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Abstract: Plasmonic nanostructures have played a key role in extending the activity of photocatalysts
to the visible light spectrum, preventing the electron–hole combination and providing with
hot electrons to the photocatalysts, a crucial step towards efficient broadband photocatalysis.
One plasmonic photocatalyst, Au/TiO2, is of a particular interest because it combines chemical stability,
suitable electronic structure, and photoactivity for a wide range of catalytic reactions such as water
splitting. In this review, we describe key mechanisms involving plasmonics to enhance photocatalytic
properties leading to efficient water splitting such as production and transport of hot electrons
through advanced analytical techniques used to probe the photoactivity of plasmonics in engineered
Au/TiO2 devices. This work also discusses the emerging strategies to better design plasmonic
photocatalysts and understand the underlying mechanisms behind the enhanced photoactivity of
plasmon-assisted catalysts.

Keywords: water splitting; photocatalyst; plasmonics; Au/TiO2 nanostructures; Back silicon; photocurrent;
hot electrons

1. Introduction

Water splitting (WS) powered by solar irradiation has emerged as a clean route towards a green
hydrogen economy [1]. Since Fujishima and Honda first demonstrated water splitting using TiO2 [2],
several studies have used TiO2 and other semiconductors such as ZnO to achieve efficient WS. TiO2 is
one of the most investigated photocatalyst systems due to its superior electronic and chemical properties.
However, the solar collection efficiency of TiO2 is limited to UV spectrum due to its wide band gap
3.2 eV covering only 4–5% of the total solar spectrum. Extending the photoactivity of TiO2 beyond
Ultraviolet (UV) can be achieved by several strategies, such as using electron donor/sacrificial agents to
assist in the activity of the WS [3–7], dye sensitization [8–10], Nobel metal loading [11,12], doping [13],
and stacking of heterojunction semiconductors [14].

Enhancing solar light harvesting by decorating catalysts with plasmonic nanostructures such as
Au and Ag nanoparticles has been extensively studied in the last decades. Au and Ag, in addition
to other transition metals such as Cu, not only can work as hole traps to prevent recombination
but also exhibit interesting plasmonic properties that can extend the photoactivity of wide-bandgap
semiconductors from the UV light to IR, accounting for more than 45% of the solar spectrum.
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Surface plasmons excited at the interface of these metal/semiconductor nanostructures can decay into
hot electrons that have gained a very high kinetic energy and accelerated by intense electric fields at
the surface of the plasmon, with energies higher than the Schottky barrier of the metal/semiconductor
interface [15–17]. Several plasmonic nanostructures were reported to enhance the photocatalytic
activity of hydrogen evolution reaction (HER) catalysts [18]. For instance, in the study carried out
by Ingram et al. [19], Ag plasmonic nanoparticles were used in conjunction with TiO2 to enhance the
HER. Similarly, hierarchical TiO2 nano-architecture loaded with Pt nanoparticles were observed to
dramatically enhance the hydrogen production [20]. In the case of TiO2 nanostructures loaded with Au,
the plasmonic activity of Au nanoparticles and their shape and size were attributed to the significant
increase in hydrogen production [21–24]. These studies clearly indicate the importance of the role of
plasmonic of nanoparticles, in particular in Au/TiO2 systems, on enhancing photocatalytic activity of
HER catalysts.

Investigating the plasmonic behavior of the metallic nanostructures is of great importance as it
provides with feedbacks and inputs allowing to design efficient devices based on MDPhC. The MDPhC
and nanostructure configurations considered in this review are based on TiO2 acting as the WS catalyst
and Au nanostructure as plasmonic material. In the following, the principle of plasmonics behavior
of Au nanoparticles is detailed, as well as their interaction with TiO2 as photocatalyst to achieve WS
process. Briefly, the principle of WS is tackled especially in the presence of plasmonics, and examples
of MDPhC designs consisting of TiO2 catalyst and Au are given and discussed in the light of the role of
LSPR in achieving efficient WS.

2. Plasmonics and Water Splitting

Many emerging areas of nanotechnology are focused on utilizing and understanding plasmonic
properties for optical and catalytic applications [25–27]. Generally, surface plasmons are generated
by external excitations (photons or electrons) of the conduction band electrons at the surface of the
metal. Propagating plasmons on the surface of a metal are called surface plasmon polaritons (SPPs).
Their oscillations are associated with a large enhanced electric field that decays exponentially in the
perpendicular direction of the metal/semiconductor interface. Hence, they are very sensitive to the
changes in the environment near the interface with the dielectric. Plasmons can resonate with incident
light producing an amplified oscillation of electrons in the conducting band by surface plasmon
resonance (SPR); this resonance can be localized at the surface of the metal (non-propagating waves) if
the dimension of the metal particles is smaller than the wavelength length of the incident light resulting
in localized surface plasmon resonance (LSPR). The resonance frequency of LSPR depends on the
particles’ size, shape, and defects and the surrounding environment [19,28,29]. Several attempts have
been made to synthesize efficient plasmonic metal-semiconductor systems, usually nanostructures
made of noble metals such as Au, Ag, and Pt [15,19,20,30–38]. These metals exhibit plasmons resonance
in the visible region while also possessing very good physical/chemical properties such as corrosion
and oxidation resistance for Au, intense LSPR for Ag, and enhanced catalytic properties for Pt.
More elements with large negative real dielectric constant and a small imaginary component have been
shown to possess plasmonic properties such as Rh, Pd, Al, and Cu. [30,39–44]. However, these metals
are not stable and suffer from severe corrosion and oxidation in contact with water during WS
experiments, especially Al and Cu, making them less attractive for the photocatalytic WS application
in comparison to Au/TiO2 [45].

Metal/semiconductor nanocomposites have demonstrated great strides in improving the photoactivity
and charge separation of catalysts for efficient WS [46–49]. The electrochemical dissociation of water to
evolve H2 and O2 requires a thermodynamic potential of 1.23 V between two electrodes, a cathode
electrode for the hydrogen evolution reaction (HER), and an anode electrode for oxygen evolution
reaction (OER). The mechanism of water splitting on TiO2 is shown in the following chemical reactions:

UV excitation of TiO2:
2TiO2 + 4h→ 4e− + 4p+ (1)
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O2 evolution at the anode:
4p+ + 2H2O→ O2 + 4H+ (2)

H2 evolution at the cathode:
4e + 4H+

→ 2H2 (3)

Overall reaction:
2H2O→ 2H2 + O2 (4)

Semiconductors with a suitable band gap (>1.23 eV) such as TiO2, ZnO, and CdS can act as
potential photocatalysts and split water molecules using UV light [50]. In addition to the band
gap requirement, the unique electronic properties of semiconductors only allow one- or two-step
photoexcitation on the surface of the photocatalyst, as shown in Figure 1.
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Figure 1. Schematic diagram of one- and two-step photocatalytic water splitting. Reproduced from [51].
with permission from American Chemical Society, 2010.

Unlike two-step photoexcitation, one-step photoexcitation creates anodic/oxidation and
cathodic/reduction sites on the surface of the photocatalyst to split water. When light is irradiated
on the surface of the semiconductor, electrons are excited from the valence band to the conduction
band leaving behind positive holes. To satisfy the one-step photocatalytic WS condition, the top-edge
of the valence band (anodic site) should be positively charged above the water oxidization potential
(EO2/H2O = 1.23 V vs. reversible hydrogen electrode at pH = 0) and the bottom-edge of the conduction
band (cathodic site) should be more negative than the reduction potential of H+ to H2 (EH+/H2 = 0 V vs.
reversible hydrogen electrode at pH = 0). In addition to the electronic properties of the semiconductor,
the overall efficiency of WS is highly dependent on the physical and chemical properties of the
semiconductor such as photo-corrosivity, chemical and thermal stability, electron/hole lifetime, etc. [7].
As expected from this proposed scheme, many photocatalysts of interest such as TiO2 are limited to
the UV portion of the solar spectrum, which only covers ca. 4% of the total solar spectrum. In the
last decade, several mechanisms and various materials were proposed to develop photocatalysts
capable of splitting water under visible light irradiation, which accounts for more than 45% of the solar
spectrum [52–58].
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Noble metal nanoparticles such as Au and Ag are usually used to extend the photoactivity of TiO2

to the visible light since they possess LSPR under visible light irradiation. At first, the nanoparticles absorb
the light through the plasmonic resonance process. These resonance modes (periodic oscillation of the electron
cloud) at the surface of the nanoparticles exhibit a strong exponential decay within the metal/semiconductor
interface (~10 nm in the semiconductor direction) [59]. Subsequently, in the second phase, the plasmon
decays with time by transferring the amassed energy to the electrons in the conduction band of the
metal nanoparticles. The strong field localization and enhancement around metallic nanoparticles
excites electrons from the fermi level of the metal to higher energy in the conduction band within few
nanometers in the semiconductor, as shown in Figure 2.
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Injected (transferred) electrons are strongly excited with high kinetic energies and so referred to as
“hot” electrons. In the third phase, the hot electrons, which are relatively more energetic than the free
electrons, can jump to the semiconductor by overcoming the Schottky barrier. Thus, these hot electrons
play an important role in achieving charge separation and enhanced photocurrents by overcoming
the Schottky barrier at the metal/semiconductor junction. For example, in the case of the Au/TiO2

plasmonic WS system, the Schottky barrier is around ~1.1 eV. LSPR of Au under visible light irradiance
can produce hot electrons with energies of 1–3.5 eV, which is sufficient to overcome the barrier.
This electron injection process achieved from the metal to the semiconductor can occur through
two mechanisms: direct electron transfer (DET) and plasmonic resonance electron transfer (PRET)
(Figure 2a,b respectively). In the former process, electrons are directly and physically transferred to the
conduction band of the semiconductor through the interface. This process allows the semiconductor
(TiO2) to have active electrons and continue the WS process. On the other hand, in PRET, the electrons
do not transfer physically to the semiconductor; instead, the energy of the hot electrons is transferred
to the electrons in the valence band of the semiconductor and becomes excited to the conduction
band of the semiconductor. PRET stimulates interband transition within the semiconductor to the
conduction band and does not require direct contact between the metal and the semiconductor.
Moreover, the absorption spectra of the semiconductor TiO2 and Au have to overlap to facilitate
PRET [60–62]. It is worth noting that both DET and PRET are competitively participating to hot electron
injection making the deconvolution of their respective contribution to hot electrons injection very
challenging. Nevertheless, DET and PRET have different activation requirements. For instance, in DET
mechanism, the Au nanostructures have to be in physical contact with TiO2, hence a lack of contact
will slow DET mechanism. Furthermore, it was reported that, for Au/TiO2, the hot electrons injected
into TiO2 through DET mechanism have longer lifetime as compared to electrons photogenerated by
the intraband transition in TiO2 [63]. In contrast, for PRET mechanism, hot spots generated in the
metallic particles (Au) extends to TiO2 [60], which means that no direct contact between the metal and
the semiconductor is essential. Hence, PRET can proceed despite the presence of a thin insulating
layer between the plasmonic metal and the semiconductor [64]. The thin insulating layer was reported
to be as thick as ~25 nm [65]. Additionally, PRET mechanism is always active as long as there is a
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spectral overlap between the LSPR and the absorption band of the semiconductor. To summarize,
the contribution from PRET highly depends on two main factors: the physical separation between the
metal and the semiconductor and the absorption spectral overlap between LSPR and the semiconductor.
In the case of Au/TiO2, due to the large band gap of TiO2 (~3.2 eV), resonant energy transfer to TiO2

through the absorption of visible light through Au has a low probability of happening. However, it is
expected that, if multiple plasmons decay at the same time, then all the energies can be combined to
excite an electron hole pair in the semiconductor (TiO2). Hence, depending on the configuration of
the Au/TiO2 system, both DET and PRET can actively participate in the photocatalytic activity. In a
study by Cushing et al. [66], a design chart was established to accurately predict the presence of each
mechanism. In their work, high degree of PRET activity was demonstrated in metal@TiO2 core–shell
particles. The real mechanism of hot electrons injection from Au to TiO2 remains an area of great
controversy and is still highly debated.

3. Design of Plasmonics Based Water Splitting Devices

For a practical water splitting device to operate efficiently, a proper design has to be implemented.
In general, material modification along with morphological design can effectively increase the
photocatalytic reaction of WS. Photon absorption capability, which is essential for enhancing the
photoactivity during WS reaction, can be achieved by material engineering of the TiO2-Au systems.
Particularly, the plasmonic activity of metals depends on the shape and size of the nanostructures [67–70].
Thus, it is crucial to practice judicial control over the design of Au/TiO2 to optimize the photoactivity.
Moreover, extending the absorption spectrum of photocatalysts can be controlled by tailoring the
morphology and crystal structure of the catalyst (TiO2) as well as the shape and size of the plasmonic
particles (Au). Thus, a device needs to be designed that can absorb the light at full solar spectrum range.
When light is impinged on the surface of the photocatalyst, a portion of the light is either reflected or
scattered reducing the number of absorbed photons for the water splitting reaction, hence energy is
lost. By controlling the shape of the photocatalyst, reflection and scattering can be suppressed to enable
a larger portion of the photons be absorbed for water splitting. For instance, a vertically standing
cup-like structure or a structure with zigzag morphology could boost absorption by light trapping.
Below, we discuss the effects of nanoengineering the morphology, crystal structure, and particle shape
on the overall performance of photocatalytic water splitting.

3.1. TiO2-Au System

To study the effect of crystal structure on the overall WS activity of Au/TiO2 photocatalysts
while excluding morphology effects, a stacked device of Au nanoparticles on top of atomically flat
TiO2/Al2O3/SiO2/Si was fabricated. The fabrication steps are shown in Figure 3.
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Figure 3. Fabrication steps to produce dTiO sample and Au-dTiO sample: F1, a 6-inch Si water;
F2, 200 nm of SiO2 was deposited on Si; F3, 30 nm alumina was deposited on SiO2/Si; F4, TiO2 deposited
sample (dTiO); F5, 40-nm Au deposited on dTiO; F6, annealed sample (Au-dTiO). Reproduced from [71]
with permission from Elsevier, 2018.
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In the first step, the Plasma Enhanced Chemical Vapor Deposition (PECVD) process was used
to deposit a 200-nm SiO2 layer on Si wafer. Then, Atomic Layer Deposition (ALD) was used to
deposit Al2O3 and TiO2 to obtain the dTiO sample (dTiO: TiO2/Al2O3/SiO2/Si). Next, Au was thermally
evaporated on the stack. Then, the samples were annealed at different times and temperatures to
control the crystal structure and the morphology of the grown material (Au-dTiO). Due to annealing,
the Au thin film shrunk to form islands and particles, as shown in Figure 4. As the annealing
temperature was increased, more random dendrite-like Au nanostructures evolved with various sizes
and orientations, which is desired to achieve a broadband absorption of light as LSPR resonance
frequency strongly depends on the particles size and shape [72–76]. The LSPR contribution from
individual Au nanostructure sums up collectively to enhanced absorption over a broad span of the solar
spectrum. In summary, an optimization of the sample annealing was required to keep larger effective
surface area of TiO2 for increased interaction with water while maintaining enough Au particles for
plasmonic contribution. Eventually these plasmonic particles actively participate in enhancing the
WS activity.
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Figure 4. (a) SEM top view image of Au annealed for 2 h at 450 ◦C (the inset shows surface area ratio of
Au (yellow) to TiO2 (blue)); and (c) Au-dTiO annealed at 450 ◦C for 6 h. Reproduced from [71] with
permission from Elsevier, 2018.

Cross-sectional view of an annealed sample is shown in Figure 5a–c. The thicknesses of the layers
can be determined from the images. However, it is also found that the thickness of the Au layer varies
spatially. In Figure 5d, one can notice that the annealing had induced the coarsening of Au particles by
Oswald ripening mechanism as well as the crystallization in the TiO2 layer. Prior studies reported
that crystalline TiO2 in anatase and/or rutile form exhibits superior optical properties compared to its
amorphous counterpart [77,78].
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Figure 5. TEM cross sectional images of Au-dTiO annealed sample (annealed at 450 ◦C for 6 h):
(a) continuous and uniform gold film; (b) thickness variation at specific locations; (c) discontinuity in
the gold film; and (d) HRTEM image of the TiO2/Au interface. Reproduced from [71]. with permission
from Elsevier, 2018.

The overall performance of the as-fabricated and -modified Au/TiO2 composite was assessed
through various techniques. Optical absorption spectroscopy and quantum efficiency measurements
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were used to evaluate the performance. Controlling Au:TiO2 surface area coverage by annealing
is important to optimize both optical absorption and the exposure of TiO2 sites for water splitting.
The highest broadband absorption occurs when a thin layer of Au is covering TiO2 completely
(100% Au), as shown in Figure 6a. After annealing, more of TiO2 surface was exposed to light resulting
in the emergence of an absorption peak at around 375 nm while absorption dipped within 345–440 nm
due to a shrunken Au surface coverage. It was found that annealing at 450 ◦C for 6 h provided a
balance between absorption and exposed TiO2 sites. To eliminate interferometric behavior between
different absorbing layers in the stack, Au/TiO2 were deposited similarly to the stack but on a sapphire
substrate for absorption spectroscopy investigations, as shown in Figure 6b. The absorption behavior
of annealed samples on sapphire showed that the formation of Au nanoislands with various sizes and
shapes extended the optical absorption spectrum of light in the visible region.
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To understand the nature of the excited plasmon modes and their dependence on the size and
the shape of Au nanostructures, scanning near-field optical microscopy (SNOM), photoluminescence,
and quantum efficiency tests were conducted in the study and validated by finite domain time difference
(FDTD) simulations, as shown in Figure 7.
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Photoluminescence activity of three different samples were measured: TiO2 deposited on sapphire
sample (TiO-Sapp), Au deposited on TiO2/Sapphire (Au/TiO), and annealed Au/TiO sample at 450 ◦C
for 6 h. All the samples were photoexcited by a 355-nm laser. They exhibited an onset value of 380 nm
corresponding to the bandgap of TiO2 (3.2 eV). The as-deposited Au/TiO sample gave a peak at around
460 nm, which corresponds to the interband transitions between d-bands and sp conduction bands [80].
Two strong peaks appeared for the annealed Au/TiO sample. The first peak (450 nm) is similar to
the interband transitions. The second peak appeared at 630 nm and can be attributed to the surface
plasmonic activity of Au [80]. Then, external quantum efficiency (EQE) measurement was conducted
on the annealed Au/TiO sample (Figure 7b). The measurement was carried out in dry environment
using Xenon light monochromatic source. Both EQE and FDTD simulations showed an increase in the
photoactivity of annealed Au/TiO after 570 nm in the form of multipeaks. Each peak could be attributed
to the plasmonic activity of Au nanostructures with different sizes and shapes. Using SNOM, a hot spot
absorption map was constructed for an Au nanostructure, as shown in Figure 7C. The SNOM map and
FDTD confirmed the presence of surface plasmons in the nanostructure when excited with an external
light source. This study used SNOM, FDTD, and EQE to investigate the plasmonic contribution of Au
nanoparticles on enhancing the photocatalytic activity of TiO2.

3.2. Black Silicon Combined with Au/TiO2

In this study, a strategy to control the morphology of the substrate (Si) to improve light interaction
and absorption was considered. Black Silicon (BSi) is a deeply etched Si surface, fabricated from N-type
silicon by Deep Reactive Ion Etching (DRIE) technique using medium density plasma, with fluorine
as an etchant [81]. An SEM image of a BSi is shown in Figure 8. Figure 8a–c shows, respectively,
tilted views and top view of BSi surface. The etching resulted in the formation of sharp spikes with
deep cavities, as illustrated in the cross-sectional image of Figure 8d. The height of Si spikes can be as
long as few microns, where the deep wells act as a “trapping potential” to prevent the photons from
escaping the material. When an impinging photon enters inside wells, it starts interacting with the
surface of BSi; as a result, various types of light–matter interactions may occur (Figure 8e).
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Figure 8. (a,b) SEM images (tilted view) of a BSi sample showing the morphology obtained after a
selective etching of Si; (c) a top view image of the sample; (d) a cross-sectional view shows the sharp
Si peaks and deep wells formed after the etching process; and (e) schematic picture showing light
absorption through three interaction types. Adapted from [82] with permission from Elsevier, 2018.

First, multiple interactions between a single photon and the material may take place leading to
an increase of the probability of the absorption (Interaction 1). Then, an energetic photon can lose its
energy while sinking into the well (Interaction 2). This photon does not have sufficient energy to escape
the well, hence it is trapped inside the BSi. Moreover, because of the gradual change of refractive index
along the length of BSi, the waves become out of phase and cause destructive interference, thus lowering
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the energy of the waves and provoking an additional trapping of the photons (Interaction 3). Therefore,
BSi is a smart photonic design for increasing light absorption. Optical spectra comparing the light
absorption on flat silicon (FSi) and BSi are shown in Figure 9a. One can notice from this figure that
there is a dramatic increase in light absorption for BSi achieved by surface engineering.Nanomaterials 2020, 10, x FOR PEER REVIEW 9 of 18 
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Elsevier, 2018.

Following the fabrication of the etched Si substrate, the photocatalyst TiO2 was deposited. A thin
film of 40 nm was grown using ALD process. Then, Au was deposited on top of the TiO2 film.
The thickness of the Au was kept within 40 nm which provides with a good compromise between the
light absorption intensity and electrical conductivity of the photocatalyst. To assess the performances
of the device, absorption spectroscopy and photocurrent measurement were carried out. Figure 9b
shows that the addition of 40 nm of Au improved the absorption in the visible range at around 480 and
550 nm (marked by the arrows in the Figure 9b).

To further confirm the efficient light absorption proprieties of BSi, a photocurrent measurement
was carried out to evaluate the device generated current by photoexcitation. A Keithley source meter,
consisting of a four-probe measurement setup, was utilized to capture the photo-induced current. In this
experiment, the current was monitored with light off (using dark room) and light on using a broad band
light source (Xenon lamp). To underline the contribution of the plasmonic Au particles, two samples
were considered: a clean BSi sample coated with TiO2 (BSiTO) and a coated BSiTO sample loaded with
Au nanoparticles (BSiTOAu). The deposited Au material was monitored to obtain nanostructures with
various shapes and sizes in order to enhance the light absorption through plasmonic effect. As one
can notice in Figure 10, the resulted photocurrent greatly increased for BSiTOAu sample, indicating a
significant effect of Au nanostructures. Hereby, these results demonstrate on the one hand that BSi
compared to FSi substrate is far superior in terms of light absorption rendering it a good candidate for
efficient photocatalyst and on the other hand that TiO2 coated BSi and loaded with Au nanostructures
exhibited high photo-induced current. This also indicates that BSi is a potential substrate/carrier to
host Au/TiO2 WS systems as it considerably enhances light absorption and subsequently increases the
photocurrent activity in the device [82].
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3.3. Design of Cavity Shaped Au/TiO2 Device

Parallel to the promising results obtained on BSi sample, a novel design of platform to host
Au/TiO2 system with cavity-like shape was engineered to amplify the sunlight trapping. In this sense,
alumina shells were prepared using a sidewall lithography process [83,84]. These shells were utilized
as supporting figures to host the TiO2-Au system. A series of cleaning, depositing, and etching steps
was carried out to obtain the vertically standing alumina shells. At first, a Si layer was deposited on
the top of Si/SiO2 substrate. Then, low-pressure chemical vapor deposition (LPCVD) was employed
to grow the Si layer. Subsequently, a photomask was applied to generate circular pattern to evenly
etch the exposed Si region. Thereafter, an alumina layer was deposited uniformly across the surface.
The next step consisted of an anisotropic etching to remove the remaining Si, leaving the vertically
standing thin alumina shells. Once the alumina shells were fabricated, a thin TiO2 layer was deposited
using ALD process, followed by annealing. The final stage of fabrication, a deposition of thin Au layer
(nanoparticles), was realized by means of magnetron sputtering. The step-by-step process is shown in
the schematic diagram of Figure 11.
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Figure 11. Schematic pictures of the fabrication steps: (a) ~100 nm of thermally deposited SiO2,
~150 nm of SiN, and 500 nm of poly Si were deposited via low pressure chemical vapor deposition
(LPCVD) process. (b) The poly Si layer was subsequently patterned with a UV stepper and then etched
with RIE. The SiN layer was etched due to over etching. (c) Nearly 40 nm of Al2O3 (alumina) was
conformally deposited using atomic layer deposition (ALD) and then anisotropically etched using
RIE, leaving only the sidewalls. (d) The poly Si layer was etched via XeF2 gas etching leaving only
vertically the standing alumina sidewalls. (e) Then, TiO2 was deposited on the alumina shells using
the isotropic ALD deposition. (f) Finally, the structures were decorated with Au nanoparticles by using
a sputter deposition.



Nanomaterials 2020, 10, 2260 11 of 18

The SEM images of the fabricated nanostructures are given in Figure 12a–c. The multi-layered
structure is visible through the cross-sectional view shown in Figure 12c. In the high-resolution STEM,
the deposited Au region appears to resemble an inverted fishing hook (FH). The images were collected
from the TEM lamella sample, prepared using a dual focus ion beam (FIB) system [85].
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Figure 12. (a) A top view SEM image of the fabricated cup-like water splitting nanostructures.
(b) Tilted SEM image of the sample. (c) Cross-sectional view of a thin slice of the nanostructures prepared
using FIB deposition and milling, showing the structure and different layers. (d) High magnification
STEM image taken from the region indicated by the orange box in (c). Adapted from [86] with
permission from the PCCP Owner Societies, 2017.

Subsequently, HRTEM and X-ray diffraction analyses revealed that the as-deposited TiO2

layer appeared to be amorphous and the Au nanostructures are polycrystalline. The sputtered
Au nanoparticles displayed different sizes and shapes and mostly in particulate form. To evaluate the
Au plasmonic contribution, electron energy loss (EELS) investigations were carried out. EELS technique
allows precise mapping of the plasmonic hot spots in the WS Au/TiO2 based systems. To demonstrate
the presence of plasmonic effects in the as-grown cup-like nanostructures, double-corrected HRSTEM
system operating at 80 kV was used to trigger the plasmonic hot spots using high energetic electron
beam excitation. The Energy Filtered (EF) plasmon maps for the FH-like shape and the asymmetric
particle (AS) present inside the nanostructure cavities are given in Figure 13b–h. The FH-like structure
presented an active source for plasmonic hotspots at various energy windows, whereas the AS particle
provided hot spots for only two modes.
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Figure 13. (a) STEM image shows the inverted FH structure and the presence of other Au nanoparticles.
(b–h) Plasmonic modes observed at different energy widows. Each EF map is represented in temperature
mode, the color scales are independent of each other, and higher electron energy loss events are shown
in yellow, while the dark blue regions indicate lower energy loss events. Adapted from [86] with
permission from the PCCP Owner Societies, 2017.
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The plasmon losses over a wide range of energies (0.6–2.4 eV) underline the participation of Au in
absorbing light over a wide range of energies (vis-near IR). To correlate the plasmonic effects with the
device photoresponse, the device was irradiated with Xenon arc lamp source to capture the normalized
incident photon-to-current conversion efficiency (IPCE) (Figure 14).Nanomaterials 2020, 10, x FOR PEER REVIEW 12 of 18 
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The recorded IPCE, plotted against the impinging light at different wavelengths, increased with
increasing wavelength, reaching the highest IPCE value for 590 nm, corresponding to 2.1 eV photon
energy. In comparison with the EELS measurements, one can clearly notice that the contribution from
the FH-like structure matches with this range (Figure 13g). Hence, the LSPR modes originating from the
FH-like structure exhibit a very strong absorption at around 2.0–2.3 eV, close to the peak value obtained
from the measured IPCE. This indicates that the WS device shows high LSPR activity when the energy
of the incident photons is near to 2.1 eV (Figure 13g). In addition to the FH particles, there was a large
number of smaller particles inside the cavities of the WS nanostructures [86]. These particles also
contribute to the device’s photoresponse when immersed in a water solution to form a complete circuit.

The contribution from the interband transitions occurring in the Au particles can also be visualized
in the IPCE measurement. At smaller wavelengths of less than 520 nm, the IPCE values are expected to
be mostly generated by interband transitions. As in Au, the d bands lie at 2.4 eV (517 nm), just below
the Fermi level; consequently, surface plasmons decay and hot electrons generation at 2.4 eV onwards
(below 517 nm) are mostly expected via the interband transition.

As a summary, three cases studies corresponding to different strategies were demonstrated to
highlight the role of material engineering in terms of design, morphology, size, and shape to enhance
photocatalytic activity of Au/TiO2 systems by means of plasmonic effects. In conjunction with light
absorption and photo-induced current measurements, various multiscale tools such as SNOM and
HRSTEM-EELS were utilized to capture the hot spots that are the signature of LSPR. These hot spots
are correlated to plasmonic effects on WS device activity. The active role of plasmonic nanoparticles in
generating hot electrons, to be injected into the semiconductor conduction band, was showcased and
explained by the light trapping mechanism and the shape of nanostructures. Note that it is highly
important to bring the photocatalytic WS in the presence of plasmonic nanostructures a step forward
to be comparable to high cost proven electrochemical WS systems.

Certainly, photocatalytic WS for hydrogen production is a facile and viable process at very
low operating costs, thanks to the unlimited resources such as water and sunlight. Nevertheless,
it still faces real challenges to be scaled up due to the low overall efficiency. Many possibilities
are in progress to cope with these challenges. For instance, the use of heterostructures made of
hybridization of two types of semiconductors such as low band gap p-type semiconductor and high
band gap n-type semiconductor where the energy band offset at the heterojunction interface can
yield an efficient charge separation [87]. Similarly, two low-band gap semiconductors are mixed
where the first one is intended to enhance the oxidation reaction and the second one with negative
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conduction band can promote the reduction reaction [87,88]. This mechanism, known as Z-scheme,
can be used with or without electrons carrier [89,90]. For instance, carbon-based nanostructures such
as two-dimensional graphene and gC3N4, were reported as electrons carriers due to their excellent
electronic properties [91]. Other two-dimensional semiconductors, in particular metal dichalcogenides
such as MoS2, were also reported to provide with high surface area while absorbing light in visible
region [92,93]. Recently, an attempt to use hybrid systems such as photoelectrochemical solar WS
based on MoS2 and III–V materials as photoelectrodes showed high WS performances. This could
pave the way to a new generation of photo-electrochemical systems with lower power consumption
for hydrogen production [94].

4. Conclusions

The contribution of plasmonic/photocatalyst nanostructures to efficient WS reaction and HER
is ensured by two key properties: (1) as metal–semiconductor junction, they play the role of
hole-scavengers and electron donors; and (2) as LSPR sites, they enhance the UV/vis absorption and
reduce electron–hole diffusion length. Particularly, in this review, the contribution of Au/TiO2 plasmonic
nanostructures is thoroughly discussed and investigated using advanced analytical techniques such as
HRTEM-EELS and SNOM in conjunction with optical characterizations and photo-induced current
measurements. The generated plasmonic hot spots observed with microscopy were reconstructed
and validated using FDTD simulations. Our results are consistent with the fact that the LSPR
material (Au) has extended the photocatalyst (TiO2) from UV to full light spectrum leading to the
generation of photo-induced electrons which play an important role to achieving efficient water
splitting. Nevertheless, additional investigations are still required to quantify accurately the WS
efficiency and make proper connections among material selection, material design and quantification
of produced hydrogen. This step is important before further development towards mass production of
efficient WS device.
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