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Abstract: The device performance deterioration mechanism caused by the total ionizing dose effect
after the γ-ray irradiation was investigated in GaN-based metal-insulator-semiconductor high electron
mobility transistors (MIS-HEMTs) for a 5 nm-thick SiN and HfO2 gate dielectric layer. The γ-ray
radiation hardness according to the gate dielectric layer was also compared between the two different
GaN-based MIS-HEMTs. Although HfO2 has exhibited strong tolerance to the total ionizing dose effect
in Si-based devices, there is no detail report of the γ-ray radiation effects in GaN-based MIS-HEMTs
employing a HfO2 gate dielectric layer. The pulsed-mode stress measurement results and carrier
mobility behavior revealed that the device properties not only have direct current (DC) characteristics,
but radio frequency (RF) performance has also been mostly degraded by the deterioration of the
gate dielectric quality and the trapped charges inside the gate insulator. We also figured out that
the immunity to the γ-ray radiation was improved when HfO2 was employed instead of SiN as a
gate dielectric layer due to its stronger endurance to the γ-ray irradiation. Our results highlight that
the application of a gate insulator that shows superior immunity to the γ-ray irradiation is a crucial
factor for the improvement of the total ionizing dose effect in GaN-based MIS-HEMTs.
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1. Introduction

Gallium nitride based high electron mobility transistors (HEMTs) have been intensively studied
for high frequency, high power, low noise, and aerospace applications thanks to its wide bandgap, high
breakdown electric field, high carrier density, and high carrier mobility at the hetero-interface [1,2].
However, there are many dangling bonds at the AlGaN surface, which trap negative charges.
The negative trapped charges cause the reduction of the 2-dimensional electron gas (2DEG) density and
degradation of the radio frequency (RF) performance that is known as the current collapse effects [3,4].
The lack of the gate insulator results in the high gate current and limitation of the current driving
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due to the gate Schottky contact in GaN-based HEMTs [5–8]. To deal with these issues, GaN-based
metal-insulator-semiconductor (MIS)-HEMTs have been proposed. The dielectric layer deposited on
top of the barrier (or capping) layer improves the radio frequency (RF) performance by diminishing
the current collapse when it is utilized as a surface passivation [3,4]. When the dielectric layer is used
as a gate insulator, the gate leakage is reduced [5,6] and the current driving capacity is improved [7,8].
However, there are side effects of the gate insulator, which are the transconductance reduction and
degradation of RF performance. Therefore, a thin insulator that shows sufficient quality as a gate
dielectric layer is required. From this point of view, various gate insulator materials [9–15] and
multi-layered dielectric structures [16,17] have been investigated in GaN-based MIS-HEMTs.

For aerospace applications of the GaN-based MIS-HEMTs, the radiation effects on the device
characteristics have been researched for various gate dielectric layers such as SiN [18], SiO2 [19],
Al2O3 [20], MgCaO [21], Gd2O3 [22], and SiN/Al2O3 multi-layered gate insulators [23]. The radiation
hardness of the gate insulator is weaker than that of AlGaN and GaN in GaN-based MIS-HEMTs.
The degradation of the dielectric quality and trapped charges inside the dielectric layer (and/or at the
dielectric interface), which is the total ionizing dose (TID) effects generated by the radiation, deteriorate
direct current (DC) and RF performance of the devices. As the radiation hardness strongly depends
on the gate dielectric layer in GaN-based MIS-HEMTs [21–23], the device performance degradation
mechanism caused by the radiation exposure and the impact of the gate insulator on the device
radiation hardness are still not clear in many cases. Therefore, it is necessary to investigate the TID
effects induced by γ-ray irradiation on the device characteristics in GaN-based MIS-HEMTs, since this
results in the degradation of the dielectric layer quality rather than AlGaN and GaN [24].

In this work, we focused on the TID effects in GaN-based MIS-HEMTs for a 5 nm-thick HfO2 gate
dielectric layer for the minimization of the transconductance and RF performance degradation. To the
best of our knowledge, the γ-ray radiation effect has not been reported in GaN-based MIS-HEMTs for
the HfO2 gate insulator thus far, even though HfO2 exhibited excellent radiation hardness in Si-based
electronics [25,26]. After γ-ray radiation, the DC and RF performance deterioration were investigated
via electrical characterization. GaN-based MIS-HEMTs for a HfO2 gate dielectric layer demonstrated
superior immunity to the γ-ray irradiation compared to the SiN gate insulator. In comparison with
the SiN gate dielectric layer, when HfO2 was employed, the threshold voltage (VTH) shift (∆VTH),
transconductance (gm) maximum deterioration (∆gm,max), drain current (ID), and reduction (∆ID) were
improved from 0.15 to 0.075 V, 5.42 to 2.27%, and 5.40 to 2.31%, respectively. The pulse-mode stress
measurements and extracted carrier mobility (µ) behavior revealed that the degradation of the gate
dielectric quality and trapped charges inside the gate dielectric layer was the origin of the degradation
in device performance in terms of ∆VTH, ∆gm,max, and ∆ID. The RF performance degradation was
also improved with the HfO2 gate insulator compared to the SiN. The cut-off frequency (f T) and
maximum oscillation frequency (f MAX) degradation were improved from 36.14 to 13.3% and 34.52 to
10.68%, respectively. Our systematic measurements revealed that the HfO2 gate insulator showed
excellent immunity to the γ-ray radiation and is suitable for aerospace electronics compared to the SiN
dielectric layer.

2. Structure and Fabrication

The GaN-based MIS-HEMTs were fabricated on a sapphire substrate. The epitaxial layers were
grown by metal-organic chemical vapor deposition, which were composed of a 2 µm-thick GaN buffer,
50 nm-thick GaN channel, and 20 nm-thick Al0.25Ga0.75N barrier layers. Ti/Al/Ni/Au (30/100/30/100 nm)
were deposited followed by rapid thermal annealing at 850 ◦C for 40 s for Ohmic contact formation.
For the device isolation, phosphorus was implanted. In order to compare the endurance of the γ-ray
radiation and study the device performance degradation mechanism, two different gate dielectric
layers (Sample-SiN: SiN 5 nm-thick; Sample-HfO2: HfO2 5 nm-thick) were prepared. A SiN layer and
HfO2 layer were deposited by chemical vapor deposition (CVD) and atomic layer deposition (ALD),
respectively. The areas to form the source and drain contact pads were opened through buffered oxide
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etch. Ni/Au (30/370 nm) were deposited for gate electrode as well as source and drain contact pads.
The gate length (LG), gate width (WG), and the distance between the source and gate (LSG), and gate
and drain (LGD) of the processed devices were 0.5, 100, 1, and 3.5 µm, respectively. The radiated γ-ray
doses were 0.3, 0.9, 1.8, and 3.6 Mrad(SiO2) with the dose rate of 50 rad/s, which were irradiated
at the Advanced Radiation Technology Institute. After each γ-ray irradiation, the same device was
measured for various electrical measurement. However, there was no hysteresis and/or history effects
between the different measurements. Figure 1 shows the schematic cross-section of the fabricated
GaN-based MIS-HEMTs.

Figure 1. Schematic cross-section of the processed GaN-based metal-insulator-semiconductor high
electron mobility transistors (MIS-HEMTs). A 5 nm-thick SiN and HfO2 layer were employed for
Sample-SiN and-HfO2, respectively, as a gate dielectric layer.

3. Results and Discussion

The alteration of the typical device characteristics produced by the γ-ray irradiation was measured
in the GaN-based MIS-HEMTs for the two samples in Figure 2. The drain current and gate leakage
current were measured at drain bias (i.e., applied voltage at drain electrode, VD) = 0.5 V while the
gate bias (i.e., applied voltage at gate electrode, VG) was swept from −6.5 to 0 V and −6 V to 0 V for
Sample-SiN and Sample-HfO2, respectively. The transconductance was obtained by the derivation
of the drain current. The difference of the device properties such as VTH, ID, and gm in fresh devices
(i.e., before the γ-ray radiation) comes primarily from the electrical thickness of the gate dielectric
layer [16]. The VTH was negatively shifted and gm and ID were reduced after the γ-ray irradiation in
Sample-SiN. Moreover, in Sample-SiN, the ∆VTH, ∆gm,max, and ∆ID were enlarged with an increase in
the irradiated γ-ray doses. In comparison, the device characteristics barely changed after the γ-ray
irradiation with the doses of 3.6 Mrad in Sample-HfO2, which indicates stronger γ-ray radiation
endurance in Sample-HfO2. The gate leakage currents were remained almost unchanged after γ-ray
irradiation for the two samples. Therefore, the gate electrode was unaffected by the γ-ray radiation.

To quantify the device property change induced by the γ-ray radiation and for the precise
comparison of the radiation hardness according to the gate dielectric layer, various device parameters
in terms of ∆VTH, ∆gm,max, and ∆ID were extracted, as shown in Figure 3. The device parameters
were achieved at VD = 0.5 V for the minimization of the lateral electric field effect caused by the drain
bias. The observed overall tendencies of the device parameter variation were identical for the three
parameters. However, almost half of the device property alternation was obtained in Sample-HfO2

compared to Sample-SiN, despite the epitaxial structure and physical thickness of the gate insulator
being the same for the two samples. This phenomenon reflects that the DC performance change
resulted from the γ-ray radiation was severely dominated by the gate dielectric property and HfO2

showed stronger immunity to the γ-ray radiation than that of SiN. The clues to the device performance
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variation and the reason for the lower parameter change in Sample-HfO2 are described with the
pulse-mode measurement results and carrier mobility behavior.

Figure 2. Transfer characteristics of the GaN-based MIS-HEMTs for a 5 nm-thick SiN and HfO2 gate
dielectric layer before and after γ-ray radiation with the doses of 0.9 and 3.6 Mrad. (a) Drain current;
(b) transconductance; (c) gate leakage current as a function of gate bias. Inset in Figure 2a–c shows
the zoomed-in drain current at the subthreshold regime, transconductance near the transconductance
maximum, and gate leakage current near the gate leakage minimum, respectively.

In Figure 4, the capacitance-voltage C(V) measurements before and after the γ-ray radiation was
conducted at 1 MHz for the two samples. The capacitance was measured while the gate bias was swept
like that for the drain current measurement in Figure 2a. After the γ-ray radiation, the capacitance
curves were negatively shifted, which was caused by the variation in the channel electron concentration
after the γ-ray radiation. However, the shift was less in Sample-HfO2 than in Sample-SiN.

To achieve the key factor of the ∆VTH and clues to the stronger radiation hardness of the HfO2

layer than SiN, pulse-mode stress measurements [16,27] were carried out, as shown in Figure 5.
When the pulse-mode stress is provided, the charges are trapped in the GaN-based MIS-HEMTs [16].
The trapped charges change the carrier density at the AlGaN/GaN hetero-interface and threshold
voltage. For the pulse-mode measurements, the drain current was measured at VG = VTH + 2 V when
the pulses applied at drain electrode increased from 0 V to 10 V. For the without stress, gate stress, and
gate-and-drain stress condition, (VG = 0 V, VD = 0 V), (VG = VTH − 2 V, VD = 0 V), and (VG = VTH − 2 V,
VD = 10 V) were applied as the quiescent biases, respectively, in the pulse-mode stress measurements.
A 2 ms stress pulse was applied, followed by a 0.2 µs pulse to measure the drain current.
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Figure 3. Extracted device parameters before and after the γ-ray irradiation in GaN-based MIS-HEMTs
for a 5 nm-thick SiN and HfO2 gate dielectric layer. (a) Threshold voltage shift; (b) transconductance
maximum reduction; (c) drain current reduction vs. irradiated γ-ray doses.

Figure 4. Capacitance-voltage measurements before and after the γ-ray irradiation in GaN-based
MIS-HEMTs for a 5 nm-thick SiN and HfO2 gate dielectric layer.
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Figure 5. Pulse-mode stress measurement results. Drain current as a function of drain bias with
the quiescent bias of: (a) (0 V, 0 V) and (VTH −2 V, 0 V); (b) (0 V, 0 V) and (VTH −2 V, 10 V) before
and after γ-ray radiation with the irradiated doses of 1.8 Mrad. (c) Drain current reduction from the
quiescent bias of (0 V, 0 V) caused by the pulse-mode stress with the quiescent bias of (VTH −2 V, 0 V)
and (VTH −2 V, 10 V) vs. irradiated γ-ray doses.

The ID was lower than that of the without stress condition when the pulse-mode gate stress or
gate-and-drain stress was applied [16,27]. Compared to the gate stress condition, the ∆ID was lower
under the gate-and-drain stress condition as the impact of traps existed at the GaN channel and/or
buffer was included. With an increase in the irradiated γ-ray doses, the ∆ID was enlarged. In particular,
the ∆ID distinction between the gate stress and gate-and-drain stress condition in Sample-HfO2

increased to 4.1% after γ-ray irradiation with doses of 3.6 Mrad, and was less than that of Sample-SiN
(7.3%). However, the ∆ID difference between the gate stress and gate-and-drain stress condition was
maintained as the same for both samples. Even the ∆ID gap between the gate stress and gate-and-drain
stress condition did not increase after the γ-ray irradiation in comparison with the ∆ID difference
before the γ-ray irradiation. These results verified that the γ-ray irradiation mainly deteriorated the
quality of the gate dielectric and generated the charge trapping centers mostly located in the interior of
the gate insulator.

The γ-ray irradiation brought out identical results (i.e., negative VTH shift) in Sample-SiN and
Smaple-HfO2, but the occasion was different according to the gate insulator in GaN-based MIS-HEMTs.
The silicon-nitride dangling bond defects known as K centers [28–30] exist in the SiN gate dielectric
layer deposited by the CVD system. When the γ-ray is radiated, the neutral K0 centers trap holes
and are converted to positively charged K+ defects [31]. The charge trapping mechanism of the HfO2

dielectric layer deposited by ALD is different from that of SiN. The γ-ray irradiation causes the bond
breaking of the HfO2. The broken bonds in HfO2 result in the oxygen vacancy where there are trap
holes [26]. As a result, the 2-dimensional electron gas (2DEG) density is increased by the trapped holes
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and the VTH is negatively shifted. In SiN layer, there are many preexisting point defects (i.e., K centers),
which can trap holes and be transformed into the K+ defects [28–31]. Therefore, the Sample-SiN
exhibited larger ∆VTH than in Sample-HfO2. The degradation of the gate insulator quality and the
number of trapped holes were increased when the irradiated γ-ray doses increased, enlarging ∆VTH

with an increase in γ-ray radiation.
To understand the ∆gm,max and ∆ID, the µ behavior was extracted before and after the γ-ray

irradiation for the two samples, since the gm and ID are as a function of µ (Figure 6). Like the device
parameter extraction, a drain bias of 0.5 V was applied to extract the µ behavior for the ignorance of
the lateral field effect, which changes the carrier concentration and mobility behavior.

Figure 6. Carrier mobility deterioration according to the γ-ray radiation. (a) Carrier mobility as a
function of 2DEG density before and after the γ-ray radiation with the doses of 1.8 Mrad. (b) Carrier
mobility maximum reduction as a function of irradiated γ-ray doses. Inset in Figure 5a shows the
zoomed-in carrier mobility behavior at low 2DEG density regime in Sample-SiN before and after the
γ-ray radiation with doses of 1.8 Mrad.

The effect of the parasitic resistance of the access regions (between source and gate and gate and
drain) and contact resistance was taken into account to achieve the accurate µ behavior under the gated
region [32]. To extract the precise mobility behavior under the gated region, we used the following
equation:

µ = [(ID/VD_MODIFIED)LG]/(qWGNs) (1)

where NS is the electron concentration estimated by integrating the C(V) curve; q is the electron charge;
and VD_MODIFIED is the drain voltage across the gated channel, as shown in Equation (2):

VD_MODIFIED = VD − ID(RACC − 2RC) (2)

where RACC and RC are access region resistance and contact resistance, respectively, which are extracted
by the transmission line method (TLM).

The µ was deteriorated by the γ-ray radiation and the µmaximum reduction (∆µ) was increased
with an increase in the irradiated γ-ray doses. The µ is reduced from the low 2DEG density regime
(inset in Figure 6a), which means that Coulomb scattering between the charges trapped in the interior of
the gate insulator and electrons at the AlGaN/GaN interface gives rise to the mobility reduction. The µ
deterioration ratio was around one-third in Sample-HfO2 compared to the Sample-SiN. The tendency
of the ∆µ corresponded to the ∆gm,max and ∆ID degradation. Therefore, the µ deterioration was the
origin of the gm and ID reduction.

The sheet resistances of Sample-SiN and Sample-HfO2 were extracted by TLM before and after
γ-ray radiation (data not shown). The sheet resistance was increased after the γ-ray irradiation due
to the Coulomb scattering between the trapped charges inside the gate dielectric layer and electrons
at the hetero-interface [23]. When the γ-ray irradiation dose increased, the sheet resistances of the
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two samples increased. The sheet resistances were 453 (Sample-SiN, before γ-ray radiation), 486
(Sample-SiN, after 3.6 Mrad γ-ray radiation), 451 (Sample-HfO2, before γ-ray radiation), and 467
(Sample-HfO2, after 3.6 Mrad γ-ray radiation) Ω/�. In Sample-HfO2, the deterioration of the sheet
resistance was smaller compared to Sample-SiN.

Note that the contact resistance was also extracted via TLM. The extracted contact resistance values
were 1.24 (Sample-SiN, before γ-ray radiation), 1.25 (Sample-SiN, after 3.6 Mrad γ-ray radiation), 1.26
(Sample-HfO2, before γ-ray radiation), and 1.24 (Sample-HfO2, after 3.6 Mrad γ-ray radiation) Ω·mm.
Therefore, the obvious damage to the metal electrodes caused by the γ-ray radiation was not achieved.

Based on the µ and sheet resistance deterioration trend with increasing irradiated γ-ray doses and
less degradation of the µ and sheet resistance in Sample-HfO2 than in Sample-SiN, we can inversely
verify that (i) the γ-ray irradiation resulted in the degradation of the gate dielectric quality and charge
trapping inside the gate dielectric layer, and (ii) less charges are trapped in the HfO2 layer than in the
SiN layer after the γ-ray irradiation. These results ensure that HfO2 shows enough strength to the
γ-ray irradiation.

In Figure 7, the RF performance degradation generated by the γ-ray irradiation was also researched
in GaN-based MIS-HEMTs. For the RF performance characterization, we first measured the S-parameter
using the network analyzer. For the f T extraction, the measured S-parameter was converted to the
H-parameter. Then, we fitted a linear line with a −20 dB slope on the H21 curve. The extrapolated point
of the linear line to the 0 dB should be f T. To obtain f MAX, the measured S-parameter was converted to
be maximum stable gain (MSG)/maximum available gain (MAG). We fitted a linear line with a −20 dB
slope at stability factor (K) = 1. Like the f T extraction, the extrapolated point of the linear line to the
0 dB was defined as the maximum oscillation frequency.

Figure 7. Radio frequency performance degradation induced by γ-ray radiation. Cut-off frequency
characteristics before and after the γ-ray radiation in GaN-based MIS-HEMTs for a 5 nm-thick: (a) SiN;
(b) HfO2 gate insulator. (c) Cut-off frequency and maximum oscillation frequency reduction vs.
irradiated γ-ray doses.
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As we can anticipate from the DC performance alternation, the f T and f MAX deteriorated after
the γ-ray radiation. After γ-ray radiation with doses of 3.6 Mrad, the f T and f MAX degradation rate
was around three times larger when the SiN gate insulator was employed compared to the HfO2

gate dielectric layer. Therefore, the RF performance decrease was improved by using HfO2 as a gate
dielectric layer. In comparison to the DC property deterioration, the RF performance degradation
was larger. Note that further investigation is needed to figure out the reason of the relatively large
RF performance degradation. One possible scenario is that the RF characteristics of the GaN-based
MIS-HEMTs are more sensitive to the frequency response of the radiation-caused traps than the DC
properties [24].

4. Conclusions

The device performance degradation mechanism of the GaN-based MIS-HEMTs induced by the
γ-ray radiation was investigated through electrical device characterization, which was total ionizing
dose effect generated at a great part of the gate insulator rather than the AlGaN barrier and GaN layers.
According to the γ-ray irradiation, the gate insulator quality was deteriorated and the trapped charges
inside the gate dielectric layer were increased. When the γ-ray was radiated, the preexisting defects
known as K centers were converted to positively charged K+ defects in the SiN gate insulator. In the
HfO2 gate dielectric layer, the bond breaking was caused by the γ-ray irradiation and the oxygen
vacancies of broken bonds trap holes. As a result, the device performance such as threshold voltage,
transconductance, drain current, carrier mobility, and frequency characteristics was deteriorated.
However, a huge improvement in the device performance degradation was achieved as the HfO2 was
employed as a gate insulator due to its superior immunity to the γ-ray radiation. Compared to the
SiN gate insulator, the threshold voltage shift, transconductance maximum deterioration, and drain
current reduction were improved from 0.15 to 0.075 V, 5.42 to 2.27%, and 5.40 to 2.31%, respectively,
when HfO2 was used as the gate insulator. The RF performance degradation was also improved
by employing the HfO2 gate insulator in comparison with the SiN gate dielectric layer. The cut-off

frequency and maximum oscillation frequency degradation were improved from 36.14 to 13.3% and
34.52 to 10.68%, respectively.
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