Ordered SnO₂@C Flake Array as Catalyst Support for Improved Electrocatalytic Activity and Cathode Durability in PEMFCs

Zhaoyi Yang 1,2, Ming Chen 1,2, Baizeng Fang 3,* and Gaoyang Liu 1,2,*

- ¹ School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30 College Road, Beijing, 100083, China; zhaoyiyangustb@163.com (Z.Y.); chenm3@sustech.edu.cn (M.C.)
- ² Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, 30 College Road, Beijing, 100083, China
- ³ Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada
- * Correspondence: bfang@chbe.ubc.ca (B.F.); liugy@ustb.edu.cn (G.L.)

Figure S1. SEM images of the as-synthesized SnO₂/CP with various magnifications: (a) low magnification, (b) high magnification.

Figure S2. XRD patterns of CP, SnO₂/CP and SnO₂@C/CP.

Figure S3. SEM images of the Pt-SnO₂/CP with various magnifications: (a) low magnification, (b) high magnification.

Figure S4. EDS spectra of SnO₂/CP (a), Pt-SnO₂/CP (b) and Pt-SnO₂@C/CP (c).

Figure S5. XRD patterns of Pt-SnO₂/CP and Pt-SnO₂@C/CP.

Figure S6. Nyquist plots of SnO₂/CP and SnO₂@C/CP (a) recorded at open circuit potential in N₂ saturated 0.5 M H₂SO₄ solution. Nyquist plots of Pt/C/GDL (b), Pt-SnO₂/CP (c) and Pt-SnO₂@C/CP (d) at the potential of 0.5 V, 0.4 V and 0.3 V in O₂-saturated 0.5 M H₂SO₄ solution.

Note: The EIS analysis was carried out based on the literature (K. Su, et al. Ionomer content effects on the electrocatalyst layer with in-situ grown Pt nanowires in PEMFCs, Int. J. Hydrogen Energ. 2014, 39, 3219-3225; Heijne et al, Identifying charge and mass transfer resistances of an oxygen reducing biocathode. Energy Environ. Sci., 2011, 4, 5035). Both the charge transfer resistance and the mass transport resistance, which are usually determined by the semi-circle and linear response in Nyquist plot, were obtained by fitting the experimental data using ZSimpWin software. The equivalent electrical circle shown below was selected to fit the impedance data.

Figure S7. Contact angles of CP (a), SnO₂/CP (b), SnO₂@C/CP (c), 40 wt%Pt/C/GDL (d), Pt-SnO₂/CP (e) and Pt- SnO₂@C/CP (f).

Figure S8. CV curves recorded in N₂-saturated 0.5 M H₂SO₄ for the Pt/C/GDL (a), Pt-SnO₂/CP (b) and Pt-SnO₂@C/CP (c) during 3,000 ADT cycles.

Catalyst	Substrate	Electrolyte	ECSA _{initial} m ² g ⁻¹	Reference
Pt-SnO ₂ @C OFA	Carbon paper	0.5 M H ₂ SO ₄	47.2	This work
Pt/ATO nanofiber	Graphite Carbon	0.5 M H ₂ SO ₄	33	Electrocatalysis, (2019), 10:262-271
Pt/ATO nano particles	Graphite Carbon	0.5 M H ₂ SO ₄	26	Electrocatalysis, (2019), 10:262-271
formic-Pt/ATO	Glassy Carbon	0.1 M HClO ₄	28	ACS Appllied Energy Materials, (2020), 3(6): 5774–5783
ethylenePt/ATO	Glassy Carbon	0.1 M HClO ₄	31	ACS Appllied Energy Materials, (2020), 3(6): 5774–5783
Pt/SnO ₂	Glassy Carbon	0.1 M HClO ₄	~16	Electrochem. Solid-State Letters, (2009), 12 B119
$Pt-SnO_2(400)/CN_x$	Glassy Carbon	0.5 M H ₂ SO ₄	52	Journal of Power Sources, (2013), 238(15): 144-149

Table S1. Comparison of the ESCA of the Pt-SnO $_2$ @C/CP with that reported in literature in acidic solutions.

Figure S9. SEM images of the Pt/C/GDL (a, b) and the Pt-SnO₂/CP (c, d) before and after ADT.