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Abstract: Fabrication of gas sensors to monitor toxic exhaust gases at high working temperatures
is a challenging task due to the low sensitivity and narrow long-term stability of the devices under
harsh conditions. Herein, the fabrication of a chemiresistor-type gas sensor is reported for the
detection of NO2 gas at 600 ◦C. The sensing element consists of ZnFe2O4 nanoparticles prepared
via a high-energy ball milling and annealed at different temperatures (600–1000 ◦C). The effects of
annealing temperature on the crystal structure, morphology, and gas sensing properties of ZnFe2O4

nanoparticles are studied. A mixed spinel structure of ZnFe2O4 nanoparticles with a lattice parameter
of 8.445 Å is revealed by X-ray diffraction analysis. The crystallite size and X-ray density of ZnFe2O4

nanoparticles increase with the annealing temperature, whereas the lattice parameter and volume are
considerably reduced indicating lattice distortion and defects such as oxygen vacancies. ZnFe2O4

nanoparticles annealed at 1000 ◦C exhibit the highest sensitivity (0.13% ppm–1), sharp response
(τres = 195 s), recovery (τrec = 17 s), and linear response to 100–400 ppm NO2 gas. The annealing
temperature and oxygen vacancies play a major role in determining the sensitivity of devices.
The plausible sensing mechanism is discussed. ZnFe2O4 nanoparticles show great potential for
high-temperature exhaust gas sensing applications.

Keywords: annealing temperature; chemiresistors; gas sensors; oxygen vacancies; sensing mechanism;
ZnFe2O4 nanoparticles

1. Introduction

Hazardous exhaust gases such as nitrogen dioxide (NO2) and sulfur dioxide (SO2) are the major
atmospheric pollutants [1]. The European Union’s (E.U.) ambient air quality directives have set the
hourly NO2 concentration threshold as 200 µg/m3 [2]. According to the European Environment Agency
(EEA) report published in 2016, NO2 pollution was responsible for 71,000 premature deaths in the
E.U. [3]. Thus, it is important to detect the emission and subsistence of NO2 in indoor and outdoor air.
The main source of NO2 pollution is the exhaust emissions as a result of the combustion processes
in motor vehicles and manufacturing industries [4]. The direct inspection of the exhaust emissions
requires devices that can detect NO2 at high temperatures, i.e., usually ≥500 ◦C [5]. In this regard,
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metal oxide-based electronic gas sensors are the most sought-after devices for applications in harsh
environments [6–8].

According to a recent review of high-temperature gas sensors, Ghosh et al. [9] noted the majority
of the metal oxide-based gas sensors work at moderately high temperatures only, while the sensitivity
of metal oxides is substantially influenced at temperatures above 350 ◦C. Albeit a large number of
metal oxide-based NO2 gas sensors are reported [10–13], only a few work at high temperatures,
i.e., ≥600 ◦C. For instance, Miura et al. [14] reported Yt-stabilized zirconia and spinel ZnFe2O4 sensing
electrodes for the electrochemical detection of NOx at 600–700 ◦C. However, chemiresistive-type NO2

gas sensors for high-temperature applications are rarely reported [13,15,16]. Therefore, the fabrication
of high-temperature NO2 gas sensors for harsh environments is highly desired due to their widespread
applications in all types of combustion systems.

This article reports the first high-temperature thick film chemiresistive gas sensor for NO2 detection
at 600 ◦C. The sensor is based on highly stable spinel zinc ferrite (ZnFe2O4) nanoparticles prepared
via a solid-state, high-energy ball-milling (HEBM) process followed by high-temperature thermal
annealing at different temperatures (600, 800, and 1000 ◦C). ZnFe2O4 nanoparticles have been used for
the detection of toxic organic vapors and gases such as acetone at 260 [17] and 275 ◦C [18], ethanol at
27 [19] and 220 ◦C [20], toluene at 300 ◦C [21], H2S at 85 ◦C [22] and 135 ◦C [23], and O2 at 180 ◦C [24].
Recently, Runa et al. [25] fabricated a chemiresistive NO2 gas sensor using ZnO/ZnFe2O4 composites
with p-n heterostructure, which revealed excellent selectivity and high gas response toward 0.1–20 ppm
NO2 compared to pure ZnO. However, the gas response diminished rapidly at temperatures of
≥220 ◦C [25]. In this work, the effects of high-temperature annealing on the crystal structure and
NO2 gas sensing properties are studied. The cubic spinel ZnFe2O4 nanoparticles are stable at high
temperatures and demonstrate excellent NO2 sensing capability at 600 ◦C with fast response and
recovery times.

2. Materials and Methods

Iron(III) oxide (Fe2O3 nanopowder) and zinc oxide (ZnO nanopowder) obtained from
MilliporeSigma (Merck KGaA, Darmstadt, Germany) were used to prepare ZnFe2O4 nanoparticles.
ZnFe2O4 nanoparticles were synthesized by high-energy ball milling (HEBM) process using a SPEX™
8000M Mixer/Mill™ (SPEX® SamplePrep, New Jersey, NJ, USA). The ball mill was equipped with a
500-cc stainless steel vessel containing stainless steel balls for mechanical milling of Fe2O3 and ZnO.
The mass ratio of steel balls and chemical powders was fixed at 50:1. HEBM was performed under
ambient conditions for 2 h at 600 rpm. The product was subsequently vacuum annealed at 600, 800,
and 1000 ◦C for 2 h, and characterized. Corresponding to the annealing temperature (600–1000 ◦C),
the samples were abbreviated as ZnFe2O4-600, ZnFe2O4-800, and ZnFe2O4-1000, respectively.

The crystal structure of the annealed ZnFe2O4 nanoparticles was studied with a STOE STADI
P X-ray diffractometer (XRD) (STOE & Cie GmbH, Darmstadt, Germany) using a Cu Kα irradiation
source (λ = 1.5406 Å). The samples were scanned in the 2θ range of 10◦–90◦ with a scan rate of 2◦/min.
The crystallite size (D) is determined by the Scherrer’s formula [26] (D = Kλ/Bcosθ), where K is a
numerical factor referred to as the crystallite-shape factor with an approximate value of 0.89, λ is the
wavelength of the X-rays, B is full-width at half-maximum of the most intense (311) diffraction peak in
radians, and θ is the Bragg angle. The experimental lattice parameter (a), X-ray density (ρxrd), and the
specific surface area (SA) are also calculated from the XRD data of annealed ZnFe2O4 nanoparticles,
as described elsewhere [27,28].

The microstructure and surface morphology of ZnFe2O4 nanoparticles were studied with a JEOL
JSM-6510 scanning electron microscope (SEM) (JEOL Ltd., Tokyo, Japan). The elemental composition
of ZnFe2O4 nanoparticles was determined with the energy-dispersive X-ray spectroscopy (EDS)
(JEOL Ltd., Tokyo, Japan).

Thick-film chemiresistor-type gas sensors were fabricated by mixing an appropriate amount of
ZnFe2O4-600, ZnFe2O4-800, and ZnFe2O4-1000 nanoparticles with absolute ethanol to make a thick
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slurry, which was subsequently drop-coated onto alumina micro-hotplates with vapor-deposited
platinum (Pt) contacts. The devices were placed in a vacuum oven at 80 ◦C for 2 h to dry and stabilize
the sensing element. The chemiresistor-type devices were installed in a gas sensing chamber fitted
with the electrical connections and the gas inlet and outlet. The measurements were performed with
a Keithley 6517A electrometer. The sensor responses were measured simultaneously at 600 ◦C for
100–400 ppm of NO2 gas. The sensor response (S) is defined as S(%) = (Rg – Ra) × 100/Ra, where Ra and
Rg are the resistances in air and (100–400 ppm) NO2 gas.

3. Results and Discussion

Figure 1 shows the XRD pattern of as-synthesized ball-milled ZnFe2O4 nanoparticles, referred
to as BM-ZnFe2O4. The HEBM process yields crystalline BM-ZnFe2O4 nanoparticles with a cubic
spinel lattice structure as indicated by the presence of characteristic (311) diffraction at 35.22◦ (2θ)
position. The crystallite size (D) of as-synthesized BM-ZnFe2O4 nanoparticles is 9.30 nm. The lattice
parameter (a) is calculated to be 8.445 Å, which is in agreement with the values reported for spinel
ZnFe2O4 nanostructures in the literature and the standard value of bulk ZnFe2O4 (a = 8.441 Å) [29–31].
The lattice parameter of as-synthesized BM-ZnFe2O4 nanoparticles is slightly higher (~0.05%) than
the standard value that may be inherent to the ball-milling process because an increase in the lattice
parameter of ball-milled ZnFe2O4 samples has been reported earlier [32–34].
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Figure 1. (a) X-ray diffraction pattern of the as-synthesized, ball-milled zinc ferrite (BM-ZnFe2O4)
nanoparticles. (b) The characteristic (311) plane diffraction of cubic spinel BM-ZnFe2O4 nanoparticles.

Theoretically, the cation distribution in a perfect normal spinel ZnFe2O4 unit cell is
(Zn2+)tet[Fe3+]octO4, i.e., the tetrahedral (A) and octahedral (B) sites are solely occupied by Zn2+

and Fe3+ cations, respectively [35]. However, in nanocrystalline ZnFe2O4 the contrary distributions
of Zn2+ and Fe3+ cations on both A and B sites are observed [36,37], which form mixed (or random)
spinel structure. According to Chinnasamy et al. [32], the slight increase in the lattice parameter is
attributed to the lattice expansion caused by the occupation of B sites by Zn2+ ions. Thus, the XRD
pattern of as-synthesized BM-ZnFe2O4 nanoparticles indicates the formation of a mixed cubic spinel
lattice. Nonetheless, BM-ZnFe2O4 nanoparticles are annealed at different temperatures to examine the
effect of annealing on the crystal structure evolution, lattice parameter, crystallite size, and morphology
of ZnFe2O4 nanoparticles.
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High-temperature annealing is an important step in the fabrication of ZnFe2O4 nanoparticles,
as it renders stability and improves the physical properties of ZnFe2O4 [38,39]. Figure 2 shows the
XRD patterns of ZnFe2O4 nanoparticles annealed at 600, 800, and 1000 ◦C for 2 h. XRD patterns are
refined using Match! (version 3.11.1.183) and FullProf programs for phase identification from X-ray
powder diffraction. All samples exhibit a crystalline structure with the characteristic diffractions
corresponding to the following miller indices: (111), (220), (311), (222), (400), (422), (511), (440),
(620), and (533), which conform to the crystallography open database card number 230–0615 [40].
XRD results substantiate the formation of the cubic spinel ferrite structure with the Fd-3m space group.
Also, the XRD patterns align well with the reported literature for ZnFe2O4 nanoparticles [30,41,42].
The absence of additional diffraction peaks corresponding to the impurities or unreacted oxides also
reveals the formation of a single-phase cubic spinel lattice [40].
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(a) 600, (b) 800, and (c) 1000 ◦C.

Figure 3a–c shows the most intense diffractions of the characteristic (311) plane in ZnFe2O4

nanoparticles annealed at different temperatures. The XRD data were used to calculate the crystallite
size (D), lattice parameter (a), interplanar distance (d311), volume (V), X-ray density (]ρxrd), and specific
surface area (S) of the annealed ZnFe2O4 nanoparticles. Table 1 presents these structural parameters
for different samples. The effect of annealing is obvious because of the changes in position and breadth
of (311) diffraction peak as a function of the annealing temperature, which reveal variations in the
crystallite size and lattice parameter. The position of (311) shifts to a higher 2θ value as the annealing
temperature increases.
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nanoparticles as a function of annealing temperature.

As shown in Figure 3d, the crystallite size of ZnFe2O4 nanoparticles increases with the annealing
time, which is certainly comprehensible because annealing results in grain growth, and the higher
the temperature, the greater is the crystallite size [43–45]. The annealing at 600 ◦C doubles the
crystallite size of ZnFe2O4@600 nanoparticles compared to as-synthesized BM-ZnFe2O4 nanoparticles.
While annealing at 800 ◦C results in a further increase in the crystallite size, the crystallite sizes of
ZnFe2O4@800 and ZnFe2O4@1000 nanoparticles are comparable. Thus, the little difference in the
crystallites sizes of samples treated at 800 and 1000 ◦C means the rate or degree of annealing decreases
with the increasing crystallite size [46].

Table 1. The structural properties of ZnFe2O4 nanoparticles, annealed at different temperatures (T).

Sample T (◦C) D (nm) a (Å) V (Å3) d311 (Å) ρxrd (g/cm3) S (m2/g)

BM-ZnFe2O4 - 9.30 8.445 602.3 2.546 5.321 121.24
ZnFe2O4@600 600 18.71 8.430 599.0 2.542 5.350 59.94
ZnFe2O4@800 800 23.03 8.424 597.8 2.540 5.361 48.59
ZnFe2O4@1000 1000 23.25 8.420 597.0 2.539 5.368 48.07

On the other hand, the lattice parameter decreases with the increase in annealing temperature,
as shown in Figure 3e. Although this is contrary to the findings reported earlier that demonstrate
an increase in the lattice parameter upon high-temperature annealing [47–49], the lattice parameter
and crystal structure essentially depend on the processing method and conditions. As discussed
above, in the starting sample, as-synthesized BM-ZnFe2O4 nanoparticles exhibit a random spinel
structure with a certain degree of inversion that is inherently observed for the ball-milled ZnFe2O4

nanoparticles [32,33]. The reduction in the lattice parameter of annealed ZnFe2O4 nanoparticles can be
explained by the redistribution of cations and crystal defects (oxygen vacancies).

During the high-temperature annealing process, both Zn2+ and Fe3+ cations may alter positions
that influence the crystal structure. For instance, Lemine et al. [50] demonstrated that a decrease in
the lattice parameter (from 8.448 to 8.427 Å) was caused by the redistribution of cations within the
interstitial sites. However, this can also be attributed to the crystal defects [39,51]. It is a well-known
fact that high-temperature annealing induces lattice defects and distortions. Furthermore, in the case
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of nanocrystalline ZnFe2O4, it is believed that Zn2+ ions due to their volatile nature escape from the
lattice during thermal treatment that successively results in oxygen vacancies [39,52]. Thus, a decrease
in the lattice parameter (from 8.445 Å for BM-ZnFe2O4 to 8.420 Å for ZnFe2O4@1000) is attributed
to the cationic redistribution (distortion) and lattice compression caused by escaping Zn2+ ions and
oxygen vacancies.

Consequently, the interplanar distance and the volume of the annealed ZnFe2O4 nanoparticles
are reduced as a function of the annealing temperature. On the other hand, the X-ray density increases
(from 5.321 g cm–3 for BM-ZnFe2O4 to 5.368 g cm–3 for ZnFe2O4@1000) with the increase in annealing
temperature. However, as shown in Table 1, the specific surface area is reduced to 48 m2 g–1 due to an
increase in the crystallite size of the annealed ZnFe2O4 nanoparticles. These results demonstrate that
ZnFe2O4@1000 and ZnFe2O4@800 nanoparticles have bigger crystallite size and smaller specific surface
area, but the greatest number of defect sites (as oxygen vacancies) and a geometrically frustrated [53]
or distorted cubic spinel crystal structure compared to as-synthesized BM-ZnFe2O4 nanoparticles.

Figure 4a–c shows the SEM images of ZnFe2O4 nanoparticles annealed at different temperatures.
An increase in the annealing temperature (to 1000 ◦C) results in a more compact surface, as shown
in Figure 4c: the micrograph of ZnFe2O4@1000 nanoparticles. On the other hand, ZnFe2O4@600
nanoparticles annealed at 600 ◦C (Figure 4a) show less compact surface morphology with smaller particle
size and relatively less aggregation of nanoparticles into clusters. The ZnFe2O4@800 nanoparticles
demonstrate a similar surface morphology with slightly larger aggregates of nanoparticles, as shown
in Figure 4b.
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Figure 4. Scanning electron microscopy images of ZnFe2O4 nanoparticles annealed at (a) 600, (b) 800,
and (c) 1000 ◦C. The respective histograms are given in the inset. (d) Energy-dispersive X-ray spectrum
of ZnFe2O4 nanoparticles annealed at 1000 ◦C.
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The image analysis of the scanning electron micrographs (via WSxM freeware [54]) shows the
size distribution of ZnFe2O4 nanoparticles and the respective histograms are presented as insets in
Figure 4a–c. ZnFe2O4@600 nanoparticles exhibit narrow size distribution with an average aggregate
size of 100.2 nm, while ZnFe2O4@800 and ZnFe2O4@1000 nanoparticles reveal a relatively broad size
distribution and an average aggregate size of 143.8 and 146.5 nm, respectively.

Figure 5 shows three-dimensional surface micrographs and topographic profiles of the sensing
layers composed of ZnFe2O4 nanoparticles annealed at different temperatures. ZnFe2O4@600 surface
exhibits a relatively smooth profile and roughness (Figure 5a). On the other hand, ZnFe2O4@800
(Figure 5b) and ZnFe2O4@1000 (Figure 5c) nanoparticles demonstrate higher roughness, greater
particle size, and cluster formation. Thus, both X-ray diffraction and microscopic results indicate
that ZnFe2O4 nanoparticles annealed at 800 and 1000 ◦C exhibit bigger crystallite size and a compact
surface microstructure compared to those annealed at 600 ◦C.
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Figure 5. Three-dimensional micrographs and surface profiles showing the surface morphology,
roughness, and topography of the sensitive element–ZnFe2O4 nanoparticles annealed at (a) 600, (b) 800,
and (c) 1000 ◦C.

Table 2 presents the elemental composition of the annealed ZnFe2O4 nanoparticles. Compared
to theoretically calculated values (wt.% or at.%), annealed ZnFe2O4 nanoparticles exhibit variations.
As the annealing temperature increases, the relative percentage of Fe increases while the proportions
of Zn and O decrease. A decrease in the oxygen content with increasing temperature is attributed to
the oxygen vacancies and lattice defects. In addition, the atomic ratio of Fe/Zn is found to be 2.07, 2.20,
and 2.21 for ZnFe2O4@600, ZnFe2O4@800, and ZnFe2O4@1000 nanoparticles, respectively. The increase
in the Fe/Zn ratio as a function of annealing temperature may be attributed to the volatile nature of
Zn2+ ions [39], as discussed earlier. Thus, the results are consistent and exhibit the microstructure
evolution in the annealed ZnFe2O4 nanoparticles as a function of annealing temperature.

Table 2. The chemical composition of ZnFe2O4 nanoparticles annealed at different temperatures.

Sample
Zn Fe O

(wt.%) (at.%) (wt.%) (at.%) (wt.%) (at.%)

ZnFe2O4@600 26.61 14.08 47.15 29.17 26.24 56.75
ZnFe2O4@800 25.60 13.51 48.04 29.64 26.36 56.85

ZnFe2O4@1000 25.65 13.68 48.67 30.34 25.69 55.98
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Figure 6 demonstrates the NO2 gas response of ZnFe2O4 nanoparticles annealed at different
temperatures. The sensor measurements are performed at 600 ◦C. The as-synthesized BM-ZnFe2O4

nanoparticles based chemiresistive devices are not stable at 600 ◦C and do not show a measurable
response to NO2 gas. On the other hand, all the annealed ZnFe2O4 samples show a significant
measurable response to 100–400 ppm NO2, as shown in Figure 6. The sensor responses are generally
saturated after ~4 min of exposure to the different concentrations of NO2 gas. ZnFe2O4@1000
nanoparticles exhibit the highest NO2 gas response, which is attributed to their greater stability
at elevated temperatures and the presence of a large number of lattice defects. ZnFe2O4@600 and
ZnFe2O4@800 nanoparticles also exhibit significant gas response at 600 ◦C. Peng et al. [55] recently
demonstrated that the gas sensing properties of ZnFe2O4 nanoparticles could be enhanced by controlling
the oxygen vacancies and that ZnFe2O4 nanoparticles with more oxygen vacancies revealed superior
gas (acetone vapors) sensing performance at 280 ◦C. Thus, the higher NO2 response of ZnFe2O4@1000
nanoparticles may be attributed to the oxygen vacancies resulting from high-temperature annealing
of nanoparticles.
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Figure 7 shows the calibration curves obtained by plotting the maximum gas response of the
annealed ZnFe2O4 nanoparticles as a function of gas concentration. All ZnFe2O4 samples exhibit a
linear response in the concentration range of 100–400 ppm as demonstrated by the straight lines in
Figure 7. The sensitivity of ZnFe2O4-based chemiresistive devices can be calculated from the slope of
a straight line. The sensitivity of NO2 sensors follows the order: ZnFe2O4@1000 > ZnFe2O4@800 >

ZnFe2O4@600, which describes the effect of annealing temperature on sensor performance. An increase
in annealing temperature improves the NO2 sensing properties of ZnFe2O4 nanoparticles. Therefore,
ZnFe2O4@1000 nanoparticles exhibit 2.0-fold and 3.2-fold high sensitivity compared to ZnFe2O4@800
and ZnFe2O4@600 nanoparticles, respectively.
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chemiresistive devices.

Figure 8 shows the kinetics of ZnFe2O4-based chemiresistive gas sensors. The response (τres)
and recovery (τrec) times of the annealed ZnFe2O4 nanoparticles are estimated from their response
to 300 ppm NO2 gas. All samples show fast response and recovery times. The response times are in
the range of 145–195 s and follow the order: ZnFe2O4@800 > ZnFe2O4@600 > ZnFe2O4@1000. Thus,
ZnFe2O4@1000 nanoparticles exhibit slightly longer response (τres) times compared to ZnFe2O4@600
and ZnFe2O4@800 nanoparticles. The recovery times are sharp (i.e., ≤20 s) for all samples and all
sensors exhibit 100% recovery to their original state. At elevated temperatures, the recovery times are
generally faster [10]. Overall, ZnFe2O4@1000 nanoparticles exhibit excellent NO2 gas sensing properties
such as high sensitivity, good response kinetics, and linear response in the tested concentration range.
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The chemiresistive gas sensors function on the principles of changes in resistance of the sensing
element when test gas molecules interact with the semiconductor surface [9]. Figure 9 demonstrates
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the gas sensing mechanism of ZnFe2O4 nanoparticles. ZnFe2O4 is an n-type semiconductor [56].
In principle, when the ZnFe2O4-based chemiresistive device is exposed to air at elevated temperatures,
active oxygen species are adsorbed on the surface of ZnFe2O4 nanoparticles. As shown in Figure 9a,
O2 molecules are physisorbed (O2

−) at low temperatures (<200 ◦C) and subsequently chemisorbed
(O– and O2–) at elevated temperatures (>200 ◦C) by capturing mobile electrons (e–) from the surface.
This leads to the formation of a charge depletion layer on the surface of ZnFe2O4 nanoparticles.
Afterward, the surface is exposed to different concentrations of NO2 gas and NO2 being an
electron-withdrawing molecule [57] further extracts mobile e− from the surface or interacts with
the chemisorbed oxygen species, as shown in Figure 9b. Consequently, the density of major charge
carriers (e−) decreases, and the thickness of the depletion region increases, which increases the resistance
of the device. The redox reactions taking place on the surface of ZnFe2O4 nanoparticles are depicted in
Figure 9.
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Considering the mechanism described above, it is important to understand the behavior of
ZnFe2O4 nanoparticles annealed at different temperatures. It is believed that semiconducting metal
oxides with more oxygen vacancies adsorb a large number of active oxygen species, which in turn
facilitates the surface redox reactions with the target gas molecules and improves the gas response [55].
Thus, oxygen vacancies and lattice defects play a major role in determining the gas response of
ZnFe2O4 nanoparticles. Therefore, ZnFe2O4@1000 nanoparticles exhibit the best NO2 gas sensing
properties despite their slightly bigger crystallite size and smaller specific surface area. Table 3 shows
a comparison of ferrite-based chemiresistive NO2 sensors. The results demonstrate the potential of
stable ZnFe2O4@1000 nanoparticles for high-temperature gas sensing applications.
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Table 3. A comparison of the sensing properties of chemiresistive-type NO2 gas sensors.

Material Fabrication
Method

Temperature
(◦C)

Detection
Range (ppm)

Response †
(S)

Response
Time (s)

Recovery
Time (s) Reference

CuFe2O4 Coprecipitation 27 20–240 72% 8 5 [58]
ZnFe2O4 Hydrothermal 125 1–10 248 ‡ 6.5 11 [59]
Pd-doped

BiFeO3
Sol-gel 140 50–3500 93% 60 100 [60]

CoFe2O4 Spray pyrolysis 150 20–80 95% 5 114 [61]
ZnO/ZnFe2O4 Wet chemical 200 0.1–20 ~ 300 ‡ 7 15 [25]

Cu-doped
α-Fe2O3

Electrospinning 300 5–50 2 ‡ 118 258 [62]

ZnFe2O4 Ball-milling 600 100–400 11% 195 17 This work
Sb-doped
Zn2SnO4

Sputtering 600 50–300 ~ 4 ‡ - - [63]

† The response (S) is reported for the highest tested concentration of NO2 gas: S(%) = (Rg – Ra) × 100/Ra. ‡ If not
reported as S(%), the response is measured as: S = Rg /Ra.

4. Conclusions

In summary, this study presents the effects of annealing temperature on the microstructure
evolution and gas sensing properties of ZnFe2O4 nanoparticles. A high-energy ball-milling
procedure is used to prepare pure ZnFe2O4 nanoparticles that are annealed at different temperatures
(600–1000 ◦C). ZnFe2O4 nanoparticles exhibit a random spinel lattice structure that is distorted during
high-temperature annealing. The XRD results show an increase in the crystallite size, but a reduction in
the lattice parameter and volume that is attributed to the presence of lattice defects as oxygen vacancies.
The oxygen vacancies play a major role in controlling the sensitivity of ZnFe2O4 nanoparticles.
Thus, ZnFe2O4@1000 nanoparticles (annealed at 1000 ◦C) reveal the superior gas sensing properties
with the highest sensitivity, good response kinetics, and linear response toward 100–400 ppm NO2

gas. This is the first example of a ZnFe2O4@1000-based chemiresistive device showing significant gas
response and stable sensor performance at 600 ◦C.
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39. Yadav, R.S.; Kuřitka, I.; Vilcakova, J.; Urbánek, P.; Machovsky, M.; Masař, M.; Holek, M. Structural, magnetic,
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