
Supplementary Materials: Highly stable porous polyimide sponge as a separator for lithium-metal secondary batteries

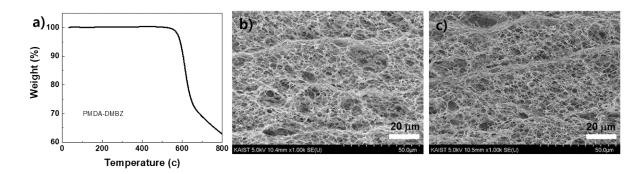
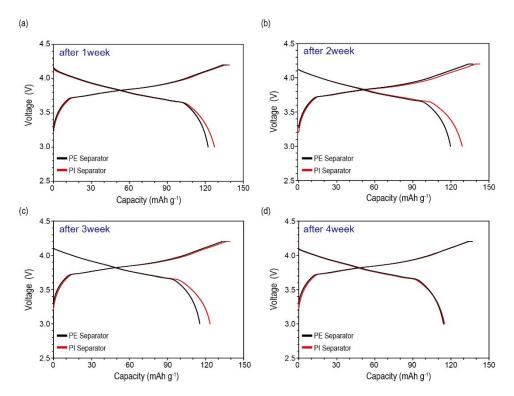

Junyoung Choi 1,2,3,† , Kwansoo Yang 2,3,† , Hyeon-Su Bae 1 , Isheunesu Phiri 1 , Hyun Jeong Ahn 2,3 , Jong Chan Won 2,3 , Yong Min Lee 4,* , Yun Ho Kim 2,3,* and Myung-Hyun Ryou 1,*

Figure S1. (a) Surface and (b) cross-sectional scanning-electron microscopy (SEM) images of PI sponge before pressing.


Table 1. Mercury porosimetry (AutoPore V) analysis of PI sponge before pressing.

Porosity (%)	Bulk density	Apparent density	Median pore	Average pore
	(g mL ⁻¹)	(g mL ⁻¹)	diameter (µm)	diameter (μm)
94.9	0.0153	0.4810	0.19766	4.5998

Figure S2. (a) TGA Thermograph of PMDA-DMBZ based PI porous separator and cross-sectional SEM images of (b) pristine PI separator and (c) after 250 °C heat treatment.

Nanomaterials **2020**, 10, x 2 of 2

 $\textbf{Figure S3.}\ \ Voltage\ profiles\ of\ stored\ Li\ metal\ half\ cells\ corresponding\ to\ Figure\ 5.$