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Abstract: The report shows the strong impact of fullerene C60 nanoparticles on phase transitions
and complex dynamics of rod-like liquid crystal dodecylcyanobiphenyl (12CB), within the limit of
small concentrations. Studies were carried out using broadband dielectric spectroscopy (BDS) via the
analysis of temperature dependences of the dielectric constant, the maximum of the primary loss
curve, and relaxation times. They revealed a strong impact of nanoparticles, leading to a ~20% change
of dielectric constant even at x = 0.05% of C60 fullerene. The application of the derivative-based
and distortion-sensitive analysis showed that pretransitional effects dominate in the isotropic liquid
phase up to 65 K above the clearing temperature and in the whole Smectic A mesophase. The impact
of nanoparticles on the pretransitional anomaly appearance is notable for the smectic–solid phase
transition. The fragility-based analysis of relaxation times revealed the universal pattern of its
temperature changes, associated with scaling via the “mixed” (“activated” and “critical”) relation.
Phase behavior and dynamics of tested systems are discussed within the extended Landau–de
Gennes–Ginzburg mesoscopic approach.
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1. Introduction

Liquid crystals are soft materials where fluidity is matched to the limited crystalline order,
leading to unique properties significantly influenced by continuous or weakly discontinuous phase
transitions, associated with the emergence or disappearance of single elements of symmetry [1].
Nanoparticles are extremely small solids with diameters between 1 and 100 nm, directly bridging the
macro- and atomic/molecular-scales and yielding properties that are essentially different from the bulk
material [2]. Linking liquid crystals (LCs) and nanoparticles (NPs), one can obtain a unique soft matter
system due to the beneficial combination of extraordinary features of both species, enhanced by qualities
emerging due to the host–guest interactions. Unique properties of LCs + NPs composites can be tuned by
changing the concentration, type, and topology of nanoparticles [2–4]. The cognitive and fundamental
progress in describing such systems, particularly those related to distortions in symmetry introduced
by nanoparticles (including topological defects), is essential for the development of innovative
applications of LCs + NPs nanocolloids [3–7]. From the fundamental point of view, the relatively
simple characteristics of such a “composite” system are essential for numerical and theoretical
modeling [3,4,8–14]. The evidence for assembling nanoparticles, particularly in smectogenic LC matrix,
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which can create an “orientation field” responsible for some unique features, is also notable [15–19].
In the group of nanoparticles, fullerenes play an exceptional role as the dopant to LC matrixes due
to their very small size matched with extraordinary features. These have caused a notable boost in
studies of LC + fullerene composites in recent years [20–37]. Still emerging fundamental challenges are
supported by advanced possibilities of applications in innovative electrooptical devices [3,4,16,27,33,37].
First, new features of LC-type materials can be achieved without new chemical synthesis. Second, they can
be smoothly tuned by changing the concentration and characteristics of nanoparticles. Finally, emerging and
future applications can benefit from “added value features absent in pure LC materials” [3,4].

For the Physics of Liquid Crystals, phase transitions, related pretransitional effects, and dynamics
constitute the basic reference for validating theoretical models [1,38,39]. However, such fundamental
insights for LCs + NPs composites are still at the very beginning [17–19]. The broadband dielectric
spectroscopy (BDS) constitutes here the key experimental tool due to the possibilities of the advanced
investigations of dynamic properties matched with the sensitivity to intermolecular interactions or
dipole–dipole arrangements. The possibilities of the scan, covering even 15 decades in time/frequency
within a single measurement, are unique [40].

Notwithstanding, none of the studies carried out have addressed fundamental issues
regarding the characterization of phase transition and dynamics presented in the given report.
The available experimental evidence for LC + NP composites is limited regarding both dynamics
and pretransitional behavior, despite their significance for the development of theoretical modelings.
For instance, the dynamics insights suggest only the Arrhenius (A) or Vogel–Fulcher–Tammann (VFT)
Super-Arrhenius (SA) portrayal [3,4,15,16,20,22–24], although the general validity of such scaling in
“pure” LC compounds has been clearly questioned [41–45]. Tests of the quasi-critical pretransitional
behavior for static properties, so significant for “pure” LC compounds [46–54], is still at the beginning in
nanocomposites. The authors of this report tested the evolution of the dielectric constant in LC + BaTiO3

nanoparticle composites (diameter d~50 nm) for two “classical” rod-like liquid crystalline compounds:
pentylcyanobiphenyl (5CB) and dodecylcyanobiphenyl (12CB) [17–19]. They showed the preservation
of the form of the critical-like behavior, matched with strong changes in the isotropic liquid–mesophase
transitions’ discontinuities, as well as the value of the dielectric constant, even for tiny concentrations
of nanoparticles. To the best of the author’s knowledge, there have been no such studies for other
types of nanoparticles, particularly fullerenes.

This report presents the results of studies in smectogenic liquid crystal 12CB and its nanocolloids
with tiny concentrations of C60 fullerene (d ≈ 1 nm). Fullerenes, including C60, are unique nanoparticles:
despite their low dielectric constant and dimension, they constitute a unique addition to LC host
matrix, strongly changing properties. This can be linked to the ability of fullerenes to cause guest–host
interactions [20–37]. The applications of the innovative distortion-sensitive analysis presented below
revealed new features of the tested LCs–NPs composites, that have been hidden thus far. Notable is
the exceptional, long-range impact on the pretransitional behavior and the “glassy” complex dynamics.
The latter is explained by the enhanced Landau–de Gennes–Ginzburg mesoscopic model [14,38],
taking into account hallmarks of topological defects introduced by nanoparticles.

2. Materials and Methods

2.1. Samples Preparation

Dodecylcyanobiphenyl (12CB) belongs to the “classical” homologous series of LC compounds:
n-alkyl-cyanobiphenyls (nCB). Their geometry is approximately rod-like, with a relatively large permanent
dipole moment (µ ≈ 5D), parallel to the long molecular axis. For 12CB, the following mesomorphism
occurs: Isotropic Liquid (I)→TI−SmA = 331.3K→Smectic A (SmA)→TSmA−Solid = 302.4K→Solid (S) [1].
The approximate length of 12CB molecule is ca. 2.3 nm and the width 0.6 nm. The anisotropy
of dielectric permittivity ∆ε ≈ 16, which is related to ε|| ≈ 18.5, and ε⊥ ≈ 2.5 [1]. Fullerene C60

nanoparticles (diameter d ≈ 1nm) were purchased from Sigma-Aldrich. From dielectric tests in dilute
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solution, the dielectric constant of such fullerenes was estimated as ε ≈ 2.2 [25]. The 12CB and C60

nanoparticles were prepared in a dry box. LC samples were carefully degassed prior to measurement
and subsequently sonicated for 1 h and T = 60 ◦C to avoid sedimentation. The latter was also the reason
for reducing tests to 0.1%. Samples were placed in a flat-parallel gold-coated capacitor manufactured
by Invar. The basic gap of the capacitor was d = 0.2 mm. The “check-tests” were also carried out for
d = 0.02 mm, and after experiments, samples were always retested at room temperature to confirm the
lack of sedimentation. Even for concentrations x~10%, no significant impacts of sedimentation effects
were observed.

2.2. Experimental Procedures

Broadband dielectric spectroscopy (BDS) studies were carried out using the Novocontrol BDS
impedance analyzer yielding 5–6 digits resolution, with a Quattro Novocontrol temperature control
unit. The set-up directly yielded the real and imaginary parts of dielectric permittivity: ε∗ = ε′ + iε′′ ,
with 5–6 digits resolution and the temperature control ±0.01 K.

Dielectric spectra, detected as described in the given report studies, are illustrated in Figure 1.
The dielectric constant (ε) was determined from the stationary, frequency-independent domain of its real
part: for the results presented below, f = 10 kHz was taken as the reference, i.e., ε = ε′( f = 10) kHz [40].
The second part of the analysis was related to loss curves (ε′′ ( f )), reflecting basic “dynamic” features.
Relaxation times were determined using frequencies of loss curves’ peaks τ = 1/2π fpeak [40]. Generally,

loss curves’ peaks are described by two parameters
(

fpeak, ε′′peak

)
. The evolutions of the height of the

loss curve ε′′peak( f , T), which can be linked to the maximal energy coupled to the given relaxation
process/mode [8], were also tested.

Figure 1. The general view of temperature and frequency evolutions of dielectric spectra for the real
(ε′) and imaginary (ε′′ ) components of dielectric permittivity in pure 12CB. Curves are related to
frequency scans for subsequent temperatures. Note the appearance of loss curves for ε′′ ( f ) and the
static (horizontal) domain for ε′( f ). The latter is related to the dielectric constant. Red arrows indicate
Isotropic–Smectic A “clearing” temperature.

2.3. Data Analysis and Modeling

This section presents a brief summary of the experimental results for the pretransitional effects
and dynamics of rod-like LC materials, which are essential for the research presented below.
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The analysis of the temperature evolution of the dielectric constant in the isotropic phase revealed the
following behavior [46–54]:

ε(T) = ε∗ + a(T − T∗) + A(T − T∗)φ (1)

where T∗ > TC, and T∗ = TC
− ∆T∗ is the extrapolated temperature of a hypothetical continuous phase

transition; TC = TISmA is the clearing temperature of the Isotropic–Smectic A weakly discontinuous
phase transition; ∆T∗ is the measure of the discontinuity of the given phase transition. The power
exponent φ = 1− α = 1/2; the exponent α = 1/2 is related to the pretransitional anomaly of the heat
capacity (specific heat) [54].

The portrayal via Equation (1) was introduced for the isotropic–nematic (I–N) transition [42,47,48,51–54]
and later also for the isotropic–smectic A (I–SmA) [49] and isotropic–Smectic E [50] transitions.
Such general validity results from the fact that dielectric constant measurements detect the orientational
arrangement of permanent dipole moments within pre-mesomorhic fluctuations [48,51,53,54]. This is
caused by the equivalence of

→
n and −

→
n directors describing the dominated orientation of rod-like

molecules and occurring for all mesophases recalled above [1]. For the permanent dipole moment
parallel to the long molecular axis, this leads to the cancellation of the related contribution to the
dielectric constant within premesomorphic fluctuations [51–54]. Consequently, the dielectric constant
of fluctuations is less than for the surrounding isotropic liquid, i.e., εmeso.

f luct. << εIso.. At some distance
from the clearing temperature, dε/dT = 0, which is associated with the crossover dε/dT > 0 (close to
TC, the domination of the “antiparallel arrangement”)→dε/dT < 0 (remote from TC the domination of
the “parallel arrangement” with respect to the electric field) [54].

In ref. [42], for the isotropic phase of 5CB with the isotropic–nematic transition, it was shown that
similar behavior is exhibited in the maximum of the primary loss curve, namely:

ε′′peak(T) = ε∗peak + apeak(T − T∗) + Apeak(T − T∗)φ (2)

It is notable that Equation (1) is related to the same frequency for all temperatures, whereas in
Equation (2) each tested temperature is associated with a different frequency, i.e., ε′′peak(T) = ε′′peak(T, f ).
The link between the dielectric constant and the height of the loss curve is simple within the basic
Debye model, associated with a single relaxation time, namely: 2ε′′peak = ε− ε∞ [40], where ε∞ denotes
dielectric permittivity for the “infinite” frequency, where the impact of permanent dipole moment is
absent, and no pretransitional behavior can be expected from this contribution [40]. However, in the
isotropic phase of liquid crystalline compounds, there is a distribution of the relaxation times, leading to
the broadening of the loss curve on cooling towards the clearing temperature [42,54]. This should
influence the height of the loss curve but seems to be neutral regarding the functional form of
ε′′peak(T) [42]. In ref. [17] it was shown that the pretransitional effect, described in a manner that is
parallel to Equation (1), also appears in the SmA mesophase:

ε(T) = ε∗∗ + aSmA(T∗∗ − T) + ASmA(T∗∗ − T)φ (3)

where T∗∗ < TC and T∗∗ = TC + ∆T∗∗ is the temperature of the hypothetical continuous phase transition
detected when observed from the mesophase side of the clearing temperature. ∆T∗∗ is the metric of the
discontinuity of the I–SmA phase transition, detected from the mesophase side.

It is worth noting that this “mesogenic” (i.e., in the SmA phase) pretransitional effect should be
linked to isotropic liquid fluctuations (“droplets”) within the liquid crystalline “matrix”, and then
εIso.

f luct. >> εmeso...

The peak of the dielectric loss curve is characterized by the pair
(
ε′′peak, fpeak

)
. The second component

estimates the relaxation time: τ = 1/2π fpeak for the given relaxation process. In the isotropic liquid
phase, it can be recognized as the primary (alpha) process [40]. In the mesophase, the LC symmetry
causes the split into two modes (see below) [1]. The δ-mode in the SmA phase can be considered as the
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continuation of the alpha-relaxation process that is dominant in the isotropic liquid phase. There is
considerable evidence indicating the simple Arrhenius temperature behavior for relaxation times,
both in the isotropic liquid and LC mesophases ([1,38,39], and refs therein). However, the increase
in the tested temperature range yielded clear evidence for the Super-Arrhenius (SA) behavior [40],
namely [41–44]:

τ(T) = τ∞ exp
(

Ea(T)
RT

)
(4)

where Ea(T) denotes the apparent activation energy, R denotes gas constant, and τ∞ denotes the pre-factor.
The above relation simplifies “down” to the basic Arrhenius equation if in the given temperature

domain Ea(T) = Ea = const, and then Ea = dlnτ(T)/d(1/T); otherwise, for the temperature-dependent
activation energy one obtains Ea = dlnτ(T)/d(1/T), where Ha(T) stands for the apparent activation
enthalpy [44,45,55]. The SA equation cannot be applied directly for portraying experimental data
due to the lack of the general form of the activation energy, which causes substitute equations to be
required [40]. The most popular is the Vogel–Fulcher–Tammann (VFT) relation [40]:

τ(T) = τ∞ exp
(

B
T − T0

)
= τ∞ exp

(
DTT0

T − T0

)
(5)

where T0 is the extrapolated VFT singular [8].
The comparison of Equations (1) and (2) yields the VFT approximation of the activation energy via:

Ea(T) = RTB/(T − T0) = RDTT0/[(T − T0)/T]. The parameter DT refers to the fragility strength. It is
linked to the fragility coefficient m = mP

(
T = Tg

)
= d log10 τ(T)/d

(
Tg/T

)
, which is one of the basic

metrics of glassy dynamics: DT ∝ 1/m. Tg denotes here the experimentally detected or extrapolated
glass temperature estimated via the condition τ

(
Tg

)
= 100 s.

The linearized distortions’ sensitive analysis [55] has shown that better fitting quality is obtained
for the portrayals of critical-like behavior, namely [41–44]:

τ(T) = τ0(T − TC)
−φ (6)

the exponentφ = 1.5− 2.5 (τ(TC) ∼ 10−7 s) in the isotropic phase andφ = 8− 10 on cooling towards the
“glass temperature” (τ(TC) >> 102 s). Recently, the new equation linking the “activated” (Equation (5))
and “critical” (Equation (6)) behavior, for the complex dynamics in glassy and soft matter systems,
has been proposed [45]:

τ(T) = C
(T − T∗

T

)Ω
exp

(
Ω

T − T∗

T

)
(7)

where the prefactor C = τ0τ∞ and T∗ is the extrapolated singular temperature.
Equations (5)–(7) are associated with three fitted parameters, the number considered as the

indicator for the optimal relation describing the non-Arrhenius dynamics [40]. Notably, Equation (7)
was derived from the new “universal” form of the apparent fragility, namely [45]:

mP(T) =
d log10 τ(T)

d
(
Tg/T

) =
A

T − T∗
(8)

where Tg denotes the extrapolated hypothetical glass temperature related to the condition:
τ
(
Tg

)
= 100 s, and mP(T) is known as the “apparent fragility” or “steepness index”.

One can also consider the apparent activation enthalpy Ha(T) to obtain the parallel of Equation (8) [45]:

mP(T) =
d log10 τ(T)

d
(
Tg/T

) =
1

Tgln10
lnτ(T)
d(1/T)

= k
lnτ(T)
d(1/T)

= k×Ha(T) (9)
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In the analysis of experimental data, the nonlinear, multiparameter fitting is most often used—this is
the case regarding both dynamics and pretranstional effects [1]. Nevertheless, such a commonly used
procedure has to yield notable uncertainties/fitting errors. This fact, often “softly” discussed in research
papers, is significant even for the three most basic adjustable parameter fittings. To reduce this parasitic
factor, one should analyze at least 10x more experimental data than the number of fitted parameters
in the extended range of temperatures and use high-resolution experimental data. In this report,
such practice is supported by the derivative-based and distortion-sensitive analysis, which reduced
the number of fitting parameters and made it possible to obtain optimal values of parameters from the
linear regression analysis, thus also yielding their real fitting error [44,45,55].

We model the phase behavior of mixtures using Landau–de Gennes–Ginzburg-type mesoscopic
approach [5,14]. Of interest is the impact of spherical nanoparticles on the ordering of 12CB liquid
crystal. In 12CB, the coupling between orientational and translational ordering is strong enough to
exhibit direct 1st order isotropic to smectic A phase transition at the critical temperature TC = TI=SmA
when the temperature is reducing. In the following, we present a simple model that allows us to
estimate pretransitional (T > TC), critical T ∼ TC, and smectic structural (T < TC) behavior. In our
approximate analysis, we set the parameters such that nematic ordering is uniaxial, and we neglect
biaxial states. The orientational and translational degrees of freedom are described in terms of the

nematic tensor Q = S
(
→
n ⊗

→
n − I/3

)
and the smectic complex ψ = ηeiφ order parameter, respectively.

The nematic director field
→
n points, along with the local average uniaxial orientation of LC molecules

and the uniaxial order parameter S, measure the extent of fluctuations about
→
n . The smectic phase

field φ locates the smectic layers, and the extent of layer order is described by the translational order
parameter η. In the equilibrium SmA phase, the smectic layers are stacked along the nematic director
field (which is spatially uniform) with the layer spacing d0 = 2π/q0. This layer configuration is given
by φ = q0

→
n ·
→
r . Of interest are mixtures of 12CB LC and NPs, where we assume that the concentration

of spherical NPs is relatively low. We set the parameters such that NPs are essentially homogeneously
distributed and exhibit short-range anchoring interaction at the NP–LC interface, which tends to
align LC molecules along a local interface surface normal (the so-called homeotropic anchoring).
With this in mind, we express the free energy of the system as the sum of volume (fV) and NP–LC
interface (fi) free energy contributions F =

t
fvd3→r + NNP

s
fid2→r , where NNP stands for the number

of NPs. The volume contribution consists of the nematic condensation ( f (n)c ), smectic condensation
( f (s)c ), nematic elastic ( f (n)e ), external electric field ( f f ), smectic elastic ( f (n)e ), and coupling term ( fc).
We express these in terms of the order parameter as

f (n)c = 3
2 a(n)(T − T∗n)TrQ2

−
9
2 b(n)TrQ3 + 9

4 c(n)
(
TrQ2

)2
,

f (s)c = a(s)(T − T∗s)
∣∣∣ψ∣∣∣2 + b(s)

∣∣∣ψ∣∣∣4 + c(s)
∣∣∣ψ∣∣∣6,

fc = −
3Dcq2

0
2 ∇ψ

∗
·Q∇ψ.

f f = −
3ε0∆ε

2

→

E ·Q
→

E ,

f (n)e = L
2

∣∣∣∣∇Q
∣∣∣∣2,

f (s)e = C||
∣∣∣∣(iq0

→
n −∇

)
ψ
∣∣∣∣2 + C⊥

∣∣∣∣(→n ×∇)ψ∣∣∣∣2
fi = − 3w

2
→
v ·Q

→
v

(10)

The numerical coefficients are introduced for later convenience. The condensation terms and the
coupling term determine the equilibrium value of the nematic and smectic order. The quantities a(n),
b(n), c(n), a(s), b(s), c(s), DC, T∗n, T∗s are positive material constants. The nematic elastic term is expressed
in terms of a single positive bare elastic constant L. It roughly holds that K ∼ LS2 where K stands for
the representative average Frank elastic constant. It tends to establish uniform nematic ordering along
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a single symmetry breaking direction. The quantity
→

E stands for an external electric field, ε0 is electrical
permittivity, and ∆ε measures the electric field anisotropy. In LCs with positive anisotropy, uniaxial

→
n

tends to be aligned along
→

E . The smectic elastic term is weighted by the smectic compressibility (C||)
and bending (C⊥) elastic constant. These positive constants enforce equidistant layer distance and
alignment of the smectic layer normal along

→
n , respectively. Henceforth, we neglect an anisotropy

in smectic elastic constants and set C = C|| = C⊥. The interface term is weighted with a positive
anchoring constant, which favors alignment of

→
n along local interface surface normal

→
v . Note that

LC phase behavior strongly depends on the strength of the coupling constant Dc. On increasing Dc,
we obtain three qualitatively different regimes, separated by values D(1)

c and D(2)
c . On decreasing

temperature starting from the isotropic phase, one encounters the following phase behavior. In the
regime Dc < D(1)

c , there is a phase sequence I–N–SmA, where the I–N and N–SmA transitions are
discontinuous and continuous, respectively. Above the tricritical point Dc = D(1)

c and for Dc < D(2)
c ,

the N–SmA phase transition is discontinuous. Above D(2)
c , we have a direct discontinuous I–SmA

phase transition. Regarding the impact of “small” nanoparticles on smectogenic LC, it is necessary to
first introduce the volume concentration of NPs

p =
NNPvNP

V
(11)

where vNP is the volume of a nanoparticle, and V is the volume of a system. In our case, NPs are
spherical, characterized by radius r, therefore vNP = 4πr3/3.

If NPs are homogeneously distributed within a sample, then their average separation is given by

lNP =

(
4π
3p

)1/3

r (12)

For example, for p = 0.001 and r = 1 nm, Equation (12) yields lNP ∼ 16 nm. The volume concentration
and mass concentration c are, in the diluted regime, related via c ∼ p(ρNP/ρLC), where ρNP ∼ 1.7 g/cm3

and ρLC ∼ 1 g/cm3 are mass densities of fullerene and LC, respectively. Several other material-dependent
lengths play an important role in our treatment. These are the nematic/orientational order parameter
length (ξn), smectic order parameter length (ξs), nematic penetration length (λ), external field
coherence length (ξE), and surface anchoring extrapolation length (de). In terms of coefficients
introduced in our model, we express these as

ξn ∼

√
L

a(n)(T − T∗n)
, ξn ∼

√
C

a(s)(T − T∗s)
, λ ∼

√
K

Cq2
0η

2
, ξE ∼

√
K

ε0∆εE2 , de ∼
K
w

(13)

Note that we expressed the order parameter correlation lengths ξn and ξs at temperatures above
the relevant phase transition temperature. In our approximate treatment, we describe the average free
density f ∼ F/V as

f = f v +
3p
r

f i, (14)

where (. . .) stands for the spatial average.

3. Results and Discussion

Figure 2 shows temperature evolutions of the dielectric constant and the maximum (peak) of
loss curves for 12CB and 12CB + C60 fullerene nanocomposites in the Isotropic, Smectic A, and Solid
phases. The behavior in the isotropic liquid phase can be well portrayed via Equations (1) and (2).
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The evolution in the Smectic mesophase follows Equation (3) for the dielectric constant, and can be
described via the relation:

ε′′peak(T) = ε′′peak + aSmA
peak (T

∗∗
− T) + ASmA

peak (T
∗∗
− T)φ (15)

where T∗∗ is for the extrapolated singular temperature.

Figure 2. Temperature evolutions of the dielectric constant ε = ε′(T, f = 10 kHz) and primary loss
curves’ maxima ε′′peak( f , T), 100 Hz < f < 1 GHz for 12CB and 12CB + C60 fullerene (0.1% mass fraction)
nanocomposite. The inset shows the behavior of the dielectric constant in the isotropic liquid phase,
for the immediate vicinity of the clearing temperature.

The exponent φ = 1− α ≈ 0.5 for all tested LC-based systems—both in the isotropic liquid and
Smectic A, in pure 12CB and its composites with C60 fullerene. However, significant influence on the
phase transition discontinuity ∆T = TI−SmA − T∗ takes place.

The estimation of fitted parameters was supported by the derivative analysis of experimental data,
shown in Figures 3 and 4. They revealed the pronounced pretransitional anomalies for T→ TI−SmA ,
well portrayed by relations resulting from Equations (1)–(3) and (15), namely:

dε(T)
dT

= Aφ(T − T∗)−α + a (16)

dεpeak(T)

dT
= Apeakφ(T − T∗)−α + apeak (17)

dε(T)
dT

= ASmAφ(T∗∗ − T)−α + aSmA (18)

dεpeak(T)

dT
= ASmA

peak φ(T
∗∗
− T)−α + aSmA

peak (19)
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−

Figure 3
Figure 3. The temperature behavior of the derivative of the dielectric constant in subsequent phases of
liquid crystalline 12CB and the composite 12CB + C60 (0.1%) fullerene. The plot was obtained based on
experimental data given in Figure 2. Solid curves are related to Equations (16) and (18). Solid arrows
indicate phase transition temperatures. Short, dashed arrows indicate the onset of distortions remote
from the I–N transition and near the SmA–S transition.

−

−

Figure 4
Figure 4. The temperature behavior of the derivative of the maximum of the primary dielectric loss
curve in subsequent phases of liquid crystalline 12CB and the composite 12CB + C60 (0.1%) fullerene.
The plot has been obtained based on experimental data given in Figure 2. Solid curves are related to
Equations (17) and (19). Solid arrows indicate phase transition temperatures. Short, dashed arrows
indicate the onset of distortions remote from the I–N transition and near SmA–S transition.

Solid curves in Figures 3 and 4, based on Equations (16)–(19), clearly show that the impact of
pretransitional fluctuations extend up to at least TC + 65K in the isotropic liquid phase and covers
almost the whole liquid crystalline mesophase. Small distortions appear only in the immediate vicinity
of the SmA–Solid-phase transition, particularly in nanocomposites. In the opinion of the authors,
they indicate the presence of the SmA→ S pretransitional effect, although too weak for a reliable
parameterization. It is accompanied by a pretransitional effect in the solid phase. When comparing
Figures 3 and 4 it is visible that for dielectric constant data for pure 12CB and 12CB + C60 composite
overlaps. This fact indicates that the addition of C60 nanoparticles influences only constant terms
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denoted as “ε∗“ in Equation (1). Notably, the addition of only 0.1% of C60 nanoparticles decreases the
dielectric constant by ~20% in the isotropic liquid and ~6% in the SmA mesophase.

Regarding dynamics, in the isotropic liquid phase, the single relaxation process (alpha, primary)
dominates (Figure 5). In the SmA phase, there is a clear manifestation of two relaxation modes,
presented in Figure 6. The comparison of Figures 5 and 6 can suggest that the δ-mode relaxation
process can be considered as the successor of the alpha relaxation. The visual test of results presented
in Figure 5 indicates the Super-Arrhenius (SA, Ea(T)) dynamics for pure 12CB and its nanocomposite
with x = 0.1% fullerene.

Figure 5 Figure 5. The evolution of primary relaxation times in the isotropic liquid phase of 12CB and its
nanocolloids with C60. For 12 CB with x = 0 and x = 0.1%, a fair portrayal by the SA Equation (1)
is obtained (solid curves). Fitted parameters are given. For 12CB + x = 0.05% of C60 composites,
experimental data follows the Arrhenius relation with the activation Ea = 30 KJ/mol.

−

−

−

−

−

−

−

Figure 6Figure 6. The relaxation map in SmA mesophase of 12CB and its nano colloids with C60 fullerenes.
The “long-time” relaxation process is portrayed by the SA Equation (1). The short duration of “tumbling”
relaxation follows the basic Arrhenius pattern with activation energies given in the Figure.

For x = 0.05% nanocomposite, the dynamics is apparently Arrhenius type (the activation energy
Ea(T) = Ea = const), shown by the straight-line portrayal in Figure 5. For this amount of C60 fullerene,
the dynamics are also notably faster. For pure 12 CB and x = 0.1%, the dynamics are apparently of the
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SA type (the bent line in Figure 5). As shown in Figure 6, also in the SmA phase, the dynamics for
x = 0% and x = 0.1% are related to almost the same time scales, whereas x = 0.05% is visibly faster.
The “visual analysis” indicates the basic Arrhenius-type evolution in the smectic A phase. It is also
a considerably faster tumbling mode of relaxation. However, for this case, the addition of fullerenes
strongly slows down the relaxation process.

Figure 7 shows the results of the fragility-focused analysis (Equations (8) and (9)) of experimental
data for the alpha-relaxation in the isotropic phase and δ-relaxation in the SmA mesophase.
The distortion-sensitive tests are able to reveal the subtle distinction between the non-Arrhenius
and the basic Arrhenius dynamics. The latter should appear as the horizontal line. It is visible that
such behavior is an absent event for the “visually Arrhenius” behavior appearing in Figures 5 and 6.
The occurrence of “universal” behavior of the apparent fragility, given by Equation (8), is notable,
although the addition of C60 nanoparticles introduces discrepancies in the immediate vicinity of the
I–SmA and SmA–S phase transition. The experimental validation of Equation (8) in Figure 7 enabled
the portrayal of the clearly non-Arrhenius behavior in Figure 5 via the “mixed” (“activated”, “critical”)
Equation (7). Singular temperatures T∗ were determined using results presented in Figure 6, via the
condition: 1/mP(T∗) = 0, [39].

Figure 7. Temperature evolutions of the apparent fragility in the 12CB and its nanocolloids with
C60 fullerenes.

Finally, we discuss the phase behavior of mixtures using our mesoscopic modeling. We first
consider how NPs affect pretransitional behavior above Tc. Afterward, we discuss reentrant
Super-Arrhenius (SA)-Arrhenius–Super-Arrhenius (SA) behavior that occurs when the concentration c
of NPs increases. Above the SmA-I phase transition temperature, Tc terms are linear and quadratic
in the nematic degree of ordering dominate behavior in f . These contributions are expressed as

∆ f = a(n)(T − T∗n)S
2
− σS, where we take into account Equations (10), and σ = ε0∆εE2 + pw/r.

Minimization of ∆
⇀
f yields the degree of paranematic ordering above Tc:

S ≈
σ

a(n)(T − T∗n)
=
ε0∆εE2 + pw/r

a(n)(T − T∗n)
=
ξ2

n

ξ2
E

+ p
ξ2

n
rde

(20)

Therefore, the para-nematic ordering is linearly proportional to p. Next, we discuss possible reasons
for the SA–Arrhenius–SA crossover behavior on the increasing concentration of NPs. The measurements
reveal some glassy features in the pure 12CB sample. In the presence of a relatively weak concentration
of NPs (x ≈ 0.0005) glassy features become negligible, suggested by the Arrhenius-type behavior of the
dominant structural relaxation time τ. However, for x ≈ 0.001, glass-type (SA dynamics) characteristics
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already reappear. A possible explanation is as follows. Note that pure SmA exhibits quasi long-range
order due to Landau–Peierls instability. Because of its smectic layer, fluctuations diverge logarithmically
with the system size. These relatively strong thermal fluctuations and the mosaicity of the system
introduce some randomness, and consequently, the observed glassy features (i.e., the VFT-type
temperature behavior of τ). For a relatively weak concentration of NPs, which we refer to as the
diluted regime, the presence of NPs effectively suppresses the smectic layer fluctuations. Consequently,
the degree of randomness decreases, resulting in the prevailing Arrhenius-type behavior in τ(T).
To demonstrate this effect, we consider key terms in free energy expression given by Equations (10).

We consider terms related to the nematic director, which we represent by the angle θ = arcCos(
⇀
⇀
n ◦

⇀
v ).

In the ideal SmA phase, it holds that θ = 0. Note that the smectic layer bending term tends to align with
the smectic layer normal along

→
n . Therefore, fluctuations in

→
n are, for a sufficiently strong constant C,

strongly coupled with fluctuations in φ. For relatively weak fluctuations in
→
n , it holds that

∆ f =
k
2
|∇θ|2 + Cq2

0η
2θ2 (21)

where we took into account only the free energy terms, which depend on
→
n up to the second-order

expansion in θ. We expand θ using the Fourier decomposition θ =
∑
θqei

⇀
q ◦

⇀
r . We introduce it into

the free energy term ∆F =
∫

∆ f d
3⇀

r , where we neglect fluctuations in order parameter amplitudes S

and η. It follows that ∆F = VCq2
0η

2∑∣∣∣θq
∣∣∣2( q2λ2

2 + 1
)
. Taking into account the equipartition theorem,

we obtain the equation for the amplitude of fluctuations
∣∣∣θq

∣∣∣ = θ0√
1+q2λ2/2

, where θ0 =
√

kBT/VCq2
0η

2.

Note that fluctuations
→
n do not diverge in the long-wavelength limit q = 0 due to condensation of

smectic layers, which act on
→
n as an external field (i.e., nematic Goldstone fluctuations become massive

in the SmA phase, related to the Higgs-type mechanism). The average degree of nematic fluctuations
is represented by 〈

θ2
〉
=

1
v

∫
θ2d3→r =

∑∣∣∣θq
∣∣∣2 (22)

where 〈. . . . . .〉 stands for the ensemble averaging. The sum is realized over all possible wave vectors
↔
q ,

i.e., in the amplitude interval [qmin, qmax]. Here, qmin ≈ 2π/R ≈ 0, where R stands for the characteristic
linear sample size, and qmax ≈ 2π/d0. If NPs are present, they reduce the fluctuation spectrum.
Consequently, there are fewer contributions in the summation (over positive), and thus, the value〈
θ2

〉
is reduced. In a rough approximation, we set that, in the presence of NPs, the lower integration

limit is increased to qmain ≈ 2π/lNP. Consequently, in the diluted regime, one expects Arrhenius-type
dynamics. With increasing c we enter the distorted regime, where NPs are strong enough to globally
distort the LC sample. Below we derive an estimate for the critical condition of this phenomenon.
In our rough estimate, we approximate the LC structure in the diluted regime by a bulk-like uniform
SmA structure, which we refer to as the uniform structure. The competing distorted structure is
characterized by apparent elastic distortions in the LC medium. We set the parameters so that they
appear to accommodate local ordering tendencies at LC–NP interfaces. In the following, we estimate

the average free energy density penalties of uniform structure (
↼
f = fUS) and distorted structure

(
↼
f = fDS). The critical (or crossover) condition, where apparent structural changes in LC ordering

appear, are inferred from the condition
↼
f US = fDS. The key free energy density contributions in this

competition are the smectic elastic f (s)e and NP–LC interface term fi, see Equations (10). In the uniform

structure, if holds that
〈

f (s)e

〉
= 0, However, the nematic director, in general, does not match easy

directions at LC–NP interfaces. It follows that fi = wS/2
(
3(
→
n .
→
v )

2
− 1

)
, yielding

↼
f US ≈ 0. On the other

hand, we set the parameters such that in the distorted structure, the homeotropic anchoring is obeyed
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at NP–LC interfaces, thus f i = −w
→

S . Consequently, elastic distortions must be introduced in the LC
medium. We assume that the characteristic distortion length scale of elastic distortions is equal to

the average separation lNP between NPs. It follows that f
(s)
e = Cη2q2

0
d2

0
l2NP

, and fDS = Cη2q2
0

d2
0

l2NP
−wpS.

The condition fDS = fUS could be rewritten into the expression

ded2
0

rλ2 =
(4π

3

)2/3
p1/3 (23)

For p = 0.001, it follows that d0d2
e /λ2

0r ≈ 0.3, which is a sensible value. Therefore, for a high enough
concentration, a glass-like structure is expected, which is fingerprinted in the Super-Arrhenius dynamics.

4. Conclusions

Generally, studies of the temperature evolution of the dielectric constant enable direct insight into
the orientational, uniaxial, ordering that comprise the key symmetry features of both nematogenic
and smectogenic rod-like liquid crystalline compounds. This report, in agreement with earlier studies
of the author, clearly shows that the parameterization of the dielectric constant in the smectic A and
isotropic phase is totally dominated by the pretransitional effect associated with the I–SmA weakly
discontinuous phase transition. For the isotropic phase, this can be clearly related to the increasing
amount of order, in an antiparallel manner, of permanent dipole moments within “internally ordered
prenematic fluctuation”. This leads to a decrease in ε(T→ TISmA), T > TISmA. On the low-temperature
side of the clearing temperature, there is a long-range increase in ε(T→ TISmA), T < TISmA. This can
be explained by isotropic fluctuations—heterogeneities appearing in the isotropic “matrix”—with the
notably larger dielectric constant compared to the surrounding constants dominated by the antiparallel
arrangement. Consequently, should the smectic A phase in 12CB be considered rather as the kind of
“critical homo-composite” with isotropic fluctuations—”droplets”—that are heterogeneities appearing
within the basic SmA structure? Such a “homo-colloidal” picture seems to take place also in the
isotropic liquid phase as well as in the nematic phase.

The relatively small addition of C60 fullerene nanoparticles strongly influences dynamics and
phase transition. For the latter, one can indicate strong changes in metrics of the discontinuities of
the I–SmA transition (∆T∗, ∆T∗∗) and the “general” value of the dielectric constant, which is realized
mainly via the shift of ε∗ and ε∗∗ coefficient in Equations (1) and (2). For dynamics, the ability of C60

dopants to facilitate the crossover from the Super-Arrhenius to the Arrhenius pattern is notable.
Increased values of TISmA with respect to the bulk sample reveal that for the range of studied

concentrations, NPs effectively support the onset of orientational ordering. On the other hand,
they effectively suppress phase transition into the crystal phase, which is fingerprinted in an apparent
decrease in the crystallization phase temperature. Next, we observe an increasingly suppressed
dielectric response with increasing x values. Note that for ferroelectric NPs [10], different behavior
is observed with varying x values due to the inherent polarization of NPs in the latter case.
Furthermore, with increasing x values, we observe intriguing behavior in dynamics in the isotropic
phase. Namely, in bulk and for x = 0.001 we obtain SA-type dynamics, and for x = 0.0005, one observes
an Arrhenius type behavior. In general, SA fingerprints glass-type features. Our measurements
reveal some kind of reentrant behavior. With increasing x values, the glass-type characteristics are
first suppressed (x ∼ 0.0005), and for large concentrations (x ∼ 0.001), SA behavior is recovered.
Namely, NPs could efficiently suppress smectic fluctuations in the isotropic phase. NPs are expected to
shrink the spectrum of nematic director field fluctuations. Note that

→
n tends to be aligned along with

the corresponding smectic normal layer, and consequently suppression of fluctuations in
→
n indirectly

also suppresses fluctuations in smectic layers. Furthermore, NPs in our study seem to be coupled with
the degree of LC ordering, which is fingerprinted in an increase in TISmA. Therefore, qualitative change
in glassy behavior could be due to the dominance of NP-driven suppression of layer fluctuations for
x ≈ 0.0005 and the dominance of NP-driven disorder for higher concentrations.
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In summary, we would like to highlight the new results presented in this article:

• The evidence showing that even a tiny (very small concentration) addition of fullerenes can strongly
change the dielectric constant (coupled to the arrangement of dipole moments) and the maximum
of the primary loss curve (coupled to the energy associated with the given relaxation process).

• The temperature evolution of the above properties is related to the isotropic–Smectic A transition,
in the liquid phase up to TISmA + 65K and in the whole smectic phase.

• The addition of fullerenes does not change the functional forms of pretransitional anomalies,
particularly the value of the “critical” exponent.

• There are hallmarks of the pretransitional effect for the SmA–Solid transition, enhanced by the
addition of fullerenes.

• The increase in the number of fullerenes shifts dynamics from the clear SA (“glassy”) pattern to
the (almost) Arrhenius pattern, and finally back to SA scaling again.

• The Landau–de Gennes phenomenological model is the base for portraying phase transition
impact in liquid crystals, mainly related to thermodynamic and static properties. This report shows
that it can be extended to describe composites of smectogenic LC and nanoparticles (fullerenes)
and obtain the SA-A–SA crossover in dynamics when changing the concentration of fullerenes.

Finally, we would also like to attract attention to the new way of analysis based on the apparent
fragility index and the new “mixed” equation linking the activated (exponential) and critical-like
terms—issues which have been not addressed so far.
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