forming, set, and reset processes; cycling data of I–V characteristics of (c) Ni/HfO2/SiO2/Si
device and (d) Ni/HfO2/Si3N4/SiO2/Si device.

Figure 2c,d shows the cycling trend of the Ni/HfO2/SiO2/Si and Ni/HfO2/Si3N4/SiO2/Si devices,
respectively. Time series statistical analysis could provide the indirect information of filament
evolution [31,32]. Both HRS and LRS are stable except for the initial few points during the cycling
for the Ni/HfO2/SiO2/Si device. This indicates that the large size of conducting filament could be
uniformly formed and ruptured. On the other hand, the read current of the Ni/HfO2/Si3N4/SiO2/Si
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device has larger variation during the cycling, and the read current in the HRS is increased. The larger
variation is probably due to the fact that the filaments are formed and ruptured in multiple layers
(HfO2/Si3N4/SiO2), and these formations and ruptures would be quite random processes spatially
inside the insulators.

Figure 3a shows the statistical distribution of the Ni/HfO2/SiO2/Si and Ni/HfO2/Si3N4/SiO2/Si
devices in the LRS and HRS. The LRS resistance of the Ni/HfO2/Si3N4/SiO2/Si device is much
higher than that of the Ni/HfO2/SiO2/Si device. However, the variations of the LRS and HRS of the
Ni/HfO2/Si3N4/SiO2/Si device are worsened. Figure 3b shows the ratio between reset current (IRESET)
and CC. From this ratio, we can obtain information on how much CC suppresses the overshoot current
during the set process. IRESET is rather smaller than CC in the Ni/HfO2/Si3N4/SiO2/Si device. However,
the IRESET/ICC ratio of the Ni/HfO2/Si3N4/SiO2/Si device is more than 1000. Other advantages of the
Ni/HfO2/Si3N4/SiO2/Si device are its high nonlinear I–V characteristic and its low-current operation.
The nonlinearity is defined as the ratio between the current at read voltage (VREAD) and the current
at half read voltage (1/2·VREAD) for the half bias scheme in the cross-point array (Figure S2). Further,
the nonlinearity is defined as the ratio between the current at VREAD and the current at 1/3·VREAD for
the 1/3 read scheme. The LRS resistance is the main leakage path in the cross-point array structure
when reading the target cell with the HRS. Therefore, the current at 1/2·VREAD or the current at
1/3·VREAD should be suppressed to reduce crosstalk among the cells. Figure 3c shows the nonlinearity
of both devices when applying the 1/2 read scheme and the 1/3 read scheme. The nonlinearities
of the Ni/HfO2/SiO2/Si device in the LRS are about 2 and 3 for the 1/2 read scheme and the 1/3
read scheme, respectively. This indicates that the LRS follows Ohmic conduction with a slope of 2.
The nonlinearity of the Ni/HfO2/Si3N4/SiO2/Si device in the LRS is substantially higher due to its
nonlinear I–V characteristics.
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Figure 3. Statistical distributions of (a) high-resistance state (HRS) and low-resistance state (LRS)
resistance, (b) IRESET/ICC, and (c) nonlinearity for Ni/HfO2/SiO2/Si and Ni/HfO2/Si3N4/SiO2/Si devices.

Figure 4 shows the read margin as a function of the number of word lines for the Ni/HfO2/SiO2/Si
and Ni/HfO2/Si3N4/SiO2/Si devices. Here, the 1/2 read scheme and the 1/3 read scheme are applied to a
virtual cross-point array without line resistance. The detailed array read schemes are well known in the
literature, and we discuss in detail equation and the scheme in Figure S3. The Ni/HfO2/Si3N4/SiO2/Si
device shows higher read margin compared to the Ni/HfO2/SiO2/Si device. This is due to the fact
that Ni/HfO2/Si3N4/SiO2/Si has higher LRS resistance and nonlinear I–V curves in the LRS. The read
margin at the 1/3 read scheme is also higher than that of the 1/2 read scheme.
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Figure 4. Read margin of Ni/HfO2/SiO2/Si and Ni/HfO2/Si3N4/SiO2/Si devices when applying (a) 1/2
read scheme and (b) 1/3 read scheme in cross-point array.

The conducting path would be formed in the SiO2 layer during the set process for the
Ni/HfO2/Si3N4/SiO2/Si device. The electric field is concentrated within the SiO2 layer with consideration
of the dielectric constants (HfO2: ~20 and SiO2: ~4). Therefore, high current cannot be avoided
in the LRS after the set process. On the other hand, the overshoot current was mitigated in the
Ni/HfO2/Si3N4/SiO2/Si device during the set process. This can be explained by the dispersion of the
focused electric field of the SiO2 layer due to the Si3N4 layer. The dielectric constant of the Si3N4 layer
(Si3N4: ~7) is slightly higher than that of SiO2 and lower than that of HfO2. Therefore, a Si3N4 layer
between the HfO2 layer and the SiO2 layer is a good buffer layer to reduce the current overshoot.

Next, we compared the tendency of conductance change as a function of identical pulse during the set
and reset process. Figure 5a shows the conductance changes of the Ni/HfO2/SiO2/Si device for potentiation
(set process) and depression (reset process), respectively. The pulse amplitude voltages with a pulse width
of 450 µs are 6 V and −3.5 V for potentiation and depression, respectively. The conductance values are
extracted from the middle point of read pulse (1 V and 450 µs). For potentiation, the conductance value
increases abruptly in response to the 18th pulse. The depression curve shows several fluctuations after
the first decrease in conductance. Such randomness and abrupt conductance change are not suitable
for a hardware-based neuromorphic synaptic device. On the other hand, the conductance values in
the Ni/HfO2/Si3N4/SiO2/Si device are gradually controlled by the potentiation and depression pulses
(Figure 5b). The voltages of the set pulse and reset pulse are 7 and −4.5 V, respectively, and the pulse
width is 450 µs. Further, the read pulse (1 V and 450 µs) is inserted between set pulses or reset pulses
to obtain the conductance value. It should be noted that a gradual conductance update is possible
when the same pulse is repeatedly applied on the device for potentiation and depression. Moreover,
the conductance value of the Ni/HfO2/Si3N4/SiO2/Si device is substantially lower than that of the
Ni/HfO2/SiO2/Si device. Therefore, the improved synaptic properties, such as the low energy and
multiple conductance, of the Ni/HfO2/Si3N4/SiO2/Si device are beneficial for synaptic applications.
The conductance update method of the Ni/HfO2/Si3N4/SiO2/Si device is suitable for offline learning.
To apply it to online learning that provides information by reading conductance values in real time,
improvement in variation will be required [33].
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Figure 5. Potentiation and depression characteristics for (a,b) Ni/HfO2/SiO2/Si device and (c,d)
Ni/HfO2/Si3N4/SiO2/Si device.

4. Conclusions

In summary, we fabricated a CMOS-compatible trilayer device (Ni/HfO2/Si3N4/SiO2/Si) and
characterized its resistive and synaptic characteristics. The TEM and XPS provide the exact dielectric
thickness and chemical information of the trilayer device. The Si3N4 layer could alleviate the
concentrated electric field into the SiO2 layer in the trilayer design, so the conducting paths are not
formed in all dielectrics in the LRS. This property can reduce reset current and provide a nonlinear
I–V curve in the LRS. The high nonlinearity in the trilayer device can enlarge the array size in the
cross-point array architecture. Finally, we demonstrated that gradual set and reset switching in a
trilayer device can be highly suitable for emulating the synaptic behavior of a biological synapse in the
human nervous system by controlling multiple conductance.
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Figure S1: The STEM image and EDS line scan of Ni/HfO2/Si3N4/SiO2/Si. Figure S2: Definition of nonlinearity of
I–V in the LRS. Figure S3: Read operation scheme in virtual cross-point array structure.
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