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Abstract: Tin disulfide (SnS2) is regarded as one of the most suitable candidates as the electrode
material for sodium-ion batteries (SIBs). However, the easy restacking and volume expansion
properties of SnS2 during the charge/discharge process lead to the destruction of the electrode
structure and a decrease in capacity. We successfully synthesized a SnS2 nanocrystalline-anchored
three-dimensional porous graphene composite (SnS2/3DG) by combining hydrothermal and
high-temperature reduction methods. The SnS2 nanocrystalline was uniformly dispersed within
the connected reduced graphene oxide matrix. The SnS2/3DG battery showed a high reversible
capacity of 430 mAh/g after 50 cycles at 100 mA/g. The SnS2/3DG composite showed an excellent rate
capability with the current density increasing from 100 mA/g to 2 A/g. The excellent performance of
the novel SnS2/3DG composite is attributed to the porous structure, which not only promoted the
infiltration of electrolytes and hindered volume expansion for the porous structure, but also improved
the conductivity of the whole electrode, demonstrating that the SnS2/3DG composite is a prospective
anode for the next generation of sodium-ion batteries.
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1. Introduction

The demand for high-performance electrochemical energy storage and energy conversion devices
is ever-growing [1–3]. Although lithium ion batteries (LIBs) have been widely adopted, lithium
sources are limited, which makes meeting the ever-increasing demand for large-scale applications
difficult [4]. Similar to the electrochemical reaction mechanism of LIBs, sodium-ion batteries (SIBs) are
considered one of the most promising alternatives to LIBs due to the abundant sodium resources and
their low cost [5,6]. Significant effort has been invested in developing advanced electrode materials to
improve the performance and practical value of SIBs [7,8]. SnS2 has been widely used as an anode
material for SIBs due to its high theoretical specific capacity, large interlayer spacing, unique layered
structure, and environmental friendliness [9]. The octahedral coordination structure is formed by each
Sn atom connected with eight S atoms through covalent bonds. The layers of SnS2 interact with each
other through van der Waals forces [10,11]. The interlayer spacing also provides a pathway for the
migration of ions. However, like other transition metals (e.g., oxides and sulfides), SnS2 suffers from
low conductivity. The volume expansion effect (~420%) can cause damage as it leads to the serious
pulverization of the crystal structure [12,13]. Researchers have reported that the volume expansion
effect of SnS2 materials could be mitigated by nanosizing to improve the electrochemical properties of
SnS2 materials, such as SnS2 nanorods [14,15], SnS2 nanosheets [16,17], SnS2 nanoflowers [18,19], etc.
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However, nanomaterials tend to agglomerate, and the high specific surface area of nanomaterials may
cause side reactions with the electrolyte and thick solid electrolyte interphase (SEI) films may form on
the surface of the materials, which seriously affects the cycle performance and rate performance of
the electrode.

Compositing with carbon materials is also an effective method to improve the electrochemical
performance of SnS2 [7]. Among these, graphene stands out due to its excellent mechanical, thermal,
and electron transfer ability properties [20]. The introduction of graphene is supposed to effectively
prevent the stacking of SnS2 nanosheets as the van der Waals force between adjacent layers of SnS2 is
destroyed by graphene, which is favorable for the electron transfer rate [21–23]. To further improve
the electrochemical performance of SnS2 as the SIB anode, various structures of SnS2/graphene hybrids
have been designed [23,24]. In addition, controlling the morphology and particle size of the material
can improve its electrochemical performance. Among the methods of synthesizing SnS2/graphene,
the in-situ hydrothermal process is the most common. This method can simultaneously control the
structure of composite materials and the morphology and particle size of SnS2 [25]. However, due to
the limitation of synthesis conditions (low pressure and temperature), the degree of carbonization of
graphene is low, which seriously affects the rate performance of composite materials. For instance,
Liu et al. successfully prepared few-layer SnS2/graphene composites with a high capacity of 521 mAh/g
(at 0.05 A/g) by stripping the commercial SnS2 particles with graphene oxide via the hydrothermal
reaction. However, the capacity was only 165 mAh/g at 2 A/g [26].

In this study, to simultaneously achieve a high capacity and a high rate, we used an effective method
that combines the hydrothermal and high-temperature processes to prepare a SnS2 nanocrystalline
anchored 3D porous graphene composite. The presence of graphene can effectively inhibit the volume
expansion effect of SnS2 and improve the conductivity of the SnS2/3DG composite. The two-step
reduction method significantly improves the reduction degree of graphene, resulting in an enhancement
in the rate performance of the SnS2/3DG composite.

2. Materials and Methods

2.1. Preparation of the SnS2 Nanocrystalline

We added 10 mmol of tin(IV) chloride pentahydrate (SnCl4·5H2O) (Aldrich, ≥99.9%, St. Louis,
MO, USA) and 10 mmol of anhydrous citric acid (C6H8O7) (Aldrich, ≥99.9%) to 80 mL of deionized
water and stirred for 1 h. Another 10 mmol of thioacetamide (CH3CSNH2) (Aldrich, ≥99.5%, St. Louis,
MO, USA) was added to the mixture after SnCl4·5H2O and C6H8O7 were completely dissolved.
The mixture was stirred for an additional 30 min. Next, the well-dissolved mixture was transferred
into a 100 mL hydrothermal reaction kettle and reacted at 130 ◦C for 12 h. After the reactor cooled to
room temperature, the obtained SnS2 precipitate was centrifuged with deionized water and ethanol.

2.2. Preparation of SnS2/3DG Composite

The prepared SnS2 dispersion with a concentration of 80 mg/mL was treated with ultrasonic
dispersion for 6 h. The graphite oxide powder (GO, Changzhou No.6 element Co., Ltd., Chang Zhou,
China) was dispersed in deionized water (the preparation concentration was 4 mg/mL) and the
graphene oxide suspension was obtained after ultrasonic stripping for 1 h. Next, 20 mL of the GO
suspension was added into the reaction bottle and 1 mL of SnS2 dispersion was added with a pipette
gun under ultrasonic conditions. After continuous ultrasonic dispersing for 30 min, 320 mg of vitamin
C (VC) (Aldrich, 99.7%, St. Louis, MO, USA) was added to the reaction bottle. The mixed solution in
the reaction bottle was placed in the 80 ◦C water bath after the VC was dissolved evenly. The mixture
hydrothermally reacted for 8 h to obtain a hydrogel with a monolith structure. The hydrogel was
then freeze-dried to obtain the three-dimensional porous graphene-loaded SnS2 composite (SnS2/3DG).
Finally, the SnS2/3DG was placed in a tubular furnace and thermally treated at 400 ◦C for 2 h in an
argon atmosphere.
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2.3. Characterizations

The microstructure of the material was characterized by a Philips FEI Quanta (Hillsboro, OR,
USA) 200F high-resolution scanning electron microscope (SEM) and transmission electron microscope
(TEM). The phase analysis was carried out by a Rigaku smart-lab III X-ray diffraction (XRD), using a
Cu-Kα radiation source. The proportion of each component in the composite was analyzed by a
thermogravimetric (TG) analyzer (TG209F1, Netzsch, Selbu, Germany). The Raman spectra of the
materials were analyzed by a Horiba LabRAM HR spectrometer (Pasadena, CA, USA).

For the electrochemical characterization, the SnS2/3DG composite powder, conductive carbon
black, and adhesive polyvinylidene fluoride (PVDF) were mixed with a mass ratio of 8:1:1, and a
certain amount of N-methylpyrrolidone (NMP) was used as solvent to grind and prepare uniform
slurry. The slurry was coated on the pretreated clean copper foil collector and dried in a vacuum
oven at 100 ◦C for 12 h. The CR2032 button cell was assembled in the glove box, as the sodium plate
was used as the counter electrode and a glass fiber (GF/D, Whatman, Buckinghamshire, UK) porous
membrane was used as the separator. A 1 M ethylene carbonate (EC) and dimethyl monocarbonate
(DMC) solvent with a volume ratio of 1:1, which was dissolved with sodium perchlorate (NaClO4),
was used as the electrolyte. The cyclic voltammetry (CV) of the cell was characterized by a VMP3
(Biologic, Paris, France). The electrochemical impedance spectroscopy (EIS) was measured on a VMP3
workstation with an amplitude of 5 mV and a frequency range of 0.01–100,000 Hz.

3. Results and Discussion

3.1. Structure and Morphology Analysis of SnS2 and SnS2/3DG Composites

The SnS2/3DG composite was fabricated on the basis of the hydrothermal method followed by a
controllable, low-temperature water bath process. As illustrated in Figure 1, the pure SnS2 particles
were obtained by mixing CH3CSNH2 and SnCl4·5H2O. The adsorbed Sn4+ ions reacted with the
gradually released H2S from the decomposition of CH3CSNH2 during the hydrothermal process [27],
while SnS2 uniformly nucleated to form nanoparticles. Next, the prepared SnS2 nanoparticles were
immersed into the well-dispersed GO suspension, and a mild solvothermal method with the adding
of reducing agent was introduced to not only efficiently disperse the SnS2 nanoparticles but also to
reduce GO. Finally, the porous SnS2/3DG composite was successfully fabricated by the freeze-drying
and thermal reduction step. This unique 3D porous structure facilitates the migration of Na+ and
electrons and benefits the high sodium storage performances.
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SnS2 nanocrystalline was successfully synthesized by the hydrothermal process and SnS2/3D
composite was obtained by the low-temperature water bath method. Figure 2a shows the XRD patterns
of the pure SnS2 nanocrystalline and the SnS2/3D composite. All diffraction peaks of pure SnS2

nanocrystalline corresponds well with the standard spectrum of hexagonal SnS2 (JCPDS 23-0677) [27]
without any evident impurity. In addition, there is an extra diffraction peak near 2θ = 25◦ of the
SnS2/3DG composite, corresponding to the typical (002) plane of graphene [28,29]. The Raman spectra
of the pure SnS2 nanocrystalline and the SnS2/3DG composite are shown in Figure 2b. The characteristic
peak of the SnS2 nanocrystalline near 315 cm−1 reveals the vibration modes of A1g of SnS2 [30].
In addition, there are two other well-defined peaks at 1355 and 1590 cm−1, which belong to the D and
G peaks of graphene, respectively. The prominent D peak refers to the vibration caused by the defects
of graphene, while the G peak refers to the in-plane vibration of the sp2 hybridized carbon atoms
of graphene [31,32]. The intensity ratio of the D band to the G band (ID/IG) can show the disorder
degree of the carbon material. The calculated ID/IG value of the SnS2/3DG composite decreased to 1.29,
which proves the high reduction degree of graphene after the thermal reduction process [33].
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The morphologies of the SnS2 nanocrystalline and the SnS2/3DG composite are shown in Figure 3.
The TEM image in Figure 3a reveals that the SnS2 nanocrystalline with an average diameter of 20 nm
was seriously agglomerated, which is not conducive to maintaining good electrochemical stability.
Figure 3b,c shows the SEM spectra of the SnS2/3DG composite at different magnifications where the
SnS2/3DG composite displays obvious 3D porous morphology with the graphene sheets connecting
to form a continuous conductive network. The complete monolith structure of the SnS2/3DG is
shown in the inset of Figure 3b. Figure 3d shows the TEM spectrum of the SnS2/3DG composite,
where SnS2 nanocrystalline particles are uniformly dispersed on the graphene sheets with no obvious
agglomeration because the van der Waals force between the adjacent SnS2 is destroyed by well-dispersed
graphene sheets [18]. The unique three-dimensional porous structure and the interaction between
SnS2 nanocrystals and graphene provide a good possibility for the electrochemical performance of the
SnS2/3DG composites.
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inset: the photo of the SnS2/3DG monolith; (d) TEM image of the SnS2/3DG composite.

In addition, the EDS mapping in Figure 4a displays the good distribution of Sn, S, and C elements
in the SnS2/3DG composite, which may guarantee the cycling stability. Figure 4b shows the TG curves
of the pure SnS2 and the SnS2/3DG composite. For the pristine SnS2 sample, the mass loss in the
range from room temperature to 300 ◦C occurred due to the evaporation of water molecules, while the
mass loss over 300 to 800 ◦C represents the transformation from SnS2 into SnO2 [34]. The SnS2/3DG
composite also displayed a mass loss in the temperature range of 25 to 300 ◦C, which was due not only
to the evaporation of water molecules, but also to the decomposition of residual oxygen-containing
functional groups in graphene. SnS2 gradually transferred to SnO2 from 300 to 450 ◦C, and the excess
SnS2 was further oxidized and the graphene decomposed completely at the temperature range of 450
to 800 ◦C. The calculated content of SnS2 was 76 wt%.
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3.2. Electrochemical Analysis of SnS2/3DG Composites

To understand the sodium storage process of a SnS2/3DG anode, Figure 5a,b shows the cyclic
voltammograms curves (CVs) of the pure SnS2 and the SnS2/3DG composite in the voltage range of
0.01–3.0 V. For the pure SnS2 material, the reduction peak near 1.7 V corresponds to the insertion of
sodium ions into SnS2 nanocrystalline in the first discharge process of the pure SnS2 electrode (SnS2 +

4Na+ + 4e−→ Sn + 2Na2S2) [35], while the peak near 0.7 V is attributed to the synergetic conversion,
the alloying reactions, and the formation of SEI films. The oxidation peak appears at 1.2 V for the first
cycle of the charging process. However, there were no obvious oxidation and reduction peaks in the
CV cycle of pure SnS2 since the second cycle, indicating the low capacity of pure SnS2. The reduction
peak near 1.7 V was also found in the SnS2/3DG composite. Sn produced in the reduction provided the
tin source for the Sn/Na alloying reaction at 1.2 and 0.7 V (Sn + xNa+ + xe− → NaxSn) [35], and the
oxidation peak at 1.2 V similarly corresponds to the dealloying effect of the SnS2/3DG composite.
Figure 5c displays the galvanostatic charge–discharge curves of the pure SnS2 and the SnS2/3DG
composite at the current density of 100 mA/g. The SnS2/3DG composite delivered a specific initial
discharge capacity and a charge specific capacity of 1276 and 557 mAh/g for the first cycle, respectively,
which are much higher than those of the pure SnS2 nanocrystal electrode.

Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 12 

3.2. Electrochemical Analysis of SnS2/3DG Composites 

To understand the sodium storage process of a SnS2/3DG anode, Figure 5a,b shows the cyclic 
voltammograms curves (CVs) of the pure SnS2 and the SnS2/3DG composite in the voltage range of 
0.01–3.0 V. For the pure SnS2 material, the reduction peak near 1.7 V corresponds to the insertion of 
sodium ions into SnS2 nanocrystalline in the first discharge process of the pure SnS2 electrode (SnS2 + 
4Na+ + 4e− → Sn + 2Na2S2) [35], while the peak near 0.7 V is attributed to the synergetic conversion, 
the alloying reactions, and the formation of SEI films. The oxidation peak appears at 1.2 V for the first 
cycle of the charging process. However, there were no obvious oxidation and reduction peaks in the 
CV cycle of pure SnS2 since the second cycle, indicating the low capacity of pure SnS2. The reduction 
peak near 1.7 V was also found in the SnS2/3DG composite. Sn produced in the reduction provided 
the tin source for the Sn/Na alloying reaction at 1.2 and 0.7 V (Sn + xNa+ + xe− → NaxSn) [35], and the 
oxidation peak at 1.2 V similarly corresponds to the dealloying effect of the SnS2/3DG composite. 
Figure 5c displays the galvanostatic charge–discharge curves of the pure SnS2 and the SnS2/3DG 
composite at the current density of 100 mA/g. The SnS2/3DG composite delivered a specific initial 
discharge capacity and a charge specific capacity of 1276 and 557 mAh/g for the first cycle, 
respectively, which are much higher than those of the pure SnS2 nanocrystal electrode. 

 
Figure 5. Cyclic voltammograms curves of (a) the pristine SnS2 and (b) the SnS2/3DG composite. The 
first, second, third, fifth, and tenth charge–discharge profiles of (c) the pristine SnS2 and (d) the 
SnS2/3DG composite. 

The cycling performance of the pure SnS2 and the SnS2/3DG composite at the current density of 
100 mA/g are shown in Figure 6a. After the composite with 3D graphene, the reversible specific 
capacity of the SnS2/3DG composite after 50 cycles improved to 430 mAh/g, while that of pure SnS2 
was only 22 mAh/g. Figure 6b shows the rate performance of pure SnS2 and SnS2/3DG composites at 
various current densities. The SnS2/3DG composite delivered a reversible discharge specific capacity 
of 462 mAh/g at the current density of 100 mA/g, and the specific capacity decreased to around 407, 
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The first, second, third, fifth, and tenth charge–discharge profiles of (c) the pristine SnS2 and (d) the
SnS2/3DG composite.

The cycling performance of the pure SnS2 and the SnS2/3DG composite at the current density
of 100 mA/g are shown in Figure 6a. After the composite with 3D graphene, the reversible specific
capacity of the SnS2/3DG composite after 50 cycles improved to 430 mAh/g, while that of pure SnS2

was only 22 mAh/g. Figure 6b shows the rate performance of pure SnS2 and SnS2/3DG composites at
various current densities. The SnS2/3DG composite delivered a reversible discharge specific capacity
of 462 mAh/g at the current density of 100 mA/g, and the specific capacity decreased to around
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407, 345, and 292 mAh/g as the current density gradually reached 200 mA/g, 500 mA/g, and 1 A/g,
respectively. Even when the current density reached 2 A/g, the SnS2/3DG composite still displayed a
steady discharge capacity of around 247 mAh/g, indicating an excellent rate. In addition, the reversible
specific capacity of the SnS2/3DG composite returned to about 414 mAh/g when the current density
was reset to 100 mA/g. However, the specific capacity of pure SnS2 was as low as 90 mAh/g at the
current density of 100 mA/g, and the specific capacity of pure SnS2 almost dropped to 0 mA/g when the
current density increased to 2 A/g. The specific capacity was only about 50 mAh/g when the current
density returned to 100 mA/g.

It is the unique three-dimensional porous structure and the interaction between the SnS2

nanocrystalline and graphene that result in the composite having a strong electrochemical rate
performance and a high capacity. The reasons why SnS2/3DG has high specific capacity and excellent
rate performance are as follows: (1) The high-degree reduction of 3D graphene creates the continuous
conductive matrix, which is beneficial for the rate performance; (2) the porous structure of SnS2/3DG is
conducive to the diffusion of electrolyte and the diffusion rate of Na+ increases; (3) the volume expansion
of the SnS2 nanocrystalline is restrained by the flexible graphene sheets, and the cycling stability is
improved for the solid structure of the SnS2/3DG composite. A comparison of the performance of the
SnS2/3DG composite with the literature is provided in Table 1. We also researched the post-mortem
analysis after three cycles at 0.1 A/g. The morphology of the electrode after three cycles is shown in
Figure 6c. The porous structure was preserved and did not undergo pulverization, and the thickness
of the graphene layer increased for the formation of SEI films. The XRD result in Figure 6d shows that
there are some new peaks belonging to Na2S2, Na14Sn5, and Sn, which is consistent with the above
charge–discharge process.

Table 1. The comparison of metal chalcogenides’ electrodes.

Systems Capacity Cycle
Stability

Rtotal = Re + Rsf + Rct
(Ω) Reference

3D SnS2/rGO 0.1 A/g–754 mAh/g
2.0 A/g–401 mAh/g 75.4% 150 Ref. [36]

Exfoliated
SnS2/Graphene

0.2 A/g–650 mAh/g
4.0 A/g–326 mAh/g 66.6% 100 Ref. [37]

Flower-like SnS2/rGO 0.05 A/g–521 mAh/g
0.4 A/g–200 mAh/g 83.3% 400 Ref. [26]

Free-standing
SnS2/carbon nanofibers

0.2 A/g–570 mAh/g
5.0 A/g–247 mAh/g 81% / Ref. [12]

2D SnS2/CNTs hybrid 0.05 A/g–476 mAh/g
3.2 A/g–265 mAh/g 84.0% 100 Ref. [38]

NCNF/MoSe2
0.5 A/g–386 mAh/g

10.0 A/g–285 mAh/g 91% 300 Ref. [39]

MoS2/3DG 0.1 A/g–455 mAh/g
2.0 A/g–310 mAh/g 80.0% 75 Ref. [40]

SnS2/3DG 0.1 A/g–498 mAh/g
2.0 A/g–254 mAh/g 67.0% 230 This work
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The Nyquist spectra of the pure SnS2 and the SnS2/3DG composite are shown in Figure 7a. Both
the pristine SnS2 and the SnS2/3DG composite showed semicircles in the high frequency region and a
diagonal line in the low frequency region, which are related to the Warburg impedance. The equivalent
circuit is shown in Figure 7b, where the symbol Re represents the electrolyte impedance contributed by
current collectors, electrodes, separators, and the interface between electrodes and electrolytes. Rsf and
CPEsf represent the resistance and capacity of the combination of migration and the interface impedance
of SEI films, respectively. Rct and CPEct represent the charge transfer impedance and charge transfer
capacitance, respectively. ZW is the Warburg impedance, which is usually revealed by the straight
line in the low frequency region. The SnS2/3DG composite delivered a much lower total resistance of
230.2 Ω than the pristine SnS2 (316.8 Ω), which is also lower than the hydrothermal-treated flower-like
SnS2/graphene battery [26], confirming that the conductivity was improved. The fast electron transport
facilitates the redox reaction. The ion diffusion property can also affect the electrochemical performance
of the battery. The Warburg coefficient (σw) was calculated by the EIS results, as the σw is the slope of
the function of real resistance (Z’) and ω−1/2 (Figure 7c). The SnS2/3DG electrode delivered a much
smaller Warburg coefficient than the pure SnS2 electrode. The cation diffusion coefficient can be
calculated by following Equation (1):

DNa+ =
R2T2

2A2n4F4C2σw2
(1)

where R is the gas constant, T is the temperature, F is the Faraday constant, n is the electron transfer
number, A is the apparent electrode surface area, and C is the maximum sodium ion concentration.
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The obtained sodium diffusion coefficient of SnS2/3DG (1.04 × 10−14 cm2/s) is much higher than that
of the SnS2 electrode (1.01 × 10−15 cm2/s). The good conductivity and fast ion diffusion coefficient
improve the electrochemical performance of the SnS2/3DG composite.
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4. Conclusions

In summary, a highly conductive graphene aerogel anchored with SnS2 composite was successfully
prepared by combining hydrothermal and high-temperature reduction methods. The reversible capacity
of the SnS2/3DG composite can reach 430 mAh/g at a current density of 100 mA/g after 50 cycles.
The resistance of the SnS2/3DG composite can be effectively reduced by introducing the conductive
graphene network with a high reduction degree, which is beneficial to improving its rate performance.
The SnS2/3DG composite delivers an outstanding rate capability with the current density increasing
from 100 mA/g to 2 A/g. This three-dimensional porous SnS2/3DG anode shows significant potential
for the next-generation of SIBs.
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