Towards the Continuous Hydrothermal Synthesis of ZnO@Mg₂Al-CO₃ Core-Shell Composite Nanomaterials

Ian Clark ^{1,2}, Jacob Smith ^{1,2}, Rachel L. Gomes ² and Edward Lester ^{1,*}

- ¹ Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom; ian.clark@nottingham.ac.uk (I.C.); jacob.smith@nottingham.ac.uk (J.S.)
- ² Food, Water, Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom; Rachel.gomes@nottingham.ac.uk
- * Correspondence: edward.lester@nottingham.ac.uk

ZnO – Simple ZnO synthesis in reactor 1

Zn(NO₃)₂.6H₂O - 0.05M

LDH_{initial}

NaOH - 0.125MNa₂CO₃ - 0.0167M20 R1 10 Collection

 $Mg(NO_3) - 0.067M$ Al(NO₃) - 0.033M LDH1 – Simple Mg₂Al-CO₃ synthesis in reactor 1

LDH_{mix}

An 'artificial' mix of LDH_{initial} and ZnO from the separate experiments described above

ZnO-LDH

ZnO-LDH the hybrid synthesis whereby ZnO is made in reactor 1 which then flows into reactor 2 where the Mg_2AI-CO_3 is synthesised

LDH3 –Mg₂Al-CO₃ synthesis in reactor 2 with scaled concentration to match flow rate changes

LDH4 –Mg₂Al-CO₃ synthesis in reactor 2 with scaled concentration to match concentration of LDH post ZnO synthesis. ZnO liquor to evaluated effect of residual Zn²⁺ and any potential OH⁻ from R1

LDH5 – Mg_2Al - CO_3 synthesis in reactor 2 with scaled concentration to match concentration of LDH post ZnO synthesis. NaNO₃ added to evaluate effect of NO₃⁻ from ZnO synthesis without the presence of Zn²⁺ or OH⁻ from R1

LDH6 $-Mg_2Al$ -CO₃ synthesis in reactor 2 with scaled concentration to match concentration of LDH without ZnO synthesis – R2 conditions mirror LDH3. NaNO₃ added to evaluate effect of NO₃⁻ from ZnO synthesis without the presence of Zn²⁺ or OH⁻ from R1

LDH7 – Mg₂Al-CO₃ synthesis in reactor 2 with scaled concentration to match concentration of LDH with ZnO synthesis. Zn(NO₃) added to evaluate effect of residual Zn²⁺ from ZnO synthesis without the presence of OH⁻ from R1

LDH8 – Mg₂Al-CO₃ synthesis in reactor 2 with scaled concentration to match concentration of LDH without ZnO synthesis – R2 conditions mirror LDH3. Zn(NO₃) added to evaluate effect of Zn²⁺ from ZnO synthesis without the presence of OH⁻ from R1

LDH7

Figure S2 Scanning electron images (at a magnification of x100) of a) $LDH_{initial}$, b) ZnO-LDH and

EDAX spectra c) LDH_{initial}, d) ZnO-LDH

 Table S1 EDX spectra results outlining atomic and mass fractions of elements in ZnO-LDH

 composite

Element	Atomic	Weight	Compound	Formula
	Fraction	Fraction	Fraction	
Mg	17.68	16.19	26.42	MgO
AI	13.55	13.77	27.25	Al ₂ O ₃
Zn	15.39	37.88	46.34	ZnO
0	53.39	32.17		

Figure S3 a) UV-Vis DRS, b) Kubelka-Munk plot

Figure S4 – XRD patterns for MgAlCO $_3$ made in reactor 1 (LDH 1) and reactor 2 (LDH 3)

Figure S5 SEM micrographs depicting differences in microstructure and morphology between

Samples LDH_{initial} (a, b) and LDH3 (c, d)

Figure S6 Diffraction patterns for LDH samples LDH4-LDH8

Figure S7 Derivate mass loss profiles of LDHs produced with varying precursor ions and OH-

concentration

Table S2 Weight fraction of metals in each LDH structure and residual metal content

	LDH Content					
Sample						
	Mg %	Al %	Zn %	Mg/Al		
LDH _{initial}	30.30	15.40		1.97		
LDH3	30.19	15.85		1.90		
LDH4	23.42	21.26		1.10		
LDH5	21.22	23.02		0.92		
LDH6	30.88	15.3		2.02		
LDH7	20.25	22.72	1.35	0.89		
LDH8	30.68	14.42	1.3	2.13		