## Supporting information

## Nanostructured and spiky gold shell growth on magnetic particles for SERS applications

Erin E. Bedford <sup>1,2</sup>, Christophe Méthivier <sup>1</sup>, Claire-Marie Pradier <sup>1</sup>, Frank Gu <sup>2</sup> and Souhir Boujday <sup>1,\*</sup>

- <sup>1</sup> Laboratoire de Réactivité de Surface (LRS), CNRS, UMR 7197, Sorbonne Université, 4 place Jussieu, F-75005 Paris, France; <u>eebedford@gmail.com (E.E.B.)</u>; <u>christophe.methivier@sorbonne-universite.fr (C.M.)</u>; <u>claire-marie.pradier@upmc.fr (C.-M.P.)</u>; <u>souhir.boujday@sorbonne-universite.fr (S.B.)</u>
- <sup>2</sup> Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W., Waterloo, Canada; <u>eebedford@gmail.com (E.E.B.)</u>; <u>frank.gu@uwaterloo.ca</u> (F.G.)
- \* Correspondence: <u>souhir.boujday@sorbonne-universite.fr (S.B.</u>); Tel.: +33-1-4427-6001

## **Experimental conditions for SERS measurement**

First set: influence of silicon-iron oxide core functionalization: In the first set of experiments, samples for surface-enhanced Raman scattering (SERS) were prepared by adding 50  $\mu$ L of particles dispersed in CTAB to 3 mL of Millipore water; this amount was chosen because it was the minimum amount required for signal saturation. Particles were initially dispersed in 1 mM CTAB (final CTAB concentration of 16.7  $\mu$ M) and varying amounts of the Raman probe, 2-mercaptopyrimidine (MPym), were added.

Second set: influence of bath conditions: In the second set of experiments, samples were also prepared by adding 50  $\mu$ L of particles dispersed in CTAB to 3 mL of Millipore water, but particles were initially dispersed in 10 mM CTAB (final CTAB concentration of 167  $\mu$ M), which resulted in a signal large enough to be compared without the use of an additional Raman probe.



UV-Visible spectra during gold seed attachment and upon shell growth

Figure S1. UV-Vis spectra of A) particles before and after gold seeds binding, B) spiky particles.



## **Magnetic properties**

Figure S2: A- Magnetization curves of silica-coated iron oxide particles before (solid) and after (dashed) gold/silver shell coating. The inset shows the small amount of hysteresis occurring at low magnetic fields. B-Measured opacity over time for water dispersions of particles at 1 mg Fe<sub>3</sub>O<sub>4</sub>/SiO<sub>2</sub> particles/mL (greater mass upon gold coating) in a 45 T/m gradient, before (solid) and after (dashed) gold shell coating

The magnetization curve (inset in Figure S2) also shows that particles have low remanent magnetization; for the silica-coated iron-oxide particles, the remanent magnetization is 1 emu/g and for the gold-coated particles, the value is 0.25 emu/g, suggesting that the particles do not meet the formal definition of superparamagnetism, but with despite such a low value, they do exhibit superparamagnetic behavior in practical applications.

| Table | S1: | Separat | ion | times | of | particl | es, | determine     | ed  | based | on | time | requ | ired | to | reach | 5% | and |
|-------|-----|---------|-----|-------|----|---------|-----|---------------|-----|-------|----|------|------|------|----|-------|----|-----|
|       |     |         |     |       |    | 1       | %   | of initial of | ppa | acity |    |      |      |      |    |       |    |     |

|                                                         | Separation time (seconds) |            |  |  |  |
|---------------------------------------------------------|---------------------------|------------|--|--|--|
|                                                         | 5% opacity                | 1% opacity |  |  |  |
| Fe <sub>3</sub> O <sub>4</sub> /SiO <sub>2</sub>        | 48                        | 89         |  |  |  |
| Fe <sub>3</sub> O <sub>4</sub> /SiO <sub>2</sub> /Au-Ag | 68                        | 108        |  |  |  |



Figure S3: A- Change in peak height of Raman signal corresponding to the Raman reporter (MPym) at different concentrations. A fit to a Langmuir model (red line) shows saturation behavior ( $R^2 = 0.98$ ), B- Change in peak heights corresponding to CTAB at different Raman reporter (MPym) concentrations.