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Abstract: Nanomedicine is a rapidly growing field that uses nanomaterials for the diagnosis,
treatment and prevention of various diseases, including cancer. Various biocompatible nanoplatforms
with diversified capabilities for tumor targeting, imaging, and therapy have materialized to yield
individualized therapy. However, due to their unique properties brought about by their small size,
safety concerns have emerged as their physicochemical properties can lead to altered pharmacokinetics,
with the potential to cross biological barriers. In addition, the intrinsic toxicity of some of the inorganic
materials (i.e., heavy metals) and their ability to accumulate and persist in the human body has
been a challenge to their translation. Successful clinical translation of these nanoparticles is heavily
dependent on their stability, circulation time, access and bioavailability to disease sites, and their
safety profile. This review covers preclinical and clinical inorganic-nanoparticle based nanomaterial
utilized for cancer imaging and therapeutics. A special emphasis is put on the rational design to
develop non-toxic/safe inorganic nanoparticle constructs to increase their viability as translatable
nanomedicine for cancer therapies.
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1. Introduction

The World Health Organization estimates 9.6 million people died from cancer in 2018. That is
one in six deaths, which makes it the second leading cause of death worldwide [1]. American Cancer
Society estimates the United States will have approximately 1,806,590 new cancer cases and 606,520
cancer deaths in 2020 [2]. A major challenge in effectively treating cancer is its intratumor heterogeneity
brought about by mutations as the disease progresses. These considerable variations among tumors can
lead to different responses to a given treatment and may lead to ineffective killing of particular subclonal
populations [3,4]. Conventional cancer treatments rely on surgery, chemotherapy and radiotherapy.
Most often, combinations of these therapies are needed to completely eradicate the disease. However,
healthy tissues are also affected by these treatments resulting to adverse side effects. [5]. As such,
design of more effective cancer therapies will require careful planning and integration of diagnosis
and therapy to tailor treatments to individual needs. Nanomedicine, which is the application of
nanotechnology to the diagnosis, treatment, and prevention of disease, offers to address shortcomings
of conventional treatment in cancer through various biocompatible nanoplatforms with diversified
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capabilities for tumor targeting, imaging, and therapy. Emerging nanotechnologies are geared towards
imparting imaging functions in addition to their therapeutic capabilities in order to yield individualized
therapy that can be monitored non-invasively and in real time [6]. The increasing need for novel
therapeutics has led to dramatic growth in the development of therapeutics and imaging agents based
on inorganic-based nanoparticles, such as gold, silica, iron oxide, copper, zinc, bismuth, gadolinium,
etc. Nanosized materials exhibit unique properties compared to their bulk counterparts, including high
surface-to-volume ratio, high surface energy, unique mechanical, thermal, electrical, magnetic, and
optical behaviors, can be tailored to suit a specific application and make them a truly multifunctional
platform for imaging and therapy [7]. In addition, inorganic nanoparticles are extremely robust and
highly resistant to enzymatic degradation [8,9]. They can be engineered to a controlled size to improve
delivery, distribution, and clearance [10].

The European Medicines Agency (EMA) defines nanomedicine as purposely designed systems
for clinical applications, with at least one component at the nanoscale size, with definable specific
properties and characteristics related to the nanotechnology application, associated with the expected
clinical advantages of the nanoengineering, and needs to meet definition as a medicinal product
according to European legislation [11,12]. Although the Food and Drug Administration (FDA) does
not have its own definition, it has adopted the commonly used terms of having at least one dimension
in the ~1–100 nm size range, and advises that evaluations should consider any unique properties
and behaviors that the application of nanotechnology may impart [13]. Despite the many advances
from the bench, very few clinical applications of inorganic nanoparticle-based nanomedicine in cancer
exist [14,15]. As the unique properties brought about by the small size of the nanoparticles offer
great opportunities for medical purposes, at the same time, safety concerns have emerged as their
physicochemical properties can lead to altered pharmacokinetics, with the potential to cross biological
barriers. In addition, the intrinsic toxicity of some of the inorganic materials (i.e., heavy metals) and
their ability to accumulate and persist in the human body has been a challenge to their translation.
Successful clinical translation of these nanoparticles is heavily dependent on their stability, circulation
time, access and bioavailability to disease sites, and their safety profile [14]. Thus, rational design
to tailor for specific applications, to optimize their pharmacokinetic parameters, and to minimize
off-target toxicity, is critical in moving these constructs into the clinic. This review covers preclinical
and clinical inorganic-nanoparticle based nanomedicine utilized for cancer imaging and therapeutics.
A special emphasis is put on the rational design to develop non-toxic/safe inorganic nanoparticle
constructs to increase their viability as translatable nanomedicine for cancer therapies.

2. Inorganic Nanoparticles in Cancer Nanomedicine

The compatibility between nanoparticle size and the biological systems, coupled with the ability
to tailor their physicochemical properties with thorough characterizations facilitated the rapid rise
of nanoparticles as unique tools for many biomedical applications (Figure 1). These nanoparticles
engineered with multifunctionalities showing great promise to a more personalized approach to
disease management and therapies could considerably improve the diagnostics and therapeutics of
various cancers [16].
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Figure 1. Nanoparticles in imaging and therapies. Created using BioRender.com. 

Imaging is largely considered as one of the most relied-upon diagnostic tools in healthcare. Through 
its unique nanoparticle surface or core features, a nanoplatform can provide contrast enhancement 
capabilities in various imaging methods for purposes of early detection, screening, diagnosis, and image-
guided cancer treatment. These imaging techniques include optical, plain radiography, magnetic 
resonance imaging (MRI), and computed tomography (CT). The possibility to introduce multiple 
modalities in the same nanoparticle with minimal interference makes nanoplatforms both attractive and 
advantageous. Such nanoplatforms can effectively function as multimodal contrast agents for imaging to 
give complementary information for a precise diagnosis. 

In addition to multimodality, nanoparticles are also being developed to complement 
conventional therapeutic avenues, such as surgery, chemotherapy, ablation, and radiation therapy 
[7]. As the technology progresses, multimodality and multifunctional therapies have emerged. A 
single agent capable providing contrast enhancement to different imaging modalities can provide a 
more accurate and detailed information on the physiological and anatomical characteristics of the 
disease pathology. Adding imaging with therapeutic delivery achieves a safer and more effective 
approach since sufficient accumulation in target tissues can be ensured and the effects both on the 
target and the surrounding healthy tissues can be monitored. 

2.1. Imaging Modalities 

2.1.1. Positron Emission Tomography 

Positron emission tomography (PET) is a 3D-imaging method that makes use of low energy γ 
rays via a positron-emitting radionuclide in the imaging contrast agents. Nanoparticles are 
particularly useful in the development of new contrast agents. In particular, PET imaging can be 
performed at a much lower dose by attaching an increased number of radionuclides on the surface 
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Imaging is largely considered as one of the most relied-upon diagnostic tools in healthcare. Through
its unique nanoparticle surface or core features, a nanoplatform can provide contrast enhancement
capabilities in various imaging methods for purposes of early detection, screening, diagnosis, and
image-guided cancer treatment. These imaging techniques include optical, plain radiography, magnetic
resonance imaging (MRI), and computed tomography (CT). The possibility to introduce multiple
modalities in the same nanoparticle with minimal interference makes nanoplatforms both attractive
and advantageous. Such nanoplatforms can effectively function as multimodal contrast agents for
imaging to give complementary information for a precise diagnosis.

In addition to multimodality, nanoparticles are also being developed to complement conventional
therapeutic avenues, such as surgery, chemotherapy, ablation, and radiation therapy [7]. As the
technology progresses, multimodality and multifunctional therapies have emerged. A single agent
capable providing contrast enhancement to different imaging modalities can provide a more accurate
and detailed information on the physiological and anatomical characteristics of the disease pathology.
Adding imaging with therapeutic delivery achieves a safer and more effective approach since sufficient
accumulation in target tissues can be ensured and the effects both on the target and the surrounding
healthy tissues can be monitored.

2.1. Imaging Modalities

2.1.1. Positron Emission Tomography

Positron emission tomography (PET) is a 3D-imaging method that makes use of low energy
γ rays via a positron-emitting radionuclide in the imaging contrast agents. Nanoparticles are
particularly useful in the development of new contrast agents. In particular, PET imaging can be
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performed at a much lower dose by attaching an increased number of radionuclides on the surface
of the nanoparticle. Incorporation of the radionuclide in a non-radioactive nanomatrix results in
its radioactive functionality. The dosage and type of radionuclide is determined such that emitted
species is of sufficiently low energy as to prevent concurrent radiotoxicity, while providing reliable
radioimaging signals. The most commonly used method of nanoparticle radiolabeling includes surface
chelation of the radionuclide and using chelator-free post-synthetic labeling via ion-exchange [17]. A
key advantage to radiolabeling of nanoparticles is the possibility of accurate earlier tumor detection
while providing mechanism of cancer proliferation at the molecular scale. For example, poly(aspartic
acid)-iron oxide (Fe3O4) nanoparticles (IONP, 5-nm) can be functionalized with both 64Cu for PET, and
cyclic arginine-glycine-aspartic (RGD) peptides for targeting integrin αvβ3. This is achieved by reacting
the amino groups on the surface of the nanoparticles with activated N-hydroxysuccinimide (NHS)
macrocyclic 1,4,7,10-tetraazacyclododecane-N,N′,N′′,N′′′-tetraacetic acid (DOTA) chelator for 64Cu
labeling, and with NHS−poly(ethylene glycol) (PEG)−maleimide for RGD peptide functionalization.
The resulting bifunctional IONP imaging probe allows the simultaneous PET and MRI scans of tumor
integrin αvβ3 expression [18]. Click chemistry has also been used to attach large number of 18F atoms in
newly developed contrast agents resulting to drastic lowering of the detection threshold [19]. However,
quick conjugation of 18F into the probe with high yield is essential due to its short half-life (t1/2 = 110
min). To be used for PET imaging, 18F can be ion-exchanged with the fluoride in NaYF4 upconversion
nanoparticles through simple sonication. This facile method yielded more than 90% even after 2h of
incubation [20]. Organically modified silica (ORMOSIL) radiolabeled with 124I (t1/2= 4.2 days) have
been synthesized to allow whole body PET imaging. The 124I radioisotope was introduced on to the
ORMOSIL surface by acylation with the Bolton–Hunter reagent [21].

2.1.2. Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a versatile imaging technique that offers broad applications
and has fast become a routine tool for diagnosis both in the clinical and biomedical settings [22–24].
Among the advantages of MRI over other clinically non-invasive imaging modalities include its
exceptional capability in discriminating between normal and pathological tissues, lack of beam
hardening artifacts, use of non-ionizing radiation, and ability to image any plane with equivalent
resolution without moving the patient [25,26]. Commonly, T1-weighted MRI utilizes T1 contrast agents
for positive contrast enhancements, while T2-weighted MRI employs T2 contrast agents for negative
contrast enhancements [27,28].

Engineering the surface of the nanoparticles with large numbers of paramagnetic centers can yield
superior T1 contrast agents in comparison to clinical Gd-chelates. Nanoparticle T1 contrast agents can
have higher T1 relaxivity [29–36] and longer blood circulation time [29,34,35,37]. In addition, the Gd3+

ions are embedded in the crystal matrix of the nanoparticle; hence, significant leaching of Gd3+ can be
prevented, minimizing the risk of toxicity [29,35,36]. Another big advantage of the nanoparticles is its
highly reactive surface that can be coated with functional biocompatible materials to allow conjugation
for targeted delivery to the region of interest without compromising Gd3+ binding site [32,36]. To
achieve ultrahigh T1 relaxivity requires precise control of the nanoparticle surface structure. A T1
relaxivity as high as ~80 mM−1

·s−1 per Gd3+ was achieved at 1.41 T with ~3 nm NaGdF4 coated with
high amount of PEGylated phospholipid (i.e., DSPE-PEG). Increasing the ratio of phospholipid to the
nanoparticle will result in compact micellization (hydrodynamic diameter <5 nm), drawing the water
protons closer to the Gd3+ surface [38]. To circumvent the potential toxicity risks of Gd3+, applicability
of MnO2 nanoparticles as T1 contrast agents are also being explored. MnO2 gradually decomposes in
an acidic environment (i.e., pH 6.8 in tumor microenvironment) releasing free Mn2+ [39]. Reduction of
MnO2 to Mn2+ result in increased T1 relaxivity, which has been exploited in MnO2-based pH sensitive
MRI probes and tumor microenvironment modulation [40–43].

IONPs, with their inherent superparamagnetic properties serve as excellent T2 contrast agents in
MRI. The high magnetic moment of IONP reduces the transverse relaxation time of protons through
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an increased loss in phase coherence, reducing the MRI signal leading to a negative contrast [44,45].
Control of size and metal doping can produce IONP with large saturated magnetization (Ms values of
175 emu g−1 [46] and 186 emu g−1 [47]), while morphology control can tune the effective magnetic
core radius, leading to a significant increase of T2 relaxivity. For example, octapod-shaped IONP
achieved T2 relaxivity as high as 679.3 ± 30 mM−1 s−1, which is 5-fold higher than spherical IONP
of similar volume (125.86 mM−1 s−1) [48]. An optical probe can also be incorporated with IONPs for
dual MRI/optical imaging such as quantum dots (QDs) [49–52] or IONPs integrated with gold-based
nanoparticle such as gold nanoshell (IONP@AuNS) to add therapeutic functionality [53,54]. Various
formulations of IONPs have already been used in clinical MRI [55].

2.1.3. Computed Tomography

CT is a non-invasive diagnostic tool primarily used for 3D visual reconstruction and segmentation
of tissues of interests [56–58]. Array detector technology allowed for fast CT imaging (within several
minutes) of whole body or organs with isotropic resolution at the sub-millimeter level [56]. This
technique is fast, accurate, non-invasive, and painless, which can be performed on every region of
the body. For these reasons, CT has become a valuable tool for diagnosis, treatment planning, and
intervention and has become one of the most prevalent diagnostic devices in terms of frequency-of-use
and hospital availability [59–61].

To improve visualization and enhance differentiation among adjacent tissues, CT contrast agents
are generally given to increase X-ray attenuation [62]. The currently approved clinical intravenous
contrast agents for CT imaging are iodinated small molecules [63]. However, their short blood half-life
requires high dose concentrations that may cause contrast-induced nephropathy in patients with
compromised kidneys [64]. Therefore, there is a need to find alternative contrast agents that require
lower concentration dose and have minimal toxicity, while still providing sufficient signal enhancement.
Nanoparticles containing elements with high atomic number (high-Z) are attractive alternatives to
iodinated small molecules as they have higher X-ray attenuation and longer half-lives, and therefore can
achieve high-quality CT imaging at lower contrast agent dose [65,66]. Additionally, the nanoparticle
surface can be easily functionalized to enable targeted delivery to specific tissues [67]. Some of the
promising high-Z nanoparticles being explored contains bismuth (Bi, Z = 83), tantalum (Ta, Z = 73),
tungsten (W, Z = 74), gadolinium (Gd, Z = 64), and ytterbium (Yb, Z = 70) [68–73]. Nevertheless,
gold-based nanoparticles (Au, Z = 79) have received the most attention due to their known excellent
biocompatibility, ease of synthesis, and high X-ray attenuation compatible with clinical CT [74–76].
The first reported spherical gold nanoparticles (AuNP) administered in vivo for CT demonstrated
3-fold higher X-ray attenuation than the iodine-based contrast agent OmnipaqueTM [77]. Furthermore,
these nanoparticles have ~1.9 nm diameters, thus can be cleared through renal filtration. Targeted CT
imaging using gold nanorods (AuNR), coated with PEG and functionalized with anti-EGFR (epidermal
growth factor receptors) on the surface to target head and neck cancer, exhibited more than 5 times
higher X-ray attenuation in cancer cells than non-targeted AuNR [78]. Another example is AuNP with
tunable diameter from 1.9–4.7 nm embedded within PEG-modified polyethylenimine (PEI) network
for blood pool and tumor imaging have shown blood half-life of 11.2 h in rats [79]. Commercial
formulation of 1.9 nm AuNP is available under the trade name AuroVist (Nanoprobes), which can be
applied in micro-CT, clinical CT, planar CT, and mammography.

Nanoparticles containing two or more CT-contrast elements to provide high X-ray attenuation
at different X-ray operating voltages have also been synthesized. BaYbF5 nanoparticles (Ba, Z = 56
and Yb) with SiO2 shell and PEGylated surface (BaYbF5@SiO2@PEG) demonstrated higher X-ray
attenuation than the clinical tri-iodinated iobitridol and the single CT-contrast element NaYbF4, at
both 80 and 140 kVp Xray voltages [80].
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2.1.4. Optical Imaging

Interests in developing optical imaging probes, in particular for tumor margin delineation to
guide surgical resections, arise from certain limitations of current clinical imaging methods such as
narrow imaging time windows, suboptimal specificity, and sensitivity. Near infrared (NIR) imaging is
a technique that offers high spatial resolution while maintaining a less expensive and non-invasive
solution. In the last years, the use of NIR fluorescence has gained a lot of traction for bioimaging
purposes for its superior penetration in biological tissues. Furthermore, improved signal to noise ratio
is achieved via reduced light scattering and minimized autofluorescence, having both the excitation
and emission wavelengths within the optical transparency window. This technique not only allows
for diagnosis at the cellular and single molecular levels but also provides imaging guidance for
intraoperative surgical excision of tumors [81].

For in vivo tumor targeting studies, heavy metal-free QDs are particularly appealing due to
their low toxicity risk common in heavy metals. Photoluminescent Si-based nanoparticles (SiNP)
have been coated with PEG and administered in mice for sentinel lymph node (SNL) mapping, and
multicolor NIR imaging [82]. Ultrasmall fluorescent SiNP (~4 nm) in Caenorhabditis elegans had also
demonstrated superior photostability than mCherry and outperformed CdTe QD over a 120 min
continuous high-power laser photobleaching study [83]. Their remarkable photostability make them
suitable for long term cancer cell tracking, showing stable fluorescence in tumor-bearing mice over
20 days [84]. Another example of silicon-containing nanoparticle used for optical imaging was the
luminescent porous silicon nanoparticles, which are able to carry a drug payload and can be monitored
optically in vivo for both their accumulation and degradation into renal clearable components [85].

Currently, silica nanoparticles with ultrasmall size of 6–7 nm—better known as Cornell dots or C
dots, have been undergoing a FDA Investigational New Drug (IND) human clinical trial for real time
mapping of nodal metastases [86]. These C dots are silica-organic hybrid consist of cyanine dye, Cy5,
encapsulated in a silica core-shell, and further coated with PEG that can be functionalized with target
molecules (i.e., cyclic arginine-glycine-aspartic acid (RGD), anti-HER2 scFv fragments), or chelators
for radiolabeling (i.e.,124I, 89Zr). These fluorescent core-shell nanoparticles serve as cancer probes for
surgeons by binding to overexpressed receptors on tumor surfaces and would fluoresce when exposed
to near-infrared (NIR) light. These compact targeted optical-PET probes have great tumor selectivity
and sensitivity, reduced off-target accumulation in the reticuloendothelial system (RES) or kidney over
a 24 h period and are renal clearable without excessive kidney irradiation [86,87].

2.1.5. Photoacoustic Imaging

Photoacoustic (PA) imaging is a hybrid technique that relies on the generation of a sound wave by
a material after light absorption due to thermoelastic expansion. The choice of imaging contrast for
PA modality is determined by the difference in absorption between the target and its surrounding
area while the spatial resolution is scaled with the ultrasonic frequency. PA beneficially combines the
higher contrast of optical imaging and the longer penetration depth of ultrasound. [88]. Nevertheless,
the penetration depth of excitation photons restricts imaging depth.

Several PA active nanoparticles have been developed for preclinical application. For example,
spherical hollow AuNS (HAuNS) have been used to monitor treatment effects using PA imaging in
nude mice bearing 4T1 tumors [89], while Au nanocages (AuNC) have been used for SNL mapping
as deep as 33 mm below the skin surface on a Sprague-Dawley rats [90]. Semiconductor copper
sulfide (CuS) nanoparticles with broad absorption at 1064 nm were able to enhance rat lymph nodes
12 mm below the skin surface [91]. A phantom study of these CuS nanoparticles in agarose gel
showed it can be readily imaged when embedded in chicken breast muscle at ~5 cm deep. Another
plasmonic semiconductor, PEGylated phospholipid coated copper selenide nanoparticles (Cu2−xSe
NP) were evaluated for SNL mapping, achieving an imaging depth about 3.5 mm beneath the skin
surface and with 4.8 times higher PA amplitude than the background [92]. Coupling these Cu2-xSe
NP with AuNP to form heterodimer Au-Cu2−xSe NP resulted in a much-improved imaging depth
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up to 17 mm [93]. Molecular-specific detection of micrometastasis with enhanced specificity and
sensitivity was developed utilizing molecularly activated plasmonic nanosensors (MAPS) specific
for spectroscopic PA (sPA). MAPS that consist of EGFR-targeted AuNP produced a dramatic change
in the spectroscopic signal of sPA imaging when they interacted with epidermoid carcinoma cells
(A431) [94,95].

2.2. Therapeutic Modalities

2.2.1. Radiation Therapy

Radiation therapy (RT) is a type of cancer treatment that utilizes ionizing radiation, most often
X-rays, to control or kill cancer cells by damaging DNA [96]. RT is one of the most cost-effective
treatments for cancer patients and remains an integral part in clinical oncology [97]. However, not all
patients respond to RT and cancer recurrence is still a significant clinical problem [98]. To improve
efficacy of RT, it is often administered in combination with chemotherapy (chemoradiation therapy)
but this can increase systemic toxicity and even mortality [99]. One of the promising applications of
inorganic nanoparticles is their ability to enhance radiotherapeutic efficacy. In this regard, there is
growing interest in the use of high-Z nanoparticles as radiosensitizers. High-Z nanoparticles are known
to enhance the photoelectric and Compton effects upon interaction with X-rays, leading to increased
emitted secondary electrons. This dose radio-enhancement effect improves therapeutic efficacy in two
ways: (1) radiation damage is enhanced without increasing the X-ray radiation dose, and (2) amplified
DNA damage is localized to the tumor sparing the surrounding healthy tissues [97,100,101].

Most studies have focused on AuNPs and significant evidences have been reported to demonstrate
their ability to increase the therapeutic ratio of radiotherapy [102–105]. Recently, it was shown that
systemic administration of RGD conjugated to PEGylated AuNP (RGD:AuNP) in combination with
image-guided RT lead to specific targeting of tumor blood vasculature. The site-specific damage of
tumor endothelium can improve RT outcome with minimized off-target toxicities [106]. In addition,
the alteration of the tumor blood vessels changes the vascular permeability of the tumor leading to
improved drug delivery [107]. Another promising candidate for radiosensitizations are the Gd-based
nanoparticles. Mesoporous silica nanoparticles (MSNs) loaded with Gd (Gd-MSNs) have shown great
potential in inhibiting tumor when irradiated with a precisely tuned monochromatic X-ray [108]. This
study has demonstrated two important factors regarding effective nanoparticle radiosensitization: (1)
the energy compatibility between the binding energy of the nanoparticle and the irradiation source to
maximize the dose radio-enhancement, and (2) the proximity of the nanoparticle to the nucleus of the
target cell due to the low energy and consequent short-range characteristics of the generated Auger
electrons. In this study, Gd-MSNs incubated in the human ovarian cancer (OVCAR8) accumulated
in the lysosomes close to the nucleus have shown near complete destruction of tumor spheroids
upon exposure to monochromatic 50.25 KeV X-rays. This strategy could enable highly targeted
radiation therapy. In the clinic, first-in-class radioenhancer hafnium oxide (HfO2, Z = 72) developed
by NanoBiotix (Paris, France), has already shown success as efficient radiation enhancers on patients
requiring preoperative radiotherapy [109]. These 50 nm HfO2 nanospheres can substantially enhance
radiation therapy efficacy when intratumorally injected [110]. Other metal nanoparticles that have
shown great promise in augmenting radiotherapy include Bi [111,112], platinum (Pt, Z = 78) [112–114],
and IONP [115,116] having both radiosensitizing and hyperthermic [117–119] properties.

2.2.2. Ablation Therapy

Photothermal Therapy

Photothermal therapy (PTT) is a light-based therapy designed to eradicate tumors via conversion
of light energy to heat through optical absorption [120]. Minimally invasive targeting of difficult-to-treat
tumors can be achieved via selective photothermal absorbers. Nonetheless, because of its limited
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penetration depth, the use of this treatment modality is restricted only to cancers that are close to
the skin, to internal linings that are accessible by endoscopy, or to organ surfaces exposed during
surgery [6]. The photothermal absorbers must have an optimal absorbance within the first (650–850
nm) or the second (950–1350 nm) biological window, where light can penetrate deeply into the
tumors due to the minimal attenuation from healthy tissues [121]. Due to their exemplary optical and
biological properties, gold-based nanostructures that absorb in the NIR region, such as AuNR [122],
AuNS [123], or AuNC [124], have frequently been applied in PTT. To optimize the effect of the
nanoparticle-mediated PTT, selective localization within the tumor region at sufficient concentration
is needed. This has been achieved using several approaches: (1) through the conventional Au-thiol
surface bioconjugation to functionalize the surface with desired target molecules [54,121], (2) through
a multifunctional nanoplatform that incorporated IONP allowing the IONP@AuNS to be directed into
the solid tumors with an external magnet [53], and (3) through the use of macrophages as nanoparticle
delivery vehicles [125]. Non-invasive imaging can also be used to guide and control PTT. Use of
IONP@AuNS enabled MR thermal imaging (MRTI) to assess PTT by generating a real-time heat
map during irradiation in order to control and optimize the applied thermal doses [126,127]. Initial
result of a clinical trial using laser-excited AuNS (AuraShell) in combination with MR/ultrasound
(US) fusion imaging to focally ablate low-intermediate-grade prostate have been shown to be safe and
technologically feasible [123].

Hyperthermic Therapy

Hyperthermic therapy (HT) induces a mild rise in tumor temperature in the range of 40–50 ◦C,
that can make cancer cells more susceptible to RT or chemotherapy [128–130]. Damage and death
can also occur when cancer cells are exposed to HT for more than one hour [131]. Recent reports
have shown the use of magnetic nanoparticles to induce hyperthermia to be very promising [132,133].
Magnetic nanoparticles allow the supply of tumor-specific hyperthermia intracellularly at the nanoscale
level [134]. This can greatly improve the therapeutic efficacy of hyperthermia, concentrating the
particles in the tumor and achieving better homogeneity [135]. An alternating magnetic field (AMF) is
then applied, heating tumor cells to eradicate/damage cancerous cells.

3. Nanoparticles in Clinical Translation: Challenges Ahead

The many advantages brought about by the high functional versatility of inorganic nanoparticles
in diagnostics and therapeutics motivates their continuous development and optimization as cancer
nanomedicine. Nevertheless, despite the leaps achieved in preclinical research, very few have entered
the clinic. Among all the inorganic nanoparticles, IONPs, with their biocompatibility and inherent
magnetic properties that can be exploited in MR imaging, hyperthermic therapies and tumor ablation,
have been the most explored clinically [136,137]. In fact, several of the IONP formulations have already
been approved as MRI contrast agents for non-invasive diagnostic imaging. However, long term in vivo
biocompatibility has shown some adverse effects, coupled with some suboptimal performance have
resulted to market withdrawal (Table 1). Nevertheless, it is undeniable that inorganic nanoparticles
have the potential to provide solutions to the gaps in current conventional cancer diagnostics and
treatments. Recently, production of ferumoxtran-10 (Combidex) is being revived [138]. Ferumoxtran-10
works by differentiating benign and metastatic lymph nodes on a T2*-weighted IONP-enhanced MRI.
Metastatic lymph nodes do not take up these nanoparticles while normal macrophages do, resulting in
accumulation in normal lymph nodes after 24–36 h. Currently, no alternative contrast agent or medical
device had comparable result with Combidex in prostate cancer [138]. This is one of the cases that
highlight the unmet needs in clinical cancer diagnostics being bridged by inorganic nanomedicine.

On the case of nanoparticles being utilized as therapeutics, C dots have been the first optical
inorganic nanoparticles approved by FDA as an IND for clinical trial in 2010 [86,139]. It is currently
on Phase I/II for real time mapping of nodal metastases in several cancers (Table 2). AuNS are also
being investigated in the clinic for NIR thermal ablation therapy (Auralase, AuraShell) [123,140]
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and AuNP as carrier of spherical nucleic acids to modulate Bc12L12 gene expression in recurrent
glioblastoma (NU-0129) [141]. Nanotherm therapy, which consists of IONP with aminosilane shell that
is introduced into the tumor and then heated under an alternating magnetic field, has recently obtained
an investigational device exemption (IDE) approval from FDA to use as a focal ablation treatment in a
clinical trial for intermediate risk prostate cancer [142]. Although there are several nanoparticles that
have been in clinical trials, as of today, only Hensify® (NBTXR3, Nanobiotix, Paris, France) is currently
approved in the market (CE, Conformité Européenne).

The very low number of inorganic nanoparticles approved or under investigation for clinical use
in comparison to preclinical research indicates significant challenges in moving from bench to the
clinic. In August 2006, US FDA assembled a Nanotechnology Task Force to determine appropriate
regulatory approaches and to identify and recommend mechanisms to address knowledge gaps
in the adequacy and application of the current regulations. In July 2007, the task force concluded
that nanotechnology combination products necessitate further exploration to ensure the regulatory
pathways will yield predictable determinations in marketing the combination product whether as a
drug, medical device, or biological product [143]. The increasing complexity of nanotechnology and
its integration with other fields poses questions to the adequacy of existing regulatory frameworks, in
particular with the assessment of the inherent risks of nanoparticles, including toxicity and human
health impacts of exposures, effects of various exposure routes, and routes of administration. Hand in
hand are the unintended effects of nanoparticles’ ability to cross physiological barriers (i.e., blood-brain
barrier), and their long-term effects [144]. With the advancement of nanotechnology in human
health, appropriate safety and efficacy requirements and risk-benefit measures that are tailored to
characterize, assess, and report potential novel risks in nanotoxicity and exposure concerns are needed.
In line with this, the National Nanotechnology Initiative and other federal agency collaborations are
pushing for large-scale research efforts to characterize nanoscale materials and quantify their impact
for purposes of developing toxicological assessment and testing tools [145]. In comparison with
the traditional pharmaceutics, safety evaluation for each nanoparticle component is needed which
results in more expensive trials [146]. FDA has established the Nanotechnology Characterization
Laboratory (NCL) in collaboration with the National Institute of Standards and Technology (NIST)
and the National Cancer Institute to perform preclinical efficacy and toxicity testing of nanoparticles.
NCL can provide the infrastructure to accelerate the clinical transition of basic nanoscale particles at
no cost to the investigators, lowering the barriers to researchers who aim to advance their research into
the clinic [147,148].
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Table 1. Inorganic nanoparticles approved in the clinic.

Name Material/Functionality Approved
Application/Indication Cancer Type Approval Status

NBTXR3
Hensify®

(Nanobiotix, Paris,
France)

50 nm crystalline hafnium oxide (HfO2)
with phosphate coating First-in-class radioenhancer Locally advanced

soft tissue sarcoma CE Mark (2019)

Feridex I.V.
(AMAG) Endorem

120–180 nm IONP colloid with low
molecular weight dextran coating [149] MR Imaging Liver lesions

FDA (1996)
Withdrawn (2008)
Reasons: Hypotension, lumbar pain/leg
pain, local pain, hypersensitivity
[149,150]

Resovist carboxydextrane-coated IONP, with a
45–60 nm hydrodynamic diameter [149] MRI Liver lesions

EMA (2001)
Discontinued (2009) [151]
Reasons: Vasodilatation and paraesthesia
[149,150]

Ferumoxtran-10
/Combidex

Sinerem
(AMAG)

20–50 nm dextran coated IONP [138] Imaging lymph node metastases Prostate cancer

Only available in Holland, Discontinued
Application withdrawn from EMA (2007)
Application withdrawn from FDA (2005)
[149,151]
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Table 2. Inorganic nanoparticles undergoing clinical trials.

Name Material/Functionality Application/Indication Cancer Type ClinicalTrials.gov
Identifier Status Concurrent

Therapies/Interventions

NBTXR3
PEP503

(Nanobiotix,
Paris, France)

50 nm crystalline
hafnium oxide (HfO2)

with phosphate coating

First-in-class
radioenhancer

Pancreatic Ductal
Adenocarcinoma

NCT04484909
Phase I

Recruiting
(Est: December 2026)

Non-small cell lung
cancer

NCT04505267
Phase I

Not yet recruiting
(Est: March 2024)

Hepatocellular
carcinoma

NCT02721056
Phase I/II

Unknown
(Est: December 2018)

Advanced metastatic
tumors

NCT03589339
Phase I

Recruiting
(Est: March 2023) anti-PD1

Prostate
adenocarcinoma

NCT02805894
Phase I/II

Recruiting
(Est: November 2022) Brachytherapy boost

Locally Advanced
Squamous Cell
Carcinoma of the
Oropharynx

NCT01946867
Phase I

Unknown
(Est: June 2017)

Soft tissue sarcoma of
extremity or trunk
wall

NCT01433068
Phase I Completed 2015

Soft tissue sarcoma of
extremity or trunk
wall

NCT02379845
Phase II/III

Active, not recruiting
(Est: April 2020)

Head and neck SCC NCT02901483
Phase Ib/II

Recruiting
(Est: December 2020) Cisplatin

Rectal cancer NCT02465593
Phase Ib/II

Recruiting
(Est: June 2021)

5-FU, capecitabine,
surgical resection (after
neoadjuvant therapy)

AuraLase
Therapy,

AuroShell
(Nanospectra
Biosciences)

PEG-coated-AuNS
MRI/US fusion +

Near-infrared thermal
ablation therapy

Prostate cancer NCT04240639
Extension study

Recruiting
(Est: June 2023)

MRI/US guided laser
irradiation

ClinicalTrials.gov
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Table 2. Cont.

Name Material/Functionality Application/Indication Cancer Type ClinicalTrials.gov
Identifier Status Concurrent

Therapies/Interventions

Prostate cancer NCT02680535 Active, not recruiting
(Est: July 2020)

MRI/US guided laser
irradiation

Primary and/or
metastatic lung cancer

NCT01679470
Pilot study

Terminated
(Jun 2014)—limited
study participants

Laser irradiation by
bronchoscopic optical

fiber
Refractory or
recurrent head and
neck cancers

NCT00848042
Pilot study

Completed
(August 2014)

NU-0129
(Northwestern)

Spherical nucleic acid
(SNA) on AuNP

Recurrent
glioblastoma
multiforme,
gliosarcoma

NCT03020017
Early Phase I

Active, not recruiting
(Est: September 2020)

Magnablate IONP Magnetic
thermoablation Prostate cancer NCT02033447

Early Phase I
Completed
(January 2015) Prostatectomy

NanoTherm
(MagForce) 15 nm colloidal IONP Magnetic

thermotherapy

Glioblastoma
Intermediate prostate
cancer

Investigational
Device Exemption

Cornell Dots
Fluorescent

cRGDY-PEG-Cy5.5-C
dots

Real time mapping of
nodal metastases

H&N, Breast,
Colorectal cancers

NCT02106598
Phase I/II Recruiting

(Est: April 2021)
Fluorescence imaging,

surgical resection

64Cu-NOTA-PSMA-PEG-Cy5.5-C’
dot Prostate cancer NCT04167969

Phase I
Recruiting
(Est: November 2021)

PET/MR imaging,
surgical resection

89Zr-DFO-cRGDY-PEG-Cy5-C’
dots

Malignant brain
tumors

NCT03465618
Phase I

Recruiting
(Est: March 2021)

PET imaging,
surgical resection

Ferrotran®®

(Ferumoxtran-10)
Dextran coated IONP Enhanced MRI Prostate cancer

NCT04261777
Phase III Recruiting

(Est: December 2020)
MR imaging, surgical

resection

Pancreatic
adenocarcinoma NCT04311047 Recruiting

(Est: December 2021)
MR imaging, surgical

resection

ClinicalTrials.gov
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Table 2. Cont.

Name Material/Functionality Application/Indication Cancer Type ClinicalTrials.gov
Identifier Status Concurrent

Therapies/Interventions

Ferrumoxytol
(AMAG, Inc.,

Waltham, MA,
USA)

IONP MR imaging contrast Esophageal cancer
NCT02689401(PhI)
NCT02857218(PhI)
NCT02253602

Withdrawn 2016
Recruiting (Est. 2021)
Completed 2018

Surgery, neoadjuvant
therapy

Prostate cancer

NCT01296139(PhI)
NCT02141490(PhII)
NCT00087347
NCT03358563(PhI)

Completed 2015
Completed 2018
Completed 2006
Suspended (Est. 2021)

Docetaxel, Degarelix,
Bicalutamide

Colorectal cancer NCT01983371 (PhI)
NCT03280277 (PhI)

Withdrawn 2016
Recruiting (Est. 2021)

Lung cancer NCT03325166(PhII) Recruiting (Est: 2022) Pembrolizumab

Brain neoplasms

NCT00978562
NCT03179449 (PhI)
NCT03234309(PhII)
NCT00659126(PhII)
NCT00103038
NCT00769093 (PhI)
NCT00660543 (PhI)
NCT02466828 (PhI)
NCT02359097
NCT03347617(PhII)
NCT03264300
NCT02452216 (PhI)

Unknown
Recruiting (Est. 2022)
Recruiting (Est. 2022)
Recruiting (Est. 2020)
Active, not recruiting
Terminated 2014
Completed 2014
Completed 2018
Recruiting (Est. 2023)
Recruiting (Est. 2022)
Recruiting (Est. 2022)
Completed 2017

Surgery
Carboplatin,
bevacizumab

Temozolomide
qBOLD MRI

Pembrolizumab

Head and neck cancer

NCT01895829 (PhI)
NCT01927887
NCT02479178(PhII)

Active, not recruiting
Completed 2016
Terminated 2020

Surgery
BIND-014 (docetaxel

NPs)

Breast cancer NCT01770353(PhI)
NCT00087347

Completed 2018
Completed 2016 MM-398 (Irinotecan NPs)

Bladder cancer NCT04369560(PhI)
NCT02141490(PhII)

Recruiting (Est: 2022)
Completed 2018

Pediatric cancers NCT01542879
(Ph I/II) Recruiting (Est: 2021) 18-FDG PET/MRI

ClinicalTrials.gov
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Table 2. Cont.

Name Material/Functionality Application/Indication Cancer Type ClinicalTrials.gov
Identifier Status Concurrent

Therapies/Interventions

Pancreatic cancer NCT02070705
NCT00920023(PhIV)

Recruiting (Est.
2021)
Completed 2013

Bone neoplasms NCT01336803(PhII) Completed 2018
Soft tissue sarcoma NCT01663090(PhI) Withdrawn 2016
Any cancer with
lymph node
involvement

NCT01815333 Completed 2019

Solid tumors NCT02631733 (PhI) Suspended (Est.
2021)

Liposomal irinotecan,
veliparib

ClinicalTrials.gov
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4. Mechanisms of Nanoparticle Toxicity

It is important to establish the interactions of engineered nanoparticles with their biological effects
in order to realize their full potential in the clinic. Understanding the mechanisms of their toxicities
will lead to a more rational design that can overcome some of the major hurdles in their translation.
In vitro assessment involves the current studies on the molecular and cellular mechanisms associated
with nanotoxicity in relation to cellular binding and persistence, complement activation, oxidative
stress, inflammation, and DNA damage while in vivo assessment deals with systemic toxicities of
some nanoparticles, both known and unknown, on the human body. The systemic toxicity of gold-
and iron-based nanoparticles, the two nanoparticle systems frequently used in cancer diagnostics and
therapy, are highlighted in this section.

4.1. In Vitro Assessment

4.1.1. Oxidative Stress, Inflammation, and DNA Damage

Nanoparticles induce reactive oxygen species (ROS) production due to the presence of pro-oxidant
functional groups on their surface, which causes an imbalance in the redox state of the cell [152,153].
Excess ROS production causes oxidative stress and activates pro-inflammatory responses such as
decreased mitochondrial membrane potential and decreased antioxidant enzymatic activity, among
other effects [152]. These responses then lead to DNA damage and apoptosis as the end point of
the nanoparticle-induced toxicity to cells. Smaller nanoparticles more easily penetrate through cell
membranes, their higher surface areas and surface reactivities present greater cytotoxicity due to
increased ROS production [153].

In addition to increased production of ROS, nanoparticles induce cellular oxidative stress by
depleting antioxidants that can combat mild oxidative stress [154]. Transcription and expression of
antioxidant enzymes are regulated via nuclear factor Nrf2 induction. As the extent of oxidative stress
increases, mitogen-activated protein kinase (MAPK) and NF-kB become activated as a pro-inflammatory
responses [154]. However, excessive oxidative stress results in mitochondrial membrane damage and
electron chain dysfunction, leading to DNA damage and eventually, apoptosis [154]. Silica or silicon
dioxide nanoparticles (SiO2) were found to activate these oxidative stress-induced on human umbilical
vein endothelial cells (HUVECs) [155]. The mRNA expression of Nrf2 and NF-kB was significantly
upregulated [155], as illustrated in Figure 2.

Nanoparticles have been demonstrated to induce inflammatory responses in various cell types in
different organ systems [152]. Some nanoparticles were recognized as pathogens by Toll-like receptors
in the immune system, triggering increased production of inflammatory interleukins, chemokines,
and adhesion molecules [155]. There is a strong link between inflammation and oxidative stress:
inflammation potentially creates toxic by-products that promote the production of ROS while oxidative
stress can result in the release proinflammation molecules, NF-kB and MAPK [152,154]. Research with
SiO2 and TiO2 nanoparticles has indicated that inflammation through ROS generation can ultimately
lead to changes in membrane permeability, leading to airway hypersensitivity reactions. Furthermore,
the inflammatory and permeability effects have been proposed to extend beyond the lung and affect
cardiovascular functioning as well [154]. Studies on specific molecular mechanisms associated with
inflammation due to nanoparticle exposure are ongoing. Roy et al. found that inflammatory responses
are linked to internalization of zinc oxide nanoparticles (ZnO) through endosome formation in
macrophages, specifically by scavenger and caveolae pathways, in vitro [156]. The key inflammatory
components studied included Cox-2 and iNOS expression, MAPKs, and cytokines such as IL-6, TNF-a,
and IL-10. The results suggested that the inhibition of the caveolae internalization pathway reduces
the expression of MAPKs [156].
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Figure 2. Prooxidant pathway for nanoparticle-induced toxicities. Upon nanoparticle exposure, ROS
generation induces oxidative DNA damage, strand breaks, protein denaturation, and lipid peroxidation.
Mitochondrial membrane damage results from excess free radical production, leading to necrosis and
cell death. Phagocytes (i.e., neutrophils and macrophages) generate massive ROS upon incomplete
phagocytosis of nanoparticle triggering an inflammatory cascade of chemokine and cytokine expression
via activation of cell signaling pathways. Adapted from reference [154]. Created with BioRender.com.

DNA damage outcomes including, but not limited to DNA strand breaks, DNA protein cross-links,
alkali-labile sites, and chromosomal aberrations, are observed upon oxidative stress induced by
chronic exposure to nanoparticles [154]. Embryonic lung fibroblasts treated with AuNPs experienced
DNA damage resulting to the formation of adducts with 8-hydroxydoxyguanosine and decreased
expression of DNA repair and cell cycle checkpoint genes such as MAD2, cyclin B1, and cyclin B2 [152].
Regardless of the form of DNA damage, cells call upon repair mechanisms if the damage is reversible,
or else transition into cell cycle arrest and apoptotic pathways. However, nanotoxicity has also been
demonstrated to impact the DNA repair mechanisms themselves as seen in human embryonic lung
fibroblasts exposed to AuNPs. In this case, DNA repair genes are downregulated and inability to
repair the DNA damage would lead to apoptosis [152].

4.1.2. Cellular Binding and Persistence

Cell-nanoparticle interaction studies allow for understanding of the cell adhesion, migration,
and uptake pathways upon exposure to nanoparticles, both for drug-delivery efficacy and cytotoxic
effects to healthy cells [157,158]. One key factor in the pathways of cell adhesion and migration is
the doubling time of a particular cell line, as low doubling time indicates rapid proliferation and
generally a higher migration efficiency [157]. The steps of cell migration include adhesion to the
extracellular matrix, organization/disorganization of the actin cytoskeleton, membrane protrusion and
retraction [157]. One particular study found that migration efficiency was dependent on the AuNP
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surface coating, but independent of size. The study proposed a potential mechanism in which cell
adhesion to the nanoparticles occurs, then active migration and proliferation of cells and consequent
cellular internalization sweeping out biocompatible nanoparticles in its way with non-biocompatible
nanoparticles leading to cell toxicity [157].

Once cell adhesion and migration has occurred, the uptake component generally occurs through
endocytosis, subdivided into phagocytosis and pinocytosis [158]. The key mechanisms of pinocytosis,
which are involved in nanoparticle uptake include micropinocytosis, clathrin-mediated endocytosis,
caveolae-mediated endocytosis, and clathrin- and caveolae-independent endocytosis [158]. Ultimately,
most of their endocytic pathways lead to contents ending up in lysosomes for degradations [159].
However, in caveolae-mediated endocytosis, from endosomes, the contents form caveosomes, which
are transported to the endoplasmic reticulum/Golgi apparatus, avoiding lysosomal degradation.
This nuance in the uptake mechanisms was discovered as an important consideration for tailoring
nanocarriers with drugs in cancer therapy [159].

Furthermore, the charge of the nanoparticles is critical in terms of cellular uptake and
persistence [158]. Though previous studies have generalized the principle that positively charged
nanoparticles interact more with cells compared to negatively charged ones due to the negative charge
of the cell membrane, more current research indicates the greater complexity of this [158]. The protein
corona is formed when nanoparticles are modified in a biological medium by various proteins that
adsorb to the surface with different forces at play. Ultimately, studies have been mixed in terms of the
effect of the protein corona on cellular uptake, with some indicating greater uptake with corona, while
others demonstrated lesser uptake of nanoparticles. Thus, the rule of positive and negative charge
on the nanoparticle surface cannot be simplified as such since there are multiple factors involving
nanoparticle composition that affects cellular uptake [158].

4.1.3. Complement Activation

The complement system and its activation are components of the body’s innate immune system
against foreign invaders. Thus, upon exposure to nanoparticles, complement activation may induce
inflammatory responses but in some cases, these can become uncontrolled posing a serious threat [160].
Complement activation may also be responsible for some allergic reactions caused by different
nanoparticle-based therapies, including cancer therapy. There are three general complement pathways:
classical, lectin, and alternative pathways which converge in the formation of SC5b-9 complex as
the final activation product prior to the destruction of cells [160]. In addition, several complement
proteins such as C1q, C3b, and C4b function as opsonins and specifically-tagged nanoparticles for
rapid clearance. However, these various processes and components of the complement system are
highly affected by the surface coating of the nanoparticles.

Research on PEG-coated and citrate-capped AuNPs has indicated the differential effect on
complement activation [161]. Ultimately citrate-capped AuNPs produced a size- dependent increase in
the complement system end-product SC5b-9 in human serum, whereas the size-dependency was not
present for PEG-coated AuNPs. Furthermore, PEG-coated AuNPs had a markedly reduced SC5b-9 level
compared to citrate-capped, though it was still significantly increased compared with the control [161].
Another study with poly(2-methyl-2-oxazoline) (PMOXA) coated AuNPs demonstrated that this
particular surface coating triggered complement activation to a greater extent only through the classical
pathway [162]. The C1q mediated complement activation accelerated PMOXA opsonization and
consequently, recognition by leukocytes and macrophages to a greater degree [162]. Greater clearance
ability by the complement activation, without uncontrolled activation effects, would potentially
decrease nanotoxicity as well. Complement activation effects are further summarized in Figure 3 as
adapted from [160].
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4.2. In Vivo Assessment

4.2.1. Gastrointestinal

The gastrointestinal system is a complex, multi-organ system including the pharynx, esophagus,
stomach, small and large intestines, rectum, liver, pancreas, and gallbladder. Nanoparticles have
been employed in the treatment of various gastrointestinal cancers. The primary findings related to
GI toxicity of nanoparticles depends on nanoparticle size and composition [163–165]. Specifically,
studies on AuNPs have demonstrated that small particles (5 nm) preferentially produced pathological
changes in the liver, whereas medium and large particles (20 nm and 50 nm) tended to target the
spleen [163]. The toxic histopathological changes caused by the small AuNPs in the liver included
steatosis, cytoplasmic degeneration, infiltration of inflammatory cells, Kupffer cells activation, and
hemorrhage [163].

Further research on the cytotoxicity of AuNPs on different GI cancerous cell lines yielded variable
results based on the composition of the conjugation or coating used. In a study by Huang et al. cell
viability was greater than 90% in MGC803 gastric cancer cells after being exposed to AuNR@SiO2

targeted to folic acid, demonstrating that AuNPs by themselves were non-cytotoxic to MGC603 gastric
cancer cells [164]. Similarly, another study by Li et al. incorporated chitosan AuNPs in esophageal
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cancer, which did not have any effect on benign human squamous esophageal epithelium cells or
Barrett’s epithelium [165].

Another prominent type of nanoparticles used in biomedical applications are IONP or copper
oxide (CuO) nanoparticles. The surface coating and size had a similar influence on overall toxicity
patterns as demonstrated with AuNPs [166,167]. IONPs tend to accumulate in the liver and other RES
organs. The iron products are recycled and then incorporated into pathways involved in hemoglobin,
ferritin, and transferrin [166]. However, toxicity studies have indicated dose-dependent toxicity—high
doses (2.5 mg/kg) could be potentially fatal as large aggregates formed quickly and rapid hemolysis
can occur. When the anti-aggregating coating agent PEG was used with the IONPs, transient increases
in the ALT enzyme was observed and there was much slower degradation and clearance of the
PEG-coated IONPs [166]. Comparative toxicology research among SiO2, silver nanoparticles (AgNPs),
and IONPs indicated the AgNPs caused a greater degree of GI systemic toxicity as demonstrated by
increases in serum alkaline phosphatase and calcium, lymphocytic infiltration in the liver which was
not observed in SiO2 and IONPs [167].

4.2.2. Renal

Compared to the liver, the, kidneys tend to experience less nanoparticle, especially with
AuNPs [168]. However, certain markers such as blood urea nitrogen, creatinine, protein, and
globulin that have been found to be affected as a result of renal nanotoxicity. Studies have indicated
a correlation between nanoparticle size and toxicity as 60 nm PEG-coated AuNPs demonstrated
significant change in creatinine levels, indicating kidney toxicity, while sizes below 30 nm did not
produce the same effect [169]. Within the kidneys, the proximal tubule epithelial cells were found to be
the primary targets of nanotoxicity [170].

In one study, multiple cell lines from various organ systems, including the PK-15 cell line
(epithelial porcine kidney) were studied for AuNP toxicity using dose-dependent and time-dependent
measures [171]. At concentrations of 360 or 720 ng/mL, there was decreased cell growth within 24 h
of addition. However, at concentrations below 360 ng/mL, the growth curves tended to shift back
towards the control growth distribution and in some cases even exceed the baseline as time went
on. This indicates that the toxic potential of gold nanoparticles at a reduced concentration are quite
minimal and display some degree of reversibility as cell growth adapts and becomes resistant to
change [171]. Histopathology of gold-related nanotoxicity indicated distorted glomeruli, mild necrosis,
dilated tubules, and edema exudate. However, none of these findings were at the level of statistical
significance as there was a great degree of variation among these minimal changes found in the renal
system [171].

Comparison of renal toxicity effects of IONPs with AuNPs revealed similar trends: the distribution
of iron in the kidneys was quite limited, with smaller particles being rapidly cleared in the urine [166].
At lower concentrations of IONPs, no significant change to the architecture of the kidneys occurs [172].
In addition, the coating further presented an effect on the renal toxicity potential. A study by Shukla et
al. revealed that chitosan oligosaccharide-coated IONPs damaged kidney cell lines less, and showed
less toxicity than bare IONPs in various cell lines, including Hek293 (human embryonic kidney), via
MTT cell viability assay [173].

Overall, both AuNPs and IONPs appear to have limited cytotoxic impact on the renal system.
However, modifications on the size, coating and concentration of the nanoparticles may enhance or
decrease renal nanotoxicity as a result.

4.2.3. Nervous

The nervous system is complex with many nuances that are not yet elucidated within the system
itself, especially the brain. However, several research studies have examined aspects of nanotoxicity of
AuNPs and IONPs, which will be the focus of this subsection.
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Siddiqi et al. investigated changes in several biomarkers indicative of neurotoxicity upon
injection of AuNPs in rat brains [174]. On one hand, there was a significance decrease in the enzyme
glutathione peroxidase, which is an antioxidant in the brain that protects against oxidative damage.
On the other hand, there were increases in markers of oxidative stress-derived DNA damage such as
8-hydroxydeoxyguanosine and heat shock protein 70 as well as apoptotic markers such as caspase-9.
Furthermore, there was a significant increase in the neurotransmitters dopamine and serotonin, which
demonstrated implications of AuNPs in potentiation of mood disturbances and chemical imbalances
in the brain [174]. Other research has specifically studied the impact of AuNPs of different types on
neural cells through the blood-retinal barrier [175]. In general, only small particles (less than 20 nm)
were able to pass through the blood-retinal barrier and accumulate in the retinal layers. Furthermore,
there was no toxicity demonstrated to neural cells such as retinal astrocytes, neurofilaments, and
retinoblastoma cells in C57BL/6 mice [175].

The variability of toxicity effects on neural cells greatly depends upon the cell type and composition
of the nanoparticles, which was demonstrated in other organ systems as well. For example, Joris et
al. studied six different cell lines that included human and murine neural stem cells, human and
mouse-derived progenitor cell lines, and human and murine neuroblastoma cell lines [176]. The study
compared the relative toxicity effects of gold, iron oxide, and silver nanoparticles among these cell
lines. Overall, it was found that AuNPs had the greatest degree of acute toxicity and IONPs having the
lowest cytotoxic potential. In terms of the cell morphology, the C17.2 cell line was the only one with a
reduction in cell area.

The cytotoxic potential of IONPs was further investigated on cultured neurons, astrocytes, and
microglial cells. In rat cerebellar granular neurons, dimercaptosuccinate-coated IONPs accumulated
within the cultured neurons by 1000-fold, but cellular integrity or viability was not adversely affected.
This finding indicated the inherent potential of neurons to mediate oxidative stress effects through
their antioxidant abilities [177]. While the finding with neurons was consistent with astrocytes,
it did not hold true for microglial cells, which were rapidly damaged and displayed severe toxicity.
At a mechanistic level, the rate of release of iron from internalized IONPs in microglial cells may
be too rapidly transferred to lysosomes leading to toxic iron levels within the cells. Similarly, the
cytotoxic potential of nanoparticles varies based on the particular mechanistic pathways associated
with different nervous cell types to handle oxidative stress induced by the nanoparticles [176,177]. From
a pathological perspective, accumulation of iron in the brain has been linked to neurodegenerative
diseases such as aceruloplasminemia and neuroferritinopathy, as well as having the potential to play
a role in Alzheimer’s and Parkinson’s diseases [178]. This research emphasizes the importance of
finding the optimal amount of IONPs for therapeutic purposes in the nervous system.

4.2.4. Cardiovascular

Cardiovascular nanomedicine has been employed in the diagnosis and treatment of cardiovascular
diseases in addition to its role in cancer therapy [179]. One application of AuNPs in cancer therapy
is the loading of these particles with doxorubicin (DOX, chemotherapy drug) for targeted drug
delivery. The cardiotoxicity of these DOX-loaded and PEG-coated AuNPs have been studied in current
pharmacological research [180]. Ultimately, DOX loaded onto AuNPs demonstrated no significant
changes in cardiovascular function biomarkers such as serum lactate dehydrogenase (LDH) and
creatinine kinase MB (CK-MB) levels compared to the free DOX. Similarly, another study further
solidified these results in that DOX loaded on AuNPs did not create changes in CK-MB levels compared
to baseline [181]. CK-MB is an enzyme in the myocardium that has served as the gold standard
indicator of myocyte injury in many clinical and research settings [181].

There is limited research on the chronic cardiac toxicity of AuNPs, which was the aim of a study
conducted by Yang et. al. on the effect of PEG-coated AuNPs at 2, 4, and 12-week time periods [182].
There was no significant decrease in the left ventricular ejection fraction across each time point for all
sizes studied. Inflammatory mediators such as CD45+ and TNF-a indicated that chronic exposure
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to AuNPs did not spark inflammatory cell infiltration in the heart. Other studies that employed
PEG-coated AuNPs have also concluded upon similar results that accumulation of AuNPs in the
heart did not induce significant changes in cardiac hypertrophy, fibrosis or inflammation further
demonstrating the strong biocompatibility of PEG-coated AuNPs in biomedical applications [183].

In the context of IONPs, cardiotoxic effects have been observed with IONPs in connection to
myocardial damage due to iron accumulation. Unlike in the spleen, the macrophage clearance
ability in the heart is limited, leading to longer-term accumulation not fully characterized in present
research [184]. Particularly, some research has indicated that IV administration of IONPs resulted
in a pro-coagulatory effect in vivo and in vitro while causing oxidative stress on the heart [185]. The
effect of IONPs on different cardiac markers of oxidative stress in mice was also investigated. Data
has indicated a significant increase of lipid peroxidation, reactive oxygen species, and superoxide
dismutase in heart tissue compared with control groups [186].

Overall, there seems to be a certain degree of cardiotoxicity associated with IONPs, but the
systemic effect of these microscopic changes is yet to fully be determined by current research. On the
other hand, AuNP-related cardiotoxicity, in particular PEG-coated AuNPs, was quite limited. This
demonstrates strong biocompatibility in terms of the cardiovascular system.

4.2.5. Pulmonary/Respiratory

Nanoparticles are employed in different types of lung cancers as a method for targeted
drug-delivery in therapy. Various research studies have examined the pulmonary toxicity associated
with nanomedicine [187–190]. There seems to a degree of variability in the toxicity of AuNPs compared
with other nanoparticle types, which appeared to be more consistent in their behavior [187,188]. A study
by Avalos et al. compared the relative toxicity of silver- and gold-based nanoparticles on human
pulmonary fibroblasts [187]. In general, the cytotoxic effect on the pulmonary fibroblasts was not size
dependent for AuNPs, unlike some of the previous studies highlighted in sections on other organ
systems. All sizes studied (30, 50, and 90 nm) demonstrated a reduction in cell mitochondrial activity
and lactate dehydrogenase (LDH) leakage. Furthermore, in comparison to AgNPs, oxidative stress
and production of ROS was greater with AuNPs in pulmonary fibroblast cells [188]. Another study
examined three different human lung epithelial cell types (A549, BEAS-2b, and NHBE) for cytotoxic
effects of AuNPs and AgNPs [188]. AuNPs were coated with either sodium citrate or chitosan, which
created different surface charges on the particles. In general, A549 and BEAS-2B cells exhibited the least
cytotoxic effects with an increase in LDH release only at the highest concentration of chitosan-coated
AuNPs. However, NHBE cells were more affected in terms of cytotoxicity by AgNPs and AuNPs as
measured by LDH release and membrane leakage [188].

Other researchers have investigated the cytotoxic effect of nanoparticles on key cells involved
in the blood-air barrier in the pulmonary system [189,190]. In general, for different metal-organic
frameworks, lung epithelial and alveolar macrophage cell lines were more adversely affected by
lipid-coated nanoparticle systems [189]. Specifically, another study focused on an in vitro 3D lung
model with three cell types of the epithelial tissue barrier: monolayer of alveolar cells, macrophages,
and dendritic cells [190]. After initial exposure to AuNPs, there was no observable change in the cell
morphology compared to control across the cell types. However, long-term effects are the current
limitation of these research studies and remain unknown.

The general toxicity profile of IONPs in the pulmonary system is attributed to increased
oxidative stress due to particle internalization, dissolution, release, and disruption of regular iron
homeostasis [191]. In vivo studies have indicated that exposure to IONPs induces an elevated acute
inflammatory response, which persists up to 28 days post-exposure. In addition, there was found to be
an increase in the heat shock proteins and matrix metalloproteinases and evidence of progression to
granulomas [191]. Additional research has focused on the toxic effects of metal nanoparticles following
inhalation and intratracheal instillation as also are being used in the realm of targeted drug deliver in
cancer [192,193]. After inhalational exposure of IONPs, there was a transient increase in acute total cell
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and neutrophil counts, pro-inflammatory chemokines, and oxidative stress in the initial time points.
However, in the long-term there was no persistent inflammation at the end of the study demonstrating
that IONPs had limited toxicity in the long-term [192].

Overall, while AuNPs appear to generally have adverse effects to the respiratory system, their
significance in terms of long-term pulmonary cytotoxicity still varies depending on the type of AuNP
and the particular lung cell type. Further studies are necessary to establish more generalized outlook
on the effects of IONPs to various lung cells.

4.2.6. Reproductive

Reproductive toxicity due to nanoparticles require further differentiation between their effects
on male versus female reproductive systems. In general, nanoparticles have been demonstrated to
cross the blood-testicle and blood-placenta barrier, pressing the importance of addressing reproductive
toxicity [194]. Some studies have shown a decrease in sperm motility, albeit only at very high
concentrations of AuNPs.

Female: Within the female reproductive system, nanoparticle accumulation tends to occur in the
uteri and the ovaries [195]. In the case of AuNPs and IONPs, the greater accumulation within the uterus
was observed for smaller nanoparticles. In addition, the negative impact on female sex hormones
was largely seen in current studies with titanium nanoparticles (TiO2) as they increased expression
of the Cyp17a1 gene which in turn increased estradiol, apoptotic-related genes, inflammatory and
immune responses, among other effects [195]. Furthermore, some nanoparticles have shown to produce
morphological changes in the follicles leading to a reduction in the mature oocytes present [196].
Ovarian toxicity was observed with long-term TiO2 nanoparticle, which caused a shapeless follicular
antrum and irregular arrangement of cells, though, the results were inconclusive and not very
general [196].

Male: In the male reproductive system, nanoparticle exposure tends to not only have an impact
on the reproductive organs themselves, but also some potential effects on spermatogenesis and
motility [195]. One particular study with AuNS found limited toxicity to the testes with no necrosis
or histological disorganization within the germinal cells, spermatozoids, intertubular spaces, Leydig
cells, and Sertoli cells in male mice [197]. On the other hand, additional research has indicated that
exposure to zinc oxide nanoparticles (ZnO) presented with a reduction in testicular tissue and loss of
cells in seminiferous tubules at an intraperitoneal dose of 250, 500, and 700 mg/kg/day [185]. Testicular
toxicity due to ZnO has been established by several studies and some work has characterized the
particular changes that manifest in the blood-testis barrier as well [196]. Mechanistically, ZnO have
been suggested to trigger ROS, potentiate DNA lesions in germ cells, and downregulate the expression
of gap junction proteins in the cell membrane [196]. Other researches have employed ligand-free and
oligonucleotide-conjugated AuNPs to study toxic effects on spermatozoa specifically [198]. The findings
indicated that sperm morphology and viability was generally not affected at any concentration [198].

In summary, within the male and female reproductive system, there is a limitation in current
research on the cytotoxic potential of nanoparticles. The current studies seem to indicate that there
are certain established adverse effects as those described in the spermatozoa and hormonal changes.
However, the morphological changes to the reproductive organs and their long-term implications are
highly dependent on the nanoparticle type, coating, and the cell type affected as with other organ
systems [196].

4.2.7. Immune

In the immune system, nanoparticle immunotoxicity refers to the adverse effects such
as complement activation-mediated pseudoallergy, hypersensitivity, immunosuppression, and
inflammasome effects [199]. In general, most nanoparticles tend to accumulate in organs of the
mononuclear phagocytic system such as the liver and spleen. The immune cells that in turn produce
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toxic effects upon nanoparticle exposure include monocytes, platelets, leukocytes, dendritic cells, and
macrophages [199].

Coating AuNPs with polyethylene glycol (PEG) avoided immunotoxic responses [199,200]. One
study compared the immunotoxic effects of coating AuNPs with PEG and chicken ovalbumin
(OVA) [200]. No significant cytotoxicity to RAW264.7 macrophages was observed at AuNP
concentrations of 20 µg/mL. However, the uptake capacity for the OVA-AuNPs was greater compared
to PEG-coated AuNPs. Additionally, PEG-coated AuNPs did not induce a significant increase in TNF-a,
IL-6 and IL-1B for AuNPs larger than 35 nm. In general, small nanoparticles, despite differences in
surface coating, appeared to present greater immunotoxic effects compared to larger ones [200]. AuNP
toxicity in murine and human lymphocytes has showed overall viability was only significantly reduced
at 200 µg/mL, but not any concentration below this [201]. Another key immune cell, dendritic cells have
been targeted as points of entry for immunotherapeutic agents using AuNPs. Research has indicated
that dendritic cells have very low cytotoxicity upon exposure to different sizes and concentrations of
AuNPs [202]. However, small AuNPs with size of 10 nm displayed weak apoptotic effects in dendritic
cells compared to larger nanoparticles. In terms of surface coating, positive charged-polymer-coated
AuNPs did have a significant cytotoxic effect [202]. This indicates the necessity for correct identification
of surface chemistry when designing biocompatible nanoparticles for cancer therapy and diagnosis
usage, among other medical uses.

On the other hand, the immunotoxicity profile of IONPs is different. Within macrophages,
RAW264.7 macrophages treated with IONPs demonstrated an increase in oxidative stress and an
increase in cell proliferation within 24 h [203]. Further, another study indicated that murine and
human macrophage cell lines exposed to PEI-coated IONPs induced the activation of toll-like receptor
4 signaling and ROS production via different pathways that in turn further increased the overall
activation of macrophages leading to pro-inflammatory effects [204]. With B and T lymphocytes, the
effect of IONPs remains unclear as initial studies indicated no effect on function and cell viability. While
the lack of significant cytotoxicity still holds true with current studies, changes have been observed in
T-cell function including delays in proliferation rate [205]. However, it has been demonstrated that
compared to control at 13 weeks post-IONP injection, the distribution of B cells decreased while T cells
increased. In addition, the number of dendritic cells increased, though surface markers for antigen
presentation such as CD40 were decreased [206]. This suppression of antigen presentation in dendritic
cells was a common feature indicated in other studies [150]. Thus, with dendritic cells, cytotoxicity
was not a significant feature, but functional impairment was present.

Overall, the effects of nanoparticle toxicity on the immune system are complex and multi-faceted
as it involves a variety of different cell types across organ systems. In general, the current research
suggests that AuNPs present limited toxicity to the cells of the immune system including macrophages,
lymphocytes, and dendritic cells. However, the results with IONPs s are more mixed, with some
functional impairment effects demonstrated, though the cytotoxic potential to immune cells remains
low. Additionally, the surface coating and electrostatic charge of the nanoparticles play a key role in
immunotoxicity profile and potential evasion of the immune system responses in targeted drug-delivery
systems, an area for additional research.

5. Strategies to Safe-by-Design Approach

As shown above, biological interactions of the nanoparticles and consequent effects both at
the cellular and systemic levels are highly dependent on their physicochemical properties (i.e., size,
shape, composition, surface charges and coating). To realize the optimal use of the nanoparticle
platforms in the biological systems and to move forward with their clinical translation would require
rational design that are driven by how these physicochemical properties could impact their fate and
effects in the body (Figure 4). For example, it has been shown that inorganic nanoparticles with
hydrodynamic size of sub-5 nm can be cleared out of the body efficiently through renal clearance and
still maintain efficient tumor targeting in comparison with those of higher sizes which accumulate
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rapidly in the organs of the RES depleting their availability for the intended target and increasing the
risk of toxicity with prolonged exposures [207–211]. At the same time, surface charge has been critical
in non-specific binding and cellular uptake of the nanoparticles. AuNPs coated with amphiphilic
polymers of varying surface charges resulted in positively charged nanoparticles having the highest
uptake, however, this also led to higher toxicity [212]. Adsorption of serum proteins can be minimized
by modifying the surface with zwitterionic or neutral organic coatings while also yielding small
hydrodynamic size and high stability in biological media [208,213]. Toxicity inherent to the core
composition of inorganic nanoparticles especially those consist of heavy metal atoms, and the leaching
of ions from the dissolution of the nanoparticle core can be overcome by engineering the surface with
a biocompatible coating. This strategy also regulates the high surface energy of the nanoparticles
while providing stability, bioavailability and targeting [214]. With these findings, interest in the
development of ultrasmall sub-5 nm nanoparticles, with judicious choices of surface coatings to
improve biocompatibility and pharmacokinetics of nanoparticles has been rapidly rising [10,215–217].
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involved because the substance is directly introduced to the systemic circulation. Reproduced from
reference [211]. Copyright American Chemical Society, 2015.

However, nanoparticles are highly heterogeneous, with very diverse combinations of chemical
composition, core-shell structure, shape, and functionalization. This poses a challenge in the
experimental assessment of the relationship between their physicochemical properties and their
toxicological effects. To overcome this, increasing reliance in in silico methods to improve the
mechanistic understanding of nanotoxicity and develop computational models to predict outcomes
to nanoparticle exposures and identify, assess, and classify their potential risks to human health in a
cost- and time-efficient manner [218,219]. In silico nanotoxicology combines information technology
with chemistry and biology in order to predict the toxicity of nanomaterials which provides an
alternative testing method for the systemic investigation of large number of nanoparticles without
animal testing [220,221]. This approach can be highly effective in gaining insight into the parameters
that influence toxicity to predict the potential adverse effects of nanoparticles and thus impart proactive
risk analysis and informed safe design [218].
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5.1. Implementation of a Nanotoxicological Model

The most utilized tool in predictive nanotoxicology is the Quantitative Structure-Activity
Relationship (QSAR), Quantitative Structure-Property Relationship (QSPR) [218]. In the context
of nanomaterials, this is termed nano-QSAR [222] or Quantitative Nanostructure-Activity Relationship
(QNAR) [223]. These predictive models aim to lessen the burden of testing by predicting risks based
on the physicochemical properties of the nanoparticles, their intended application, and the available
data [224]. No definite guidelines in dataset formation and model implementation in order to create a
predictive model with nanotoxicological data have been set [219,221]. However, the Organisation for
Economic Co-operation and Development (OECD) principle of a QSAR and in silico models in general
requires a well-defined endpoint, unambiguous algorithm, defined domain of applicability, appropriate
measure of goodness-of-fit, robustness and predictivity, and mechanistic interpretation [218]. The
endpoint is defined as “a measure of activity for chemicals made under specific conditions” and refers
to “any physicochemical property, biological effect or environmental parameter related to chemical
structure that can be measured and modelled” [225].

Furxhi et al. laid out a general methodology for implementing a nanotoxicological model
(Figure 5) by dividing it into five domains: (1) data set formation, (2) data pre-processing, (3) model
implementation, (4) validation, and (5) applicability [219]. In order to form the data set, information
on nanoparticles collected from existing literature, databases, and new experimental data, are recorded
as inputs including nanoparticle type (composition: i.e., metal, metal oxide, carbon-based, etc.),
and nanodescriptors, which are the experimentally determined physicochemical properties and
theoretically calculated descriptors (i.e., quantum-mechanical descriptors, liquid drop model-based
descriptors [226], full-particle descriptors [227]). Study designs such as testing system (in vitro, in vivo),
species, organ tissues, and experimental conditions (i.e., dose and exposure) are also extracted. Finally,
the toxicological endpoints which are used as the output to be predicted by the models are recorded.
The most commonly used toxicological endpoints are in vitro assays since they are important indicators
for biological evaluation. In vitro assays offer cheap, rapid, and reproducible tests that cover different
cellular functions. Cellular viability is the most common predicted end point, followed by uptake. To
predict combination of different endpoints, referred to as aggregated outcomes, weighting averages of
the combined outcomes or ranking of hazard endpoints into a singular outcome is performed.

To optimize the performance of the model, the extracted data are then reduced by removing
irrelevant or redundant information. Feature selection can be used by applying statistical performance
metrics like genetic algorithm [222,228–231] and Pearson correlation coefficients [232–235] to select the
optimal descriptors, thus avoiding overfitting training data and allowing the expert assessment of the
mechanistic basis for the model [236,237].

Data normalization (z-score, min-max, log10) has also been used for variables with different
scaling to reduce skewness of the data [238,239]. The model is then implemented using algorithms (i.e.,
trees, neural network, regression, rules, bayes, or meta algorithms) ensuring the full model structure
and accurate model parameters are specified. The goodness-of-fit to measure how well the model
accounts for variability, the robustness to measure the stability of model predictions when there is
perturbation, and the predictability to assess model reliability are then tested.
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5.2. In Silico Design and Study of Nanoparticles

The earliest nano-QSAR model was developed to evaluate the effect of chemical composition
of 17 metal oxide nanoparticles on the cytotoxicity of Escherichia coli in terms of EC50 [222]. In this
work, only one descriptor was used, which is the enthalpy of the gaseous cation formation, calculated
through a quantum chemical PM6 method [240]. A strong correlation between the heat of formation
and the cytotoxicity was established. The result was also in good agreement with experimental results
identifying ZnO as one of the most toxic metal oxides, while TiO2 has one of the lowest toxicity [241,242].
Later on, recalculation of the nanodescriptor was performed based on SMILES (simplified molecular
input line entry system), an intermediate between classical and nanodescriptors, generating the
descriptor from molecular structure data, but can utilize experimental data related to the material and
experimental conditions [243]. This proposed method is advantageous for its simplicity, doing away
with building molecular models (i.e., only dependent on surface coating) [244,245]. However, not all
compounds have SMILES notations, and the mechanistic interpretation of the model on the basis of
the SMILES descriptors is limited [245].

Recently, a full-particle descriptor distinguishing the surface atoms (1 nm surface layer) from the
core has been developed based on the force-field calculation of the potential energies of the whole
nanoparticle [227]. This molecular model can calculate a set of 35 nanodescriptors on the features of the
surface atoms relating to size, chemical composition, potential energy, topology, and lattice energy. In
addition, due to the simplicity of calculation this full-particle descriptors can be effectively applied to
QSAR/QSPR modeling for diverse nanoparticles as it does not need extreme computational resources.



Nanomaterials 2020, 10, 2186 27 of 41

An example of nanoparticle design utilizing this full-particle descriptors is the optimization of
Fe-Doped ZnO to generate the best formulation that would release toxic metal ions to selectively kill
cancer cells [246]. Here, they synthesized and characterized the particle size and crystallinity of a
series of Fe-doped ZnO (0%, 1%, 2%, 4%, 6%, 8%, and 10% Fe), and determined their cytotoxicity in
four cell lines, 2 of which are normal (murine mesenchymal stem cells and human bronchial epithelial
cells, Beas-2B), and the other 2 are cancer cell lines (murine lung squamous carcinoma cells, KLN
205 and human cervical cancer cells, HeLa). The results of these experiments were correlated using
one-parameter correlations with the full-particle nanodescriptors (i.e., size, average potential energy,
no of Fe/Zn on the surface, surface area, lattice energy, etc.) generated from core-surface model of
the spherical nanoparticles [227] calculated in the LAMMPS (large-scale atomic/molecular massively
parallel simulator) software [247]. These descriptors were grouped according to their predictive power
for the death rate of normal and cancer cells. Plot of the normalized representative descriptor values
of the toxic subgroup (i.e., log of total number of Zn atoms in surface region of nanoparticle) and
the non-toxic subgroup (i.e., log of total number of Fe atoms in surface region of nanoparticle) vs
percent (%) Fe content resulted in the crossing between 2% and 3%. This indicates where the optimum
% Fe value with the highest potency to kill cancer cells but with minimal damage to normal cells
lies. In vitro validation in co-cultured normal and cancer cell lines, and in vivo therapeutic efficacy in
DBA/2 mice subcutaneously injected with KLN 205 cells were in agreement with the predicted result
from the nanodescriptor analysis.

Currently, improvement on the full-particle descriptors has been achieved. Based on the force
vectors of all atoms and the polarizable model of oxygen atoms, calculation of the optimal thickness
of the active surface layer of the nanoparticles has been fine-tuned and a new set of nanodescriptors
relating to the highly active surface was obtained [244]. The new and improved nanodescriptors
showed good correlation when used to model the cytotoxicity endpoint (i.e., cell death, membrane
damage, ROS) of Fe-doped ZnO in HeLa and KLN 205 cancer cell lines. This overall approach can be
applicable to any metal oxide nanoparticles with various dopings.

As the integration of computational modeling in the design of new nanomaterials progresses,
there is a clear need for new universal nanodescriptors that can be used to characterize their diversity
without the need for intense computational power. The applicability of the Delaunay tessellation
approach, which was used in decomposing protein structures and protein–ligand bindings [248,249],
to represent the nanostructures (i.e., to simulate the nanomaterial’s surface chemistry) and the use
of Pauling electronegativity as empirical information to define descriptor characters have been
explored [250]. The Delaunay tessellation approach decomposes the nanostructure surface into
tetrahedra, in which vertices are atoms. The four atoms within a tetrahedron are uniquely selected such
that their circumscribing sphere does not contain any of the other atoms [250,251]. Testing 191 unique
AuNP with diverse biological activities and physichochemical properties in developing QNAR models
validated the suitability of the obtained novel geometrical descriptors for quantitative modeling. Good
predictabilities for both physicochemical properties (logP and zeta potentials) and nano-bioactivities
(AuNP-enzyme bindings, cellular uptakes and ROS inductions) were achieved, confirming the utility
of this modeling strategy as a universal tool to guide the rational design of nanomaterials [250].

In a subsequent study, cellular uptake and cytotoxicity endpoints were evaluated for three types
of nanoparticles (Au, Pd, Pt), with two different sizes (i.e., 6 and 26 nm), and have six types of
surface ligands of varying hydrophobicity [251]. Four experimental descriptors were determined (size,
surface ligand density, zeta potential, and logP) and 126 nanodescriptors were calculated based on
the Delaunay tessellation approach [250] and atomic electronegativity values. QNAR models were
then developed by the k-nearest-neighbors approach (kNN), and validated by the leave-one-out (LOO)
procedure (R2_kNN = 0.54). Ranking the top 10 nanodescriptors for the cellular uptake resulted in the
experimental logP as the highest, indicating that uptake is highly modulated by the hydrophobicity
of the nanoparticle core. AuNPs were determined to be more cytotoxic generating the highest level
of oxidative stress in comparison with Pd of identical size, shape, and ligand. Pt, being the most
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hydrophilic, has less cellular uptake, and thus less cytotoxicity. These results confirm the importance
of the nanoparticle core material when considering the design of nanomedicines.

6. Outlook: Data Driven Approach in Nanoparticle Design

Therapeutic resistance leading to poor prognosis and clinical outcome of cancer patients have
been often linked to intratumor heterogeneity [252]. As a result, finding the appropriate therapeutic
regimen through conventional therapies can be challenging. In line with this, cancer nanomedicine
can offer vast opportunities to tailor individualized treatments to patients. Inorganic nanoparticles
with their multiple functionalities can help bridge unmet needs in early diagnosis and treatment
to achieve potential breakthroughs in the clinic. However, the physicochemical variability of the
nanoparticles and the flexibility in their design to tune their functionalities can result in complex
biological interactions. This feature though highly advantageous for personalized treatments has
become a hurdle to their clinical translation. Assessment of their biological interactions and effects on
their safety profile can be challenging, inefficient and costly. In vitro and in vivo assays to evaluate
safety profile and efficacy tend to be only valid in a case per case basis. As such, there is a need to
implement a systematic approach to enable high throughput testing to enable risk assessment and
clinical impact for a large number of nanoparticles to facilitate their practical use. Computational
nanotoxicology and algorithm-based approaches to predict safety and efficacy of these nanoparticles
are emerging. With the ongoing development and validation of computational tools, accurate in
silico predictions with regards to safety and biological fate of the nanoparticle design can be achieved.
Integration of computational modeling in the design stage (Figure 6) can be highly useful in their
advancement and success in the clinic.
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