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Abstract: Cerium dioxide nanomaterials (CeO2 NMs) are widely used in nano-based diesel additives
to decrease the emission of toxic compounds, but they have been shown to increase the emission of
ultrafine particles as well as the amount of released Ce. The Organization for Economic Cooperation
and Development included CeO2 NMs in the priority list of nanomaterials that require urgent
evaluation, and the potential hazard of aged CeO2 NM exposure remains unexplored. Herein,
human and rat sperm cells were exposed in vitro to a CeO2 NM-based diesel additive (called
EnviroxTM), burned at 850 ◦C to mimic its release after combustion in a diesel engine. We demonstrated
significant DNA damage after in vitro exposure to the lowest tested concentration (1 µg·L−1) using
the alkaline comet assay (ACA). We also showed a significant increase in oxidative stress in human
sperm after in vitro exposure to 1 µg·L−1 aged CeO2 NMs evaluated by the H2DCF-DA probe.
Electron microscopy showed no internalization of aged CeO2 NMs in human sperm but an affinity
for the head plasma membrane. The results obtained in this study provide some insight on the
complex cellular mechanisms by which aged CeO2 NMs could exert in vitro biological effects on
human spermatozoa and generate ROS.

Keywords: nanoparticles; DNA damage; Oxidative stress; reproductive toxicity; combustion; ageing;
NMs life cycle

1. Introduction

Nanoparticles (NPs) and nanomaterials (NMs), particularly metal oxide NMs, are increasingly
used in many fields of everyday life, e.g., food packaging, cosmetics, textiles, electronics, and even
biomedicine. Extensive usage of NMs in various areas has raised human health concerns, mostly in
terms of occupational exposure [1,2]. Considering the life cycle of nano-enabled products (from the
production and formulation stage to their usage and end of life), the occupational exposure of workers
to NMs [3] has been more studied than others viz., consumer and environmental exposures. The reason
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is the presence of non-nano-specific regulations, which put worker protection at the forefront with
efficient individual protection equipment [4]. Consequently, major knowledge gaps remain in the risk
assessment of NMs, especially in the post-production stages of their life cycle [5], e.g., people/consumers
are directly or indirectly exposed during use or during waste treatment.

Among all, CeO2 NMs have been increasingly used in Europe and elsewhere as fuel-borne
catalysts in diesel engines [6,7] as the EnviroxTM from Energenics Europe Ltd. The addition of CeO2

NMs in diesel has been reported to increase the fuel combustion efficiency [8] and decrease the emission
of CO2, CO, the total particulate mass, formaldehyde, acetaldehyde, acrolein, and several polycyclic
aromatic hydrocarbons [9] during combustion. However, it has also been shown to increase the
emission of ultrafine particles, NOx, and benzo[a]pyrene as well as the amount of Ce released in natural
environments (air, water, soil) near roads [10,11]. In the UK, near an urban road where EnviroxTM

is known to be used, an increase in ambient Ce-based NMs was observed with a concentration of
∼0.3 ng·m−3 and aerodynamic diameters peaking at 150 nm [12]. To date, there are large uncertainties
regarding the acceptable level of Ce-based NMs in the atmosphere because most toxicity studies
have been done with pristine CeO2 NMs that are not representative of the emission in diesel exhaust.
Indeed, once released in the atmosphere after combustion in a diesel engine, Ce is in the form of
CeO2 NMs with different physical-chemical properties compared to pristine CeO2 NMs (in terms
of size, surface properties, mineralogy, aggregation state, solubility) [4], which can affect their fate,
bioavailability [13,14] and potential toxicity [2,15]. Therefore, investigating the potential adverse effects
of such combusted CeO2 NMs on human health represents an important step in the safety assessment
required from Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) and
from the Organization for Economic Cooperation and Development (OECD’s guidelines 2011) [16,17].

Atmospheric pollution is known to affect numerous physiological functions, including human
reproduction and fertility, and it is reported to be related to lower semen quality [17–22], reduced fertility
and spontaneous fertility rate [18–20], and reduced success rates of in vitro fertilisation (IVF) in
humans [21,22]. Regarding the reprotoxicity of NMs, controversial reports have been published in
recent years with particular attention to the effects on male gametes [23]. Few in vivo and in vitro
studies have estimated the potential harmful impacts of CeO2 NMs on reproductive organs and germ
cells. Pristine CeO2 NMs (5–40 nm) have been shown to cross the blood–testis barrier and accumulate
in the testis (<0.2% of the inhaled dose) of rats following 28 days of inhalation in vivo (total estimated
inhaled dose 0.83–4.24 mg/rat CeO2 NMs) [24]. Accumulation of Ce in the testes of mice was also
observed after 32 days of in vivo oral administration of pristine CeO2 NMs (27.62 ± 3.01 nm) at the
highest doses of 20 or 40 mg/kg body weight [25]. This accumulation caused a decrease in daily sperm
production, lower motility, and sperm DNA damage [25]. Our team recently demonstrated the in vitro
genotoxicity of pristine CeO2 NMs (7 nm) on human sperm cells and mouse gametes after exposure
to 10 µg·L−1 [26,27]. Significant impairments in fertilisation rates were observed in mice [26], and a
significant increase in DNA damage in human sperm [27]. The mechanisms of DNA damage were
indirectly attributed to oxidative stress via the adjunction of an antioxidant (L-ergothineine) in the
exposure medium [27].

Most of the previous studies were conducted with pristine CeO2 NMs (i.e., at the production
stage of the life cycle), which does not reflect a realistic exposure route of men and women to Ce-based
NMs that are likely released in diesel exhaust. However, the WHO’s International Agency for Research
on Cancer classified diesel engine exhaust as carcinogenic to humans [28], and the OECD classified
CeO2 NMs as part of a priority list of NMs whose potential toxicity require urgent evaluation [16].
Hence, the potential reproductive toxicity [29] of combusted CeO2 NMs must be evaluated.

This study was designed to evaluate the potential genotoxicity induced by in vitro exposure
of human and rat sperm cells to low concentrations of combusted commercialised CeO2 NM-based
diesel additives (EnviroxTM). Combining biological assays with physico-chemical characterisation,
we addressed two questions: (i) Do combusted CeO2 NMs from a diesel additive induce genotoxic
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effects towards human and rat sperm cells following in vitro exposure to low concentrations? (ii) Were
the mechanisms of genotoxicity and the interactions with sperm cells different from pristine CeO2 NMs?

2. Material and Methods

2.1. Physical-Chemical Characterisation

2.1.1. Ageing of the Diesel Fuel Additive

CeO2 NMs were recovered from EnviroxTM, Energenics Europe Ltd., Oxfordshire, UK, which is a
fuel-borne catalyst scientifically and commercially proven CeO2 NM-based diesel additive supplied by
Energenics Europe Ltd. EnviroxTM was combusted following the protocol published in [4]. Briefly,
we ultracentrifuged EnviroxTM suspensions at 396,750× g and 20 ◦C for 1 h and removed the supernatant
to recover the pellet containing CeO2 NMs. The pellets were freeze-dried (Heto PowerDry LL3000,
Thermo Fisher Scientific, Strasbourg, France) for 5 days. The dried samples were crushed, and a total
amount of 1.2 g was introduced in a furnace at 850 ◦C (i.e., at the average combustion temperature of
diesel engines) [30] for 20 min. A stock suspension of the combusted EnviroxTM (called aged CeO2

NMs) was prepared in Milli-Q water at 10.15 g·L−1 of CeO2. The combusted EnviroxTM contained CeO2

NMs with an average TEM size of 19 ± 10 nm, a larger polydispersity than the uncombusted ones, and a
polyhedral shape [4]. We used X-ray diffraction (XRD) (X′Pert-Pro diffractometer, PANalytical) and
transmission electron microscopy (TEM) (FEI 2Tecnaiï G2) to confirm the size, shape, and mineralogy
of the produced NMs (see Supplementary Materials, Figure S1).

2.1.2. Aged CeO2 NM Dissolution in FertiCult® Medium

We assessed the dissolution of aged CeO2 NMs in FertiCult® medium (JCD Laboratories, Lyon,
France) for the in vitro culture of mammalian gametes by inductively coupled plasma mass spectrometry
(ICP-MS) (NexION 300X, Perkin Elmer®). We incubated aged CeO2 NMs at room temperature (RT) in
the culture medium for 2 and 5 h at three concentrations (10, 1000, and 100,000µg·L−1). After incubation,
the suspensions were ultra-filtered at 3 KDa (Amicon Ultra-15, Merck, France) at 3000× g for 1 h and
by ICP-MS; triplicates were performed for each concentration.

2.2. Gamete Collection

Rat sperm cell collection. After sacrifice, we collected and cut the epididymis to enable the exit
of sperm in HTF-BSA culture medium (Human Tubal Fluid, Millipore®, France, with 0.4% BSA:
Bovine Serum Albumin, Sigma-Aldrich®, Lyon, France) for 1 h at 37 ◦C and CO2 5%.

Human sperm collection. We used frozen human sperm from healthy fertile donors. After thawing,
we aliquoted the preparation and centrifuged it for 10 min at 420 g. The supernatants were discarded,
and the pellets were exposed to various exposure conditions.

2.3. Ethical Authorization

Ethical authorization for animal sampling of gametes was obtained from the National Ethics
Committee on Animal Experimentation (2018061110211950-V2 #15447). We used Sprague Dawley rats,
Oncins France Strain A (623OFA), which were purchased from Charles River Laboratories, France.
Sexually mature male rats of 60 days old were housed with free access to food and water until sacrifice.

Human sperm cells were purchased from GERMETHEQUE biobank, which obtained informed
consent from each donor for inclusion of samples in the biobank and for their use in research experiments
regarding human fertility in accordance with the 1975 Helsinki Declaration on human experimentation.

For oxidative stress analysis, the principle of Replacement of the 3R rule (reduction, refinement,
and replacement) was applied and human sperm only was used.
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2.4. Sperm Exposure

We exposed human and rat sperm to four different concentrations of aged CeO2 NMs (1, 10, 100,
and 1000 µg·L−1) for 1 h at 37 ◦C and 5% CO2. FertiCult® medium was used as a negative control
and 110 µmol·L−1 H2O2 as a positive control. The H2O2 concentration was chosen based on previous
studies [26,27,31]. At least three different experiments were performed. After exposure, we recovered
all motile sperm cells by swim-up [32], and before comet assay analysis, we measured sperm viability
by eosin-nigrosine staining according to the World Health Organisation (WHO, 1999, Appendix IV.2)
technique (100 cells were evaluated per condition).

2.5. DNA Damage Evaluation by Comet Assay

We performed the alkaline comet assay according to the procedure described by Singh [33] and
adapted by Baumgartner [34], which has already been described in previous publications by our
team [26,27,31]. DNA damage was quantified by the percentage of DNA in the tail of 100 randomly
selected sperm cells from each triplicate slide per condition (at least 300 raw values analysed per
experiment, at least 900 in total per condition).

Statistical Analysis. The data presented the medians of % Tail DNA values, with 1st and 3rd quartiles.
We performed a linear mixed model analysis with “condition” (exposure condition) as a fixed effect and
“cells” (sperm cells) within the replicate slide as a random effect using linear mixed effects regression
(lmer) function of R software, version 3.6.0 (R Foundation for Statistical Computing, Vienna, Austria)
to compare DNA damage among the various conditions. Pairwise differences of least-squares mean
for all conditions were post-hoc assessed. Statistical significance was set at p < 0.05.

2.6. Oxidative Stress Analysis on Human Sperm

We investigated the effect on human sperm of aged CeO2 NMs in vitro exposure on the
generation of reactive oxygen species (ROS), at the exposure concentration that had induced the
higher DNA damage, i.e., 1 µg·L−1. At least three different experiments were performed. We used
a 2′,7′-dichlorodihydrofluorescein diacetate (H2DCF-DA) probe [35]. The exposure protocol was
readapted from Aitken et al. (2013) and Gallo et al. (2018) [36,37]. After thawing and dilution
in FertiCult® culture medium, we centrifuged human sperm for 10 min at 420× g, discarded the
supernatant and added 10 µmol·L−1 H2DCF-DA [36] at 37 ◦C and 5% CO2 for 45 min to enable
internalization of the permeable probe. Then, the sperm cells were washed and exposed to 1 µg·L−1

CeO2 NMs for 1 h at 37 ◦C and 5% CO2. We used H2O2 110 µmol·L−1 as a positive control and
FertiCult® medium as a negative control. After 1 h, we recovered the motile sperm by swim-up
selection. For vitality staining, we exposed the sperm to 4′,6-diamidino-2-phenylindole (DAPI) at
0.5 µg·mL−1 immediately prior to analysis by flow cytometry (CytoFLEX, Beckman Coulter, IN,
USA). The results are only based on a live sperm population and expressed as the percentage of
DCF-positive cells (expressing the fluorescence) in 100,000 events per condition in each replicate
experiment (300,000 live cells in total per condition).

2.7. Imaging of Human Sperm Cells after In Vitro Exposure

Human sperm were exposed in vitro to 1 and 100 µg·L−1 of aged CeO2 NMs and selected by
swim-up after 1 h. Non-exposed sperm cells were used as the control. Recovered motile sperm cells
were washed with 0.1 M phosphate buffer, then fixed with glutaraldehyde 2.5% in 0.1 M phosphate
buffer during 30 min at RT, and finally rinsed 3 times with 0.1 phosphate buffer. Samples were
post-fixed with 2% osmium tetroxyde in 0.1M phosphate buffer during 30 min and washed 3 times
with 0.1 M phosphate buffer. Progressive dehydration with 50% to 100% Ethanol bath was performed
before embedding in Epon 812 (epoxy resin) from 33% to 100% EPON. Ultrathin sections (60 nm) were
obtained using Ultracut-E ultramicrotome (Reichert-Jung, Southbridge, MA, USA) and contrast was
performed using Uranyl acetate 5% for 12 min and dried at room temperature. Pictures were obtained
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using a JEM 1400 transmission electron microscope (JEOL, Tokyo, Japan) at 80 kV with a Megaview III
camera under iTEM Five software (SIS Imaging, Münster, Germany). This procedure was described
in [27].

3. Results

3.1. No Detectable Dissolution of Aged CeO2 NMs in Abiotic Conditions

The dissolution (<3 kDa) of CeO2 NMs in abiotic FertiCult® medium (pH 7.2–7.5) was studied
after 2 and 5 h of incubation at 10, 1000, and 100,000 µg·L−1. Regardless of the concentrations tested,
no dissolution of the CeO2 NMs could be measured by ICP-MS in abiotic conditions. Below 3 kDa,
the concentrations of dissolved Ce species were under the limits of detection (i.e., <0.002 µg·L−1).

3.2. Higher DNA Damage Detected at the Lowest Concentration Exposure

Rat and human sperm cells were exposed in vitro for one hour to 0, 1, 10, 100, or 1000 µg·L−1 of
aged CeO2 NMs. After exposure, all viability rates exceeded the normality threshold as stated by the
WHO criteria [38]. The results are presented as the distribution of median values of % tail DNA with
1st and 3rd quartiles, obtained from 3 independent experiments. p < 0.05, for the differences compared
versus *: negative control (NEG), a: vs. 10 µg·L−1 CeO2 NMs, b: vs. 100 µg·L−1 CeO2 NMs, c: vs.
1000 µg·L−1 CeO2 NMs (Figure 1a,b).
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Figure 1. Evaluation of DNA damage using the Comet Assay following in vitro exposure of rat (a) and
human sperm (b) to aged CeO2 NMs. Tested concentrations: 0, 1, 10, 100, and 1000 µg·L−1 of aged
CeO2 NMs, POS (110 µM H2O2, positive control). p < 0.05, for differences compared versus *: negative
control (NEG); a: vs. 10 µg·L−1 CeO2 NMs; b: vs. 100 µg·L−1 CeO2 NMs; c: vs. 1000 µg·L−1 CeO2 NMs.
In each condition, the main central line corresponds to the median of the points and the two other lines
correspond to 1st and 3rd quartiles.

In rat- and human-exposed sperm cells, all exposure concentrations induced significantly higher
DNA damage than the negative control (p < 0.05) (Figure 1a,b). Furthermore, a significant increase in
DNA damage was observed at the lowest tested concentration (1 µg·L−1) (medians of % tail DNA in
rats and humans of 18.20 and 30.10, respectively) compared to the exposure to 10, 100, and 1000 µg·L−1

aged CeO2 NMs; (p < 0.001). We also observed a significant difference between 10 and 1000 µg·L−1

aged CeO2 NMs in rat sperm (p < 0.05) and a significant difference among the three highest tested
concentrations in human sperm (p < 0.05). The variability of biological data in the 3 independent
experiments is presented in Table 1.
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Table 1. Biological variability of the data. Median values of % Tail DNA of each condition of three
experiments, with 1st and 3rd quartiles.

Rat Sperm Cells MEDIAN
Values

1st
Quartile

3rd
Quartile

Human Sperm
Cells

MEDIAN
values

1st
Quartile

3rd
Quartile

Negative control 9.34 7.94 11.24 Negative control 10.8 7.26 13.7
1 µg·L−1 CeO2 18.2 17.17 23.47 1 µg·L−1 CeO2 30.1 28.28 32.06

10 µg·L−1 CeO2 14.46 10.48 17.72 10 µg·L−1 CeO2 26.24 21.69 27.09
100 µg·L−1 CeO2 11.31 10.64 15.13 100 µg·L−1 CeO2 21.74 13.72 23.99

1000 µg·L−1 CeO2 11.15 10.53 12.19 1000 µg·L−1 CeO2 14.91 12.88 17.02

3.3. Oxidative Stress Detected in Human Sperm

After 1 h of in vitro exposure to 1 µg·L−1 aged CeO2 NMs, the percentage of DCF-positive live
sperm (mean ± SEM= 13.1 ± 3.9) significantly increased compared to the negative control (5.21 ± 2.9)
(p = 0.047) (Figure 2).
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Figure 2. Detection of reactive oxygen species (ROS) using the H2DCF-DA probe. Human sperm cells
were exposed in vitro for one hour to 1 µg·L−1 aged CeO2 NMs. Intracellular reactive oxygen species
were evaluated by the dichlorodihydrofluorescein (DCF) intensity. The results are representative
of 3 independent experiments. p < 0.05, for differences compared versus negative control. SPZ:
spermatozoa. a.u: arbitrary unit.

3.4. Aged CeO2 NMs Detected by TEM on the Plasma Membrane of Human Sperm

In human sperm cells, TEM detected aged CeO2 NM aggregates near the sperm plasma membrane
after the exposure to 1 µg·L−1 CeO2 NMs (Figure 3b,c). After the exposure to 100 µg·L−1, the NMs
appeared even more aggregated and not in close interaction with the cells (Figure 3d). No CeO2 NM
internalization was observed by TEM at any exposure concentration.
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4. Discussion

4.1. Exposure to Low Doses of Aged CeO2 NMs Induced Higher DNA Damage

One major drawback of the currently used studies and models to evaluate the toxicity of NMs for
humans is the lack of relevance of the exposure scenario (i.e., relevant concentration of NMs, relevant
speciation of the tested NMs) [39]. Indeed, most in vivo studies are based on theoretical data regarding
the potential exposure of humans to CeO2 NMs. For example, Modrzynska (2018) exposed mice to a
single dose of 162 µg of CeO2 or TiO2 NMs in 50 µL of 2% serum in nano-pure water [40]. This single
dose corresponds to pulmonary deposition during 138-h working days at the Danish occupational
exposure limit of 10 mg/m3 for TiO2 assuming 9% alveolar deposition [41,42]. Li (2016) exposed rats to
CeO2 NMs in a nose-only exposure system for a single 4-h exposure (27–39.8 µg/m3). They used a
scanning mobility particle sizer to estimate the average mass concentration and compared it with the
physical sampling measurements based on the filter packs [43].

Here, we highlighted the importance of the dose and more particularly of the low dose.
We expected a moderate release of CeO2 NMs in the air from a diesel engine and a spread into
the gonads, as shown by Qin et al. (2019) and Préaubert et al. (2015) [25,26]. The lowest concentration
of aged CeO2 NMs (1 µg·L−1) was found to induce the highest DNA damage in both human and
rat sperm cells (Figure 1a,b). These results are consistent with our previous study, which showed
inverse dose-response DNA damage after the in vitro exposure of human sperm to pristine CeO2

NMs [27]. Few hypotheses could be formulated to explain the highest genotoxicity at the lowest
exposure concentration. One refers to different NMs/cells interactions because of dose-dependent
aggregation states. Herein, it was not technically possible (below the detection limit) to measure the
size of NMs aggregates at 1 µg·L−1 and 1000 µg·L−1 of CeO2 NMs in the FertiCult® medium. However,
the strong aggregation due to combustion already observed in reference [4] is also expected at the pH
and ionic strength of extracellular media. Based on the dose-dependent probability of contact between
NMs, smaller aggregates should be expected at the lowest concentration (1 µg·L−1 CeO2). In that case,
smaller aggregates would be more prone to interact with the cells and enhance their biotransformation,
biological, and toxicological effects [44]. It is known that nanoparticle genotoxicity and cytotoxicity are
controversial, especially because these interactions are species-specific, often tissue-specific, and related
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to physico-chemical features of exposure medium [45,46]. Moreover, nanoparticles show a strong
tendency to form agglomerates in solution due to their high surface area. It is a general opinion that
the degree and type of agglomerates formed may influence the toxicity of NPs [47,48].

4.2. DNA Damage in Human Sperm Was Associated with Oxidative Stress

A generally accepted paradigm is that the toxicity of NMs arises primarily because they can
generate reactive oxygen species (ROS) and oxidative damage [44]. Oxidative stress is a major cause
of DNA damage in mammalian spermatozoa [49], since it can affect the membrane integrity and
motility [50,51], and it is also associated with failures of fertilisation, abnormal embryonic development,
and premature pregnancy loss [52].

Understanding the mechanism of action of CeO2 NMs is a major challenge since they are known
to exhibit pro- and antioxidant properties. For example, Das et al. (2007) [53] and Niu et al. (2007) [54]
showed that CeO2 NMs (3–5 and 7 nm, respectively) could reduce oxidative stress as free radical
scavengers, whereas Auffan et al. (2009) [55] highlighted the ability of CeO2 NMs (7 nm) to damage
fibroblast DNA at very low doses (6–1.2 × 106 µg·L−1). The determining factors are the stoichiometry,
oxido-reduction state of Ce, pH of the medium, presence of H2O2, etc. [56], but it also depends on the
cell types, organisms [57], size and speciation of the NMs [58].

Herein, we demonstrated in human sperm that 1 h of in vitro exposure to 1 µg·L−1 aged CeO2

NMs induced a significant increase in ROS generation. The H2DCF-DA probe becomes fluorescent on
oxidation and is purported to directly monitor reactive oxygen and/or nitrogen species (ROS/RNS) [59].
ONOO- and the hydroxyl radical also directly oxidise this probe and significantly contribute to the
positive signals observed in defective human spermatozoa [60,61]. Our results confirm previous
studies, where we showed that DNA damage was induced in human sperm by exposure to 10 µg·L−1

of pristine CeO2 NMs was significantly decreased by the addition of an antioxidant (L-ergothioneine)
in the exposure medium [27]. L-ergothioneine is known to scavenge hydroxyl radicals, hypochlorous
acid, and peroxynitrite [62], which can directly oxidise the H2DCF-DA probes [60,61]. We hypothesize
that oxidative stress can be one of the mechanisms responsible for the DNA damage detected in
sperm cells.

At 1 µg·L−1, aged CeO2 NMs were found in close contact with the plasma membrane of the head
of the spermatozoa. This interaction with the sperm head associated with the highest sensitivity of the
H2DCF-DA probe when oxidants are generated near the plasma membrane or in the cytoplasm [36] can
help us elucidate the mechanisms of oxidative stress generated by aged CeO2 NMs. Indeed, the head
of the spermatozoa expresses various ion channels (e.g., Ca2+ and K+) [63,64], which offer entry paths
for metallic toxicants such as Zn2+ and Pb2+ into a mature spermatozoa [63,65,66]. More interestingly,
some trivalent ions such as La3+ and Ce3+ act as T-type calcium channel antagonists and competitively
bind and block the Ca2+ binding sites [67,68], which are required for the sperm head mannose
receptors [65]. Then, mannose receptor expression is considered a biomarker for the effects of transition
and heavy metals and organic toxicants on sperm fertility potential [66].

Here, we did not observe any abiotic dissolution of Ce in the Ferticult® medium. However,
reductive dissolution of nanocrystalline Ce(IV)O2 into Ce(III) is pH-dependent at pH < 7 [69–71] and it
is possible that a release of Ce(III) with a pro-oxidant activity could occur in the vicinity of the cells due to
the metabolic activity [69,70]. Indeed, in sperm cells, voltage-gated proton channels Hv1 (i.e., the main
H(+) extrusion pathway) activated by alkaline extracellular environment induce an alkalinisation
of intracellular pH necessary for the functional activation (capacitation) of sperm, and consequently
a decrease in extracellular pH [72]. Such an extracellular pH decrease could locally enhance the
dissolution of CeO2 NMs in the vicinity of the cells. More information on the biodistribution and
biotransformation of CeO2 at the scale of the cell membrane is required to validate the hypothesis that
the observed oxidative stress can be attributed to the possible biotransformation of CeO2 at the surface
of the plasma membrane.
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4.3. Lifecycle Stage-Dependent (Geno)Toxicity of CeO2 NMs

To date, few studies have explored the DNA damage and oxidative stress induced by pristine
CeO2 NMs (mostly monodisperse and homogeneously coated), which are not representative of CeO2

NMs that are likely released during use. One strength of this study is the use of combusted EnviroxTM

to mimic real exposure to CeO2 NMs, which are potentially released from diesel vehicles equipped
with an active nano-catalyst for soot abatement. With an over-combustion in a single-cylinder engine
with mechanical fuel injection [13] or in an oven at a temperature close to that of diesel engines [4],
the physico-chemical properties of CeO2 NMs evolve compared to those initially incorporated in the
diesel additive: the size of the CeO2 crystallites significantly increased (i.e., the decrease in specific
surface area from 113 ± 17 to 63 ± 35 m2

·g−1) without detectable Ce(III) in the structure, and no
organic compounds remained at the surface. This transformation upon combustion highlights that at
each stage of the nano-enabled product life cycle (formulation, usage/combustion, and end of life),
the mechanisms and kinetics of interactions between the released CeO2 NMs and the aqueous media
(e.g., water, soil, biological media) and exposed organisms will differ [5,73]. Hence, the life cycle
stages of nano-enabled products when studying their toxicity is critical [62,74]. This is particularly
the case when studying their genotoxicology [75] towards gametes since fertility may be altered,
which subsequently affects the reproduction rate and health of the offspring [26,76].

Based on previously published data and the current study, we compared the impacts towards
gametes of pristine CeO2 NMs (production stage of the life cycle) and combusted diesel additives
(usage stage of the lifecycle). At both lifecycle stages, a higher genotoxicity attributed to oxidative stress
was observed at the lowest doses towards human sperm cells [26,27]. For pristine and combusted NMs,
an inverse dose–effect relationship was attributed to different aggregation states (size and density).
At low doses, the probability of contact between two particles (homo-aggregation) decreases, and CeO2

NMs are likely more dispersed, which increases the contact surface between NMs and cells [27].
However, for pristine NMs only, the significant genotoxicity at low doses was also attributed to their
chemical instability because of their larger specific surface area and an organic coating at the surface [4].

5. Conclusions

We demonstrated for the first time the DNA damage induced in human and rat sperm cells after
exposure to low concentrations of CeO2 NMs, which are similar to the ones released by combustion
in a diesel engine. In vitro exposure to the lowest concentration of combusted CeO2 NM induced
oxidative stress in human sperm cells after the interaction with the plasma membrane. While important
from a mechanistic standpoint, this study remains limited by its in vitro nature. However, in vitro
exposure is a relevant design since spermatozoa can encounter nanoparticles in the male gonads or
female genital tract. In vivo studies after a low-dose exposure to aged NMs will help us more closely
approach realistic exposure conditions. Then, we will be able to decipher the transfer of CeO2 NMs at
different stages of the lifecycle to various organs in animals, their permeation of biological membranes,
accumulation in reproductive organs, and their impact on embryonic development, as conducted
with pristine NMs [67,77–80]. To go further in the relevance of the exposure scenario, the complexity
of the exhaust emissions [81] should be considered when assessing their genotoxicity. For instance,
a considerable amount of Polycyclic Aromatic Hydrocarbons (PAHs) and their alkylated derivatives
are emitted by diesel engines [82]. Some of them are well known for their carcinogenic and reprotoxic
potential, such as benzo[a]pyrene (BaP) [83]. An even more relevant exposure scenario can assess the
potential hazard due to co-exposure to combusted CeO2 NMs associated with other organic compounds
generated during diesel combustion.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/12/2327/s1.
Figure S1: X-ray diffractogram and transmission electron microscopy image of the 850 ◦C aged CeO2 NMs.
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