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Abstract: Yttrium fluoride (YF3) columnar thin films (CTFs) were fabricated by electron beam
evaporation with the glancing angle deposition method. The microstructures and optical properties
of YF3 CTFs were studied systematically. The YF3 films grown at different deposition angles are
all amorphous. As the deposition angle increases, the columns in YF3 CTFs become increasingly
separated and inclined, and the volume fraction of YF3 decreases, resulting in lower refractive
indices. This phenomenon is attributed to the self-shadowing effect and limited adatom diffusion.
The YF3 CTFs are optically biaxial anisotropic with the long axis (c-axis) parallel to the columns,
the short axis (b-axis) perpendicular to the columns, and the other axis (a-axis) parallel to the film
interface. The principal refractive index along the b-axis for the 82◦-deposited sample is approximately
1.233 at 550 nm. For the 78◦-deposited sample, the differences of principal refractive indices between
the c-axis and the b-axis and between the a-axis and the b-axis reach the maximum 0.056 and 0.029,
respectively. The differences of principal refractive indices were affected by both the deposition angle
and the volume fraction of YF3.

Keywords: glancing angle deposition; yttrium fluoride; columnar thin films; anisotropic optical
properties; Mueller matrix ellipsometry; microstructure

1. Introduction

Microstructure materials have attracted great interest because of their high potential in a
wide range of fields, such as electronics, photonics, magnetism, biomedicine, and chemistry [1].
Glancing angle deposition (GLAD) is an effective method for preparing variable Zone 1 columnar
microstructures, which are defined as the structures of film material with a melting point three
times higher than the substrate temperature [2,3]. By controlling the substrate tilt in multiple
rotational ways, various columnar microstructures can be prepared by the GLAD method, such as
columnar, spiral, c-shape, and z-shape [4]. The microstructure and the optical properties of the films
fabricated by the GLAD method depend on the self-shadowing effect and the formation of columnar
grains, leading to applications in optics, energy, electrocatalysts, electrochromism, thermochromism,
etc. [5–11]. In addition, these highly oriented films with strong optical anisotropy have been used
in specific applications, such as optical retardation plates, birefringent omnidirectional reflectors,
and three-dimensional photonic crystals [12–16].
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As a common and important fluoride compound, yttrium fluoride (YF3) has been widely used
as nano-particles with efficient multicolor photoluminescence, high reflectors, thin-film interference
filters, substitutes for radioactive ThF4, and anti-reflection coatings with other optical films ranging
from the near-UV to IR [17–23]. These functions are available based on the nature of YF3, with low
refractive index and low absorption, excellent transmittance from UV to IR, high hardness, and the
desirable ability to match with other multilayer materials [19]. However, studies on the microstructure
and the microstructure-induced anisotropic optical properties of YF3 columnar thin films (CTFs)
fabricated by the GLAD technique are still limited. In this work, YF3 CTFs with various inclined angles
were prepared by the GLAD technique, and their microstructures and anisotropic optical properties
induced by the microstructures were systematically studied. The structure of prepared YF3 CTFs was
characterized by X-ray diffraction (XRD). The surface and cross-sectional morphology of the YF3 CTFs
were viewed by field-emission scanning electron microscopy (FE-SEM). Mueller matrix ellipsometry
(MME), a powerful non-destructive and sensitive tool to study CTFs with high optical data precision,
was employed to analyze the anisotropic optical properties of fabricated YF3 CTFs [24,25].

2. Theory and Optical Modeling

As shown in Figure 1a, the GLAD technique is applied to fabricate thin films on a substrate with
an obliquely incident angle α of the vapor flux. The randomly deposited particles at the initial stage
of deposition cause nuclei to be distributed over the surface, resulting in the ballistic shadowing of
the surrounding regions. The limited surface mobility of adatoms prevents growth in the shadowed
regions, thereby restricting further growth to the tops of the nuclei, which develop into tilted columnar
structures [26]. Then, the isolated columns grow oriented toward the particle flow source, forming an
inclined column angle θcol between the substrate surface normal and the column direction, as shown
in Figure 1b.
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Figure 1. (a) Schematic diagram of the glancing angle deposition (GLAD) method for electron beam
evaporation, (b) columnar thin film fabricated by the GLAD method, and (c) the laboratory coordinate
system (x, y, z) and the principal coordinate system (a, b, c).

The highly oriented structure of the inclined columns induces optical anisotropy [6]. In this case,
the orthogonal electric field components are coupled due to the columnar structure and the porosity.
Thus, an MME measurement is required to fully characterize the polarization-dependent optical
response of anisotropic films. In the MME measurement, the sample is represented by a 4 × 4 Mueller
matrix M, describing the effect on the light with Stokes vector [27]

Sout = M Sin, (1)

where Sin and Sout represent the Stokes vector of incident light and emerging light, respectively.



Nanomaterials 2020, 10, 2413 3 of 10

In the laboratory Cartesian coordinates (x, y, z), the columnar film is described by the second-rank
tensor ε, written as

ε =


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

. (2)

In this coordinate system, the y-axis is parallel to the projection direction of columns on the substrate
and the z-axis is parallel to the normal of film surface. For mathematical convenience, the dielectric
tensor can be expressed by the principal dielectric constants through coordinate transformation.
As shown in Figure 1c, the (x, y, z) system was transformed into the principal coordinate system (a, b, c)
through two Euler rotations (θE, φ). The inclination angle θE, defined as the rotation from the z-axis to
the c-axis, was considered to be equal to the inclined column angle θcol. The azimuth orientation φ,
defined as the rotation around the z-axis, was set to zero when the columns were parallel to the plane
of incidence (y-z plane). After coordinate transformation, the dielectric tensor in the (a, b, c) system
was expressed as

ε =


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 = AT


εa 0 0
0 εb 0
0 0 εc

A. (3)

3. Experimental Details

3.1. Materials and Sample Preparation

The YF3 CTFs were prepared by electron beam evaporation in a vacuum using the GLAD
method. Single-side polished crystal <100> n-type silicon (99.99% in purity) wafers with a thickness
of 350 ± 20 µm and a size of 10 mm × 10 mm were used as substrates. Granular YF3 (99.99% in
purity) was heated by an electron beam at a high voltage of 7.8 kV and deposited onto the silicon
substrates located 60 cm away from the evaporation source at a deposition rate of 0.20−0.25 nm s−1.
The deposition angles were 0◦, 66◦, 70◦, 78◦, and 82◦, respectively. All depositions were performed at a
substrate temperature of 300 K and an operating pressure of 7 × 10−5 Torr.

3.2. Characterizations

The structural characteristics of the YF3 films were investigated by XRD with Cu-Kα
(λ = 0.154056 nm) radiation (Bruker D8 ADVANCE) in the scanning range of 10.0◦−45.0◦ with a
step of 0.02◦. The surface morphology and the cross-section of the YF3 films were viewed by
FE-SEM (Hitachi, S-4800 FE-SEM). The optical properties of the YF3 samples were characterized by a
variable-angle Mueller matrix ellipsometer (RC2, J. A. Woollam), which worked in the reflection mode
with a dual-rotating compensator configuration [24,28]. The 4 × 4 Mueller matrices were measured
over a spectral range of 300−1650 nm (i.e., 4.1 to 0.75 eV) at two incident angles 65◦ and 75◦, respectively.
The azimuth of samples rotated from 0◦ to 360◦ at a 45◦ interval. The analysis was performed with the
software CompleteEASE (J. A. Woollam) [28].

4. Results and Discussion

4.1. Microstructure of YF3 CTFs

Figure 2 presents the XRD patterns of as-deposited YF3 films grown on silicon substrates with
deposition angles of 0◦, 70◦, and 82◦, respectively. The (400) peak of cubic Y2O3 was observed
at 2θ ≈ 33.7◦ in all the XRD spectra, indicating that Y2O3 was formed in all samples. No obvious
diffraction peak corresponds to crystalline YF3, which means the intrinsic YF3 films are all amorphous.
Since all YF3 samples were deposited at room temperature without annealing, this phenomenon can
be attributed to the self-shadowing effect and limited adatom diffusion [6].
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Figure 2. XRD patterns of yttrium fluoride (YF3) films deposited at the angles of 0◦ (a), 70◦ (b), and 82◦ (c).

Figure 3a–d show the surface morphologies of the as-deposited YF3 films. The YF3 film grown at
α = 0◦ is dense and shows a uniform morphology without voids. When α = 70◦, the film becomes
loose, with small pores appearing. In the case of α = 82◦, the pores between columns become large in a
rather loose film. The inclined columnar structures of the YF3 films are viewed in the cross-sectional
SEM images (e–h) in Figure 3. The thickness d of YF3 films for each sample is 1104.6 nm (a, e), 560.2 nm
(b, f), 546.5 nm (c, g), and 451.5 nm (d, h). The inclination angle θcol of YF3 films observed from the
SEM images is 0◦ (a, e), 29◦ (b, f), 38◦ (c, g), and 42◦ (d, h). As the value of α increases, the columns are
increasingly separated and inclined due to the self-shadowing effect, which prevails over the surface
diffusion of adatoms and results in porous and low-density films.
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4.2. Optical Properties of YF3 CTFs

The optical properties of the prepared YF3 films were characterized by the MME. The dense YF3

films deposited at normal incidence of vapor flux (α = 0◦) were characterized first to determine the
dispersion function of YF3. The dispersion relations of the dense YF3 films were obtained by evaluating
the 4 × 4 Mueller matrices [29,30]. The three-term Cauchy relation was used to describe the dispersion
function of the YF3 films in the spectral range of 300−1650 nm, expressed as [31]

n = A +
B
λ2 +

C
λ4

, (4)
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where the refractive index n is a function of the wavelength λ, and the fitting parameters A, B, and C are
material-dependent constants in the model. The optical constants of the dense YF3 films were not affected
appreciably by their thickness, which is much thicker than the nucleation layer [32]. The constants
for the dense YF3 film were obtained to be A = 1.477 ± 0.0005, B = (3.559 ± 0.005) × 103 nm2,
and C = 1.302 ± 0.005 nm4. The results are used as a baseline for comparing the YF3 CTFs deposited at
the oblique incidence of vapor flux (α > 0◦).

The YF3 CTFs deposited at α > 0◦ were characterized subsequently. The individual columns in
the YF3 CTFs were assumed to satisfy the same dispersion functions as the dense YF3 film deposited at
α = 0◦. Figure 4 shows the experimental and the fitted Mueller matrix of the sample grown at α = 82◦

over the spectral range of 300−1650 nm, normalized by the M11. To interpret the MME data for the YF3

CTFs, structural parameters, i.e., the thickness d and the inclination angle θcol, are required to link to
the Mueller matrix data through an appropriate optical model. A biaxial orthorhombic model, similar
to that reported by Gospodyn et al., was selected to model the optical properties of the YF3 CTFs [32].
During the fitting process, the structure parameters d and θcol do not change with light wavelength,
incident angle, and azimuth orientation.
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Figure 4. Measured (blue dots) and simulated (red lines) Mueller matrix elements normalized by the
M11 for the YF3 sample prepared at a deposition angle α = 82◦ in the wavelength range of 300−1650 nm.
The measurements were performed at a light incident angle θ = 65◦ and an azimuth orientation φ = 0◦.

The Bruggeman effective-medium approximation (EMA) was employed for the YF3 CTFs to
evaluate the Mueller matrix data. The mixed medium was assumed to be composed of film material and
void material [33]. The void material was assumed to be a medium with a refractive index of 1 and an
extinction coefficient of 0 [32,33]. Since the CTF is a biaxial anisotropic medium, the direction-dependent
Bruggeman EMA was applied accordingly. In this model, the volume fraction of YF3 was constrained
to be constant in all directions for a certain point in the film. Thus, the effective dielectric constants
along the principal axis are expressed as [34](

1− g j
)
ε2

j + B jε j − g jεYF3 = 0, ( j = a, b, c), (5)
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where Bj is given by

B j =
(
g j − f

)
εYF3 −

(
1− f − g j

)
, (6)

where f represents the volume fraction of YF3 in the film, and gj represents the depolarization factor for
the optical j axis [35]. The void fraction f void is equal to 1 − f. The depolarization factors depend on the
shape of the columns, with ga + gb + gc = 1. With the direction-dependent Bruggeman EMA, the effective
principal dielectric constants εj are matched to the values obtained from the biaxial orthorhombic model
by varying the fitting parameters ga, gb, f, and the bulk-like dielectric function εYF3.

The fitted refractive indices are depicted in Figure 5. All the three principal indices of refraction
for the YF3 CTFs decrease slightly as the wavelength increases from 300 nm to 1650 nm. The value of
nc is noted to be the highest of the three principal refractive indices. For example, na = 1.249, nb = 1.233,
and nc = 1.286 are acquired for the 82◦-deposited film at 550nm. Since the structure in the column
direction can be regarded as laminar with the electric field parallel to the material layer, the measured
depolarization factor along this axis is gc ≈ 0 [36].
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Figure 5. Principal refractive indices na (dashed lines), nb (dotted lines), and nc (solid lines) of the
biaxial YF3 columnar thin films (CTFs) at deposition angles of 0◦, 70◦, and 82◦, respectively.

The thickness d and the inclination angle θcol of YF3 films obtained from the SEM and the MME
are shown in Figure 6. The MME results are consistent with the SEM results for two parameters.
The difference between the two measurement results can be attributed to the fact that the SEM
measurement was performed in the micrometer range while the MME measurement was performed in
the millimeter range.
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The relation between the deposition angle and the inclination angle fitted from MME is shown in
Figure 7. The experimental values were fitted by the modified tangent-rule equation [37]

θcol = tan−1(E tanα), (7)

where the optimized value of the constant E in the equation is 0.153.
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The principal refractive indices for YF3 films versus the deposition angle at 550 nm are shown
in Figure 8. All the principal refractive indices decrease as the deposition angle increases from 66◦

to 82◦. The refractive index perpendicular to the column direction (nb) for the sample deposited at
α = 82◦ is approximately 1.233 at 550 nm, which is much lower than that of dense YF3 films (1.489 at
550 nm). According to the two-dimensional simulation predictions, the decrease in the refractive index
of YF3 CTFs is caused by the decrease in the volume fraction of YF3 with the increase in the deposition
angle α [38]. These results are consistent with studies on niobium pentoxide, magnesium fluoride,
and tungsten oxide [12,32,39].
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Figure 8 shows the void fraction f void calculated with the Bruggeman EMA versus the deposition
angle. The void fraction of YF3 films increases with the increase in the deposition angle α. At α = 82◦,
the void fraction increases to approximately 45%, which implies that nearly half of the YF3 CTF is filled
with voids. The high void fraction is the result of more separated and inclined columns due to the
enhanced atomic self-shadowing effect and limited adatom diffusion [6]. By adjusting the angle of
particle flux, the effective refractive index and the void fraction of YF3 CTF can be designed within a
continuous range of values.

The highly oriented nanostructure of inclined columns indicates that the YF3 CTFs are biaxially
anisotropic, with the long axis along the column direction [6]. The differences in the three principal
indices of refraction, ∆ncb, ∆nca, and ∆nab, are used to quantify its anisotropy, which is defined by the
absolute values of nc − nb, nc − na, and na − nb, respectively. Figure 9 illustrates the refractive indices
differences versus deposition angles at λ = 550 nm. At α = 78◦, ∆ncb and ∆nab reach the maximum
0.056 and 0.029, respectively. A larger deposition angle leads to an increase in ∆nca, along with a
decrease in ∆ncb and ∆nab. The differences in the three principal refractive indices of the YF3 CTFs show
a strong dependence on the deposition angle. A smaller deposition angle results in a smaller structural
anisotropy of the film, as well as a minor optical anisotropy. However, a too oblique deposition angle
will result in a low volume fraction of YF3 and a low effective refractive index of the film. The volume
fraction of YF3 is another main factor affecting the difference in refractive index. The critical volume
fraction of YF3 of the maximum refractive index differences is deduced to be 59.5% from Figure 8.
The optimal deposition angle should balance these two competing factors to yield the maximum
differences in the three principal refractive indices [13]. In addition, according to the results of the
XRD measurements, the intrinsic YF3 is amorphous, which means the optical anisotropy caused by
crystallization is negligible.Nanomaterials 2020, 10, x FOR PEER REVIEW 9 of 11 
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In practical application, the GLAD technique provides a solution for preparing a gradient-
refractive-index structure, which can be used for anti-reflectors, solar cell absorbers, and radiative
coolers [8,40]. The anisotropic structure of films prepared by the GLAD technique will also induce
anisotropy in the thermal, electrical, and magnetic properties of thin films [11,25,41].

5. Conclusions

A series of YF3 CTFs with various column angles were fabricated by the GLAD method.
The as-deposited YF3 films grown at different deposition angles were found to be amorphous.
The columns of YF3 CTFs became increasingly separated and inclined as the deposition angle increased.
The structural parameters obtained from the MME agree with those viewed from the FE-SEM images
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for inclination angle and physical thickness. The optical properties of the studied samples obtained
from the MME measurement show that the highly oriented YF3 CTFs were biaxially anisotropic,
with the highest refractive index along the column direction. The three principal refractive indices
and the volume fraction of YF3 evaluated from the direction-dependent Bruggeman EMA decreased
significantly as the deposition angle increased due to the self-shadowing effect and limited adatom
diffusion. In addition, the refractive index differences of the columnar thin films in the three principal
directions strongly depend on the deposition angle and the volume fraction of YF3.
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