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Abstract: Engineered nanoparticles are utilized as drug delivery carriers in modern medicine due to
their high surface area and tailorable surface functionality. After in vivo administration, nanoparticles
distribute and interact with biomolecules, such as polar proteins in serum, lipid membranes in
cells, and high ionic conditions during digestion. Electrostatic forces and steric hindrances in a
nanoparticle population are disturbed and particles agglomerate in biological fluids. Little is known
about the stability of nanoparticles in relation to particle surface charge. Here, we compared three
different surface-stabilized silver nanoparticles (50 nm) for intracellular agglomeration in human
hepatocellular carcinoma cells (HepG2). Nanoparticles stabilized with branched polyethyleneimine
conferred a positive surface charge, particles stabilized with lipoic acid conferred a negative
surface charge, and particles stabilized with polyethylene glycol conferred a neutral surface charge.
Particles were incubated in fetal bovine serum, simulated lung surfactant fluid, and simulated stomach
digestion fluid. Each nanoparticle system was characterized via microscopic (transmission electron,
fluorescence, and enhanced darkfield) and spectroscopic (hyperspectral, dynamic light scattering, and
ultraviolet-visible absorption) techniques. Results showed that nanoparticle transformation included
cellular internalization, agglomeration, and degradation and that these changes were dependent upon
surface charge and incubation matrix. Hyperspectral analyses showed that positively charged silver
nanoparticles red-shifted in spectral analysis after transformations, whereas negatively charged silver
nanoparticles blue-shifted. Neutrally charged silver nanoparticles did not demonstrate significant
spectral shifts. Spectral shifting indicates de-stabilization in particle suspension, which directly affects
agglomeration intracellularly. These characteristics are translatable to critical quality attributes and
can be exploited when developing nano-carriers for nanomedicine.

Keywords: silver nanoparticles; transformation; hyperspectral imaging; stabilizing agent;
agglomeration; drug delivery; nanomedicine

1. Introduction

Silver nanoparticles (AgNPs), first used in consumer health-related products in the late 1800s,
continue to be incorporated into modern medicine due to their unique properties [1]. Properties such
as small size and large surface area, relative low toxicity, and stability while in suspension are
useful in drug delivery carriers (DDCs) [2,3]. However, information regarding agglomeration or
degradation of AgNPs after in vivo administration is scarce. Many studies suggest that silver ions
leached from AgNP surfaces induce significant toxicity [4–7]. While most studies focus on the
effects of silver on microorganisms in the environment, only a few examine the effects of AgNPs
in human physiologically relevant conditions [8–10]. Given the interest in using silver and other
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metal-based nanoparticles as potential DDCs, it is imperative to gain a deeper understanding of
potential nanoparticle transformations in biological fluids.

Substantial attention has been given to the beginning and ending stages of nano-enabled drug
product development pipelines [11,12]. Quality-by-design approaches in nanomaterial manufacturing,
risk analyses, and hazard assessments are recommended to ensure safe and efficacious products.
Physicochemical characterization (PCC) serves to identify in situ critical quality attributes (CQAs),
enabling considerations of interactions between nano-enabled diagnostics, therapeutics, or theragnostics
with different physiological fluids, such as cerebral, blood and serum, lung surfactant, interstitial,
mucous, breast milk, digestive, bile, and urine [13,14]. Due to the high variability of nanomaterials
used in pharmaceutical research and development, CQAs are needed to improve and streamline
synthesis and production methods, identify administration routes of exposure, prove efficacy in drug
testing, and ensure biocompatibility during the ADME process (adsorption, distribution, metabolism,
and excretion) [15,16]. Currently, the most critical attributes of nano-enabled medicines are size
homogeneity after production, consistent active ingredient concentration, and stability of product
over time [17,18]. Similar characteristics are applicable to other DDCs, such as liposomes, dendrimers,
polymeric micelles, and other microspheres [19–21].

Currently, one of the most extensively studied surface coatings used in nanomedicine research and
development is polyethylene glycol (PEG). Other relevant surface stabilizing agents include branched
polyethyleneimine (bPEI), citrate, ascorbic acid, and oleic acid. bPEI is a common cationic coating
and electro-steric stabilizing agent used in drug products [22]. Studies using environmental models
have found that bPEI coatings induce nanoparticle bioaccumulation and teratogenicity in aquatic
organisms [23–25]. Citrate and ascorbic acid stabilized nanoparticles have been proposed for use in
dentistry, as these stabilizing agents have been shown to eradicate biofilm formation, while being a
less toxic option relative to other types of antibiotics [26]. Citrate, ascorbic acid, and oleic acid coatings
create a charge barrier preventing intracellular uptake when compared to bPEI or PEG [27]. Still, PEG
is often the preferred choice for nanoparticle stability in nanomedicine formulations because this agent
protects particles from reticuloendothelial system elimination [28].

Greater focus is given to AgNP transformation in environmentally relevant conditions as compared
to AgNPs subjected to physiologically relevant conditions. Of the limited information available for
AgNP characteristics in biofluids, most data focus on the nanoparticle protein corona construct [29–31].
Protein corona studies are relevant to nanoparticle transformations administered through intramuscular,
subcutaneous, intravenous, or intradermal injection. However, other routes of nanomedicine exposure
introduce additional types of complex nanoparticle interactions, transformations, agglomeration,
and degradation [32]. Other administration routes include oral, nasal, inhalation, ocular, and
transmucosal, including buccal, vaginal, rectal, and transdermal [33]. When nanomedicine exposure
occurs orally, nanoparticles are subjected to saliva and stomach acid digestion. Through nasal,
ocular, and transmucosal administrations, nanoparticles are subjected to mucosa. Through inhalation,
nanoparticles are subjected to lung surfactant fluid. Through transdermal routes, nanoparticles are
subjected to sebum.

Given that nanoparticles are currently used in drug delivery systems, the goal of this study was
to compare the effects of surface stabilizing agents, and induced surface charge, on nanoparticle
physiologically relevant transformation, including cellular internalization, agglomeration, and
degradation. We utilize hyperspectral imaging coupled with a battery of analytical techniques
and human hepatocellular carcinoma (HepG2) cells for this evaluation. We transformed three
different AgNPs (50 nm); nanoparticles stabilized with branched polyethyleneimine (bPEI) conferred a
positive surface charge, nanoparticles stabilized with lipoic acid conferred a negative surface charge,
and nanoparticles stabilized with polyethylene glycol (PEG) conferred a neutral surface charge.
Each nanoparticle system was incubated with polar proteins from serum, lipids from surfactant fluid,
and hydrochloric acid from gastric fluid. This work outlines a reproducible methodology that can
be repeated when characterizing nano-enabled drug product transformations after administration.
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These characteristics are translatable to critical quality attributes and can be exploited to develop
complex in vitro, in vivo, or in silico models for nanomedicine and associated risk analyses.

2. Materials and Methods

2.1. Silver Nanoparticles

All nanoparticles used in this study were purchased from NanoComposix (San Diego, CA, USA)
at a concentration of 1 mg/mL. Per manufacturer’s certificate of analysis, the three AgNPs included
(1) branched polyethyleneimine polymer (1 mg/mL) at 25 kDa bound with primary amines to the
silver nanoparticle surface (termed Pos–AgNP), (2) carboxyl lipoic acid (1 mg/mL) covalently bound
with a dithiol to the silver nanoparticle surface (termed Neg–AgNP), and (3) methoxy-polyethylene
glycol-coated silver nanoparticles (1 mg/mL) (termed Neu–AgNP).

2.2. Incubation Scenarios

Aliquots of AgNPs were incubated in three different scenarios to simulate protein adsorption, lipid
interaction, and stomach acid dissolution. For Scenario 1, i.e., protein absorption simulating intravenous
injection, AgNPs were separately incubated in USDA-approved fetal bovine serum (FBS; Gibco, Thermo
Fischer Scientific, Waltham, MA, USA). For Scenario 2, i.e., lipid interaction simulating inhalation
administration into surfactant fluid, AgNPs were incubated with a mixture of ovine cholesterol derived
lipids (Avanti Polar Lipids, Alabaster, AL, USA) and didodecyldimethylammonium bromide surfactant
solution (Sigma-Aldrich, St. Louis, MO, USA). For Scenario 3, i.e., stomach acid incubation simulating
oral administration, AgNPs were incubated in hydrochloric acid supplemented with porcine stomach
enzymes (Thermo Fischer Scientific, Waltham, MA, USA). All nanoparticle simulations were performed
at 37 ◦C after a 24 h post-exposure time period. The concentration of silver in all resultant samples was
0.5 mg/mL, unless otherwise indicated.

2.3. Dynamic Light Scattering

Hydrodynamic diameter, dispersity index, and zeta potential analyses were performed via dynamic
light scattering (DLS) spectroscopy with a Zetasizer Nano ZS spectrometer (Malvern Panalytical,
Malvern, United Kingdom) at 25 ◦C (Supplemental Figure S1). All measurements were performed
in a 1060-folded capillary zeta cell (Malvern Panalytical, Malvern, United Kingdom) at a 1:1000
dilution in ultrapure water (18 Ohms, MilliQ Ultrapure water purification system, GenPure-Thermo
Fischer Scientific, Waltham, MA, USA). Hydrodynamic diameter and dispersity index analyses were
performed with 11 replicates per sample and run in triplicate; zeta potential measurements were
performed with 50 replicates per sample and run in triplicate. Measurements were taken before and
after AgNP transformation.

2.4. Transmission Electron Microscopy

Nanoparticle morphology was assessed by transmission electron microscopy (TEM; JEM-1010,
JEOL Inc., Akishima, Tokyo, Japan). AgNPs were collected at 24 h post-incubation and deposited on
a copper formvar-coated grid (EMS, Hatfield, PA, USA) for 5 min. Once dried, loaded grids were
imaged via TEM with a spot size of 2.0 and an acceleration voltage of 60 kV. ImageJ software was used
for image analyses.

2.5. Hepatocyte Cell Culture

Human hepatocellular carcinoma (HepG2) cells were cultured in Eagle’s minimum essential
medium (EMEM; Gibco, Thermo Fisher Scientific, Waltham, MA, Unites States) supplemented with
10% fetal bovine serum (FBS; Equitech-Bio, Inc. Kerrville, TX, USA) and a 1% penicillin/streptomycin
mixture (MP Biomedical, Solon, OH, USA). Cells were cultured in an air-jacked humidified incubator
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at 37 ◦C with 5% CO2. Once cells were grown to 70% confluency, they were inoculated with a 1 µg/mL
suspension of transformed AgNP systems for 24 h.

2.6. Fluorescence Imaging

Cellular morphology was assessed via fluorescence imaging. HepG2 cells were plated into
chamber slides coated for adherent cells (Nunc, Lab-Tek Chamber Slide, Thermo Scientific, Waltham,
MA, USA) and grown to 70% confluency. Cells were inoculated with a 1 µg/mL suspension of
AgNP systems for 24 h and fixed with the Image-iT Fixation/Permeabilization kit (Thermo Fisher
Scientific, Waltham, MA, USA). Fluorescent dyes included MitoTracker Red CM-H2-XRos (579/599 nm)
to visualize reactive oxygen species, NucBlue LiveReadyProbes (360/430 nm) to visualize the nucleus,
and ActinGreen 488 ReadyProbes (495/518 nm) Reagent (AlexaFluor 488 phalloidin) to visualize the
cytoskeleton. To preserve the slides, ProLong Diamond Antifade Mountant was used. All cell slide
preparation items were purchased from Thermo Fischer (Waltham, MA, USA).

Subsequently, the preserved cells were imaged using a CytoViva® Fluorescent microscope
(Auburn, AL, USA) with fluorescent excitation cubes for DAPI (4′,6-diamidino-2-phenylindole), FITC
(fluorescein isothiocyanate), and TRITC (tetramethylrhodamine 5-isothiocyanate chloride) with a 40X
oil-immersion lens.

2.7. Hyperspectral Imaging

Samples were prepared as stated in Section 2.6. Enhanced darkfield images were acquired using a
40X lens within the CytoViva® Hyperspectral System. Exposure time of 0.25 s was used, with high
spatial resolution and a 2.5 nm spectral resolution. The field of view was selected via positioning from
the fluorescence images. Intensities of each sample were between 2000 and 3500 to ensure sufficient
spectra data. Once images were collected, they were enhanced using the linear 2% function to visualize
the nanoparticles intracellularly. Spectral libraries were created with nanoparticles that were taken up
into cells and spectra were averaged from 30 selected regions of interest (ROI). Data were normalized
against cell and background corrections. Samples were created with nanoparticles before incubation in
physiological scenarios as well as after inoculation to HepG2 cells.

2.8. Inductively Coupled Plasma-Mass Spectrometry

Samples were analyzed for dissolution as a function of time using inductively coupled plasma-mass
spectrometry (ICP-MS) (Supplemental Figure S2). Samples were subjected to simulated incubations
for 1, 24, and 48 h. Silver ions were isolated from the nanoparticles and surrounding solution
through centrifugation. Once centrifuged, an aliquot of the supernatant was collected for acid digestion.
The metal isotope calibration standard (SPEX CertiPrep, Thermo Fischer Scientific, Waltham, MA, USA),
sample aliquots, method blank (consisting of each transformation solution mentioned above), and
an acid blank were placed in digestion tubes and a 1:4 mixture of hydrochloric to nitric acids was
added. A watch glass was placed over top and the digestion was prepared for 2 h at 95 ◦C in a
heat block. Hydrochloric acid, nitric acid, plastic digestion tubes, and plastic watch glasses were
TraceMetalGrade and purchased from Thermo Fischer Scientific (Waltham, MA, USA). After digestion,
samples were filtered (0.2 µm) and diluted with ultrapure water to 2%. An internal standard mix
(Agilent Technologies, Santa Clara, CA, USA) was used for drift correction. All measurements were
acquired on an Agilent ICP-MS 7900 from Agilent Technologies (Santa Clara, CA, USA). Runs were
performed in triplicate with isotopes 107Ag and 109Ag monitored. All data analysis was performed
using MassHunter software (Agilent Technologies, Santa Clara, CA, USA).

2.9. Ultraviolet-Visible Absorption Spectroscopy

Ultraviolet-visible (UV-Vis) absorption spectroscopy was used to assess nanoparticle degradation
over time using a Lambda 35 photospectrometer (Perkin Elmer, Waltham, MA, USA) (Supplemental
Figure S3). Data were analyzed on UV WinLab software (PerkinElmer, Waltham, MA, USA). Ultrapure
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water was used as a blank and dilutant producing a 1:2 dilution of the original sample for analysis. In
a quartz cuvette, scans were obtained from 200 to 800 nm in three separate sessions during each time
point (1, 24, and 48 h) in triplicate.

2.10. Statistical Analyses

To perform statistical analysis, standard deviation and standard error were calculated with Excel
(Microsoft, Redmond, WA, USA). Spectral averaging and normalization were completed with ENVI
software (Cytoviva, Auburn, AL, USA). Spectra were plotted with GraphPad Prism (San Diego,
CA, USA).

3. Results

3.1. Experimental Design

In this study, three different biological fluids, relevant to nanomedicine administration routes, were
produced and used to study potential silver nanoparticle (AgNP) transformations. Incubation of AgNPs
with fetal bovine serum, ovine cholesterol-derived lipids, and simulated gastric fluid are referred to
as Scenario 1, 2, and 3, respectively. Scenario 1 represents nanoparticles administered intravenously
and interactions with serum proteins. Scenario 2 represents nanoparticle inhalation and interactions
with interstitial fluid. Scenario 3 represents oral administration and interactions with stomach acid.
For each scenario, nanoparticle suspensions were incubated for 24 h at 37 ◦C. Figure 1 outlines the
experimental details, inclusive of nanoparticle characterization, incubation parameters, and endpoint
analyses. The branched polyethyleneimine-stabilized silver nanoparticles are termed “Pos–AgNPs”;
the lipoic acid-stabilized silver nanoparticles are termed “Neg–AgNPs”; and the methoxy polyethylene
glycol-stabilized silver nanoparticles are termed “Neu–AgNPs”. A comprehensive physicochemical
characterization was completed prior to transformations to determine concentration and enable
comparisons post-incubation (Supplemental Figures S1–S3).
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Figure 1. The experimental design used in this study. First, positive, negative, and neutral surface
charged AgNPs were suspended in ultrapure water in separate stock suspensions. Second, each of the
AgNP systems was subjected to one of three incubation scenarios for 1, 24, and 48 h. Third, analyses of
transformed nanoparticles were performed using TEM (transmission electron microscopy) and HSI
(hyperspectral imaging), among other techniques.

Simulations of Scenario 1, i.e., nanoparticle interactions with polar biomolecules within the
circulatory system, have been previously performed [30,34–37]. Data show that nanoparticle size,
surface charge, and stabilizing agents influence protein corona formation (Supplemental Figure
S3). Nanoparticle protein corona is the self-assembly of absorbed proteins on the particle surface.
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The nanoparticle surface and size determine the amount, identity, polarity, and arrangement of
the protein corona, while also influencing downstream effects of distribution, metabolism, and
excretion [29,30,34]. Depending on the biomedical application, the formation of a protein corona could
either be efficacious or produce an ineffective biological response [35,36]. Previous studies show that
the protein corona can act as a cloaking shield during targeted drug delivery; a pre-coating of proteins
may reduce the particle–protein interactions in vitro. In contrast, the development of the protein
corona on the surface of the nanomedicine may render the therapeutic agent detrimental by routing
the medicine to undesired targets [37].

Scenario 2 represents interactions between nanoparticles and lung interstitial fluid after inoculation
and incubation; the available information from the published literature indicates that nanoparticle
surfaces can be exploited to promote lipid raft transport across membranes [38,39]. Interactions with
lipids induce changes in surface properties as nanoparticles pass through cytoplasmic, mitochondrial,
or nuclear membranes. Kang et al. (2008a and 2008b) showed that positively charged AgNPs facilitate
stable transport across olefin/paraffin separation membranes [40,41]. However, once internalized by
the cell, the metal-based nanoparticles are likely to be shuttled into lysosomes, where ions dissociate
and induce cellular toxicity. Recent efforts have been aimed at preparing nanoparticle surface
coatings to shuttle active pharmaceutical ingredients into the cytoplasmic membrane and avoid
cellular internalization. Identifying the surface charge and coating that partially interacts with lipid
membranes while avoiding intracellular acidification aids in reducing adverse effects of nano-enabled
drug carriers [42].

Scenario 3 represents ingestion and digestion of orally administered nanoparticles. Most studies
focus on AgNPs used in food products [43]. Cueva et al. (2019) showed that nanoparticles in
simulated digestion fluid are structurally different post-digestion but do not alter the microbiota
viability [44]. Other studies have shown that citrate-coated nanoparticle aggregation is pH-dependent in
the gastrointestinal tract. At pH of 2, nanoparticles form > 100 nm aggregates; at pH of 5, nanoparticles
aggregate less and often degrade [45].

3.2. Engineered Nanoparticles for Nano-Enabled Drug Products

To understand the potential transformations of AgNPs under the three different scenarios used in
this study, physicochemical characterization of the nanoparticles was performed before incubation.
Figure 2 highlights key characteristics of the pre-incubated nanoparticles. In suspension, Pos–AgNP
was positively charged (+ 73 mV), as measured by zeta potential, whereas Neg–AgNP and Neu–AgNP
were both negatively charged, with zeta potential values of −57 and −23 mV, respectively. It is generally
regarded that nanoparticle surface charge, as measured by zeta potential, greater than + 30 mV or
less than −30 mV indicates a stable nanoparticle suspension [46]. As seen in Supplemental Figure
S1, the primary factor that influenced the dissolution of the nanoparticles was incubation media,
not surface charge. The neutrally charged silver nanoparticles have steric stabilization mechanisms,
which is not as strong as the other two samples, which have electrostatic and electrosteric mechanisms,
thus increasing the potential for complete dissolution.

Neu–AgNP, with a zeta potential measurement of −23 mV, indicates an unstable suspension.
This observation is confirmed via transmission electron microscopy (TEM), where small nanoparticle
aggregates are clearly present. Pos–AgNP and Neg–AgNP zeta potential values indicate stable
suspensions. TEM analyses of pre-incubated Pos–AgNPs show slight agglomeration. Agglomeration
could be due to drying effects produced during sample preparation [47,48]. All three pre-incubated
AgNP samples are spherical in shape and ~50 nm in diameter.

Nanoparticles (and nanoparticle agglomerates) below 20 nm in diameter are rapidly cleared by
renal excretion. Nanoparticles (and nanoparticle agglomerates) larger than 200 nm in diameter are
easily cleared by the reticuloendothelial system [49,50]. For these reasons, among others, nanomedicine
research and development efforts have favored ~50 nm nanoparticle diameters to prolong systemic
circulation and prevent unintended elimination.
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measured in-house or provided by nanoparticle manufacturer.

3.3. Hyperspectral Imaging for Intracellular Agglomeration Analysis

Figure 3 shows data from enhanced darkfield hyperspectral imaging (HSI) for HepG2 cells
exposed to nanoparticles. Darkfield images were collected using the Environment for Visualizing
Images (ENVI) software. Corrections were performed to eliminate interferences from cell membranes,
background, and lamp spectrum. A spectral library was created and only included the nanoparticles
that were internalized within cells; nanoparticles on the cell surface or in the background were excluded.
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Regions of interest (ROIs) were obtained over an averaged spectrum of >25 nanoparticles per sample.
Data were normalized and compared to pre-incubated AgNPs, where the averaged spectra are plotted
in Figure 3.
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for 24 h and AgNP-exposed HepG2 cells for an additional 24 h. (A) Pos–AgNPs, (B) Neg–AgNPs,
and (C) Neu–AgNPs incubated in serum. (D) Pos–AgNPs, (E) Neg–AgNPs, and (F) Neu–AgNPs
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λmax (blue or red font).

Pos–AgNPs (Figure 3A,G) showed a spectral shift to the right (i.e., an increase in wavelength),
while the Neg–AgNPs (Figure 3B,H) showed a spectral shift to the left (i.e., a decrease in
wavelength). Neu–AgNPs showed differential spectral shifts depending on the incubation scenario.
Regarding Scenario 1, a blue shift was observed (Figure 3C), in contrast to Scenario 3, where a
red shift was observed (Figure 3I). After subjection to Scenario 2, AgNPs exhibited no shift in
hyperspectral analysis (Figure 3F). In fact, none of the AgNPs subjected to the lipid surfactant simulation
(i.e., Scenario 2) showed a shift in hyperspectral analysis (Figure 3D–F). Interestingly, Scenario 2 did
not have any effect on nanoparticle internalization, probably due to severe agglomeration (>500 nm).

Longer wavelengths of detected light (i.e., red shifts) observed in HSI are associated with an
increase in nanoparticle size or, in this case, an increase in agglomeration. Shorter wavelengths
(i.e., blue shifts) are indicative of a decrease in nanoparticle size, such as dissolution or de-aggregation,
or partial degradation [51,52]. We show that Pos–AgNPs agglomerate intracellularly, whereas
Neg–AgNPs and Neu–AgNPs tend to produce mixtures of single nanoparticles and small agglomerated
nanoparticles independent of the scenario. The transformation mechanism could involve the incomplete
degradation of the AgNP surface stabilizing agent or the partial dissolution of silver cations (Ag+)
from the nanoparticle surface. Ion dissolution was confirmed with inductively coupled plasma-mass
spectrometry (ICP-MS) analyses (Supplemental Figure S2). Either transformation mechanism could
produce an increase in reactive oxygen species (ROS), oxidative stress, or phosphorylation of proteins,
lipids, and enzymes [53]. AgNP surface charge and coating play roles in defining safety and efficacy
critical attributes [2,3].
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3.4. Biotransformed Silver Nanoparticles Used in Drug Products

Figure 4 shows AgNPs subjected to Scenario 1 (i.e., serum incubation). Dispersity index
(DI, a measure of polydispersity within the sample) was minimal (0.110, 0.335, and 0.154 for Pos–AgNPs,
Neg–AgNPs, and Neu–AgNPs, respectively). However, the hydrodynamic diameter was large
(102.8, 313.1, and 88.6 nm for Pos–AgNPs, Neg–AgNPs, and Neu–AgNPs, respectively). These data
suggest that nanoparticles transformed into severely agglomerated entities. Agglomeration, in this
scenario, is due to an abundance of proteins adsorbed onto the surface of each AgNP, subsequently
creating a protein corona hindering nanoparticle stability by masking the stabilizing agent, as indicated
by the similar zeta potential measurements (−25.2, −20.4, and −20.2 mV for Pos–AgNPs, Neg–AgNPs,
and Neu–AgNPs, respectively). Neg–AgNPs had the largest change in DI, hydrodynamic diameter
(HDD), and surface charge (as measured by zeta potential) compared to the Pos–AgNP and Neu–AgNP
systems. This comparison may be the result of partial agglomeration and incomplete protein corona
formation seen with TEM imaging (Figure 4C–E).
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Figure 4. AgNP transformation after incubation in serum. (A) Conceptual model of transformation
mechanisms. (B) Dispersity index (unitless), hydrodynamic diameter (nm), and zeta potential (mV)
measurements of each particle type after simulated incubation. TEM of (C) Pos–AgNPs, (D) Neg–AgNPs,
and (E) Neu–AgNPs after simulated incubation. Fluorescence microscopy of HepG2 cells after 24 h
exposure to post-incubated (F) Pos–AgNPs, (G) Neg–AgNPs, and (H) Neu–AgNPs. Scale bars in
(C–E) represent 50 nm. Stains in (F–H) include DAPI (blue), F-actin (green), and MitoTracker (red).

All three AgNP systems underwent a significant biotransformation under Scenario 1.
Agglomeration in this scenario occurs both extracellularly, i.e., when nanoparticles first interact with
serum proteins, as well as intracellularly as indicated by hyperspectral imaging. Human hepatocellular
carcinoma cells (HepG2) were used for the intracellular analyses. When HepG2 cells were exposed to
AgNP subjected to Scenario 1, no significant change in cell morphology or biomarker expression was
observed (Figure 4F–H). This indicates that nanoparticle agglomeration may not induce unintended
cellular effects but could deactivate any therapeutic activity presented by the nanoparticle carrier
administered intravenously.

Figure 5 shows AgNPs subjected to Scenario 2 (i.e., lipid surfactant incubation). In this scenario,
Neg–AgNPs changed the most in DI, HDD, and zeta potential measurements compared to the
Pos–AgNP and Neu–AgNP systems. The Pos–AgNP and Neu–AgNP systems became unstable,
as indicated by a change in zeta potential from their pre-incubated charges to unstable values of
−25.43 ± 0.59 mV and −20.73 ± 1.06 mV, respectively. Neg–AgNPs, in contrast to the two other
nanoparticles, had a stable zeta potential measurement at −31.40 ± 0.70mV. The Neg–AgNPs also
agglomerated significantly, with an HDD of 461.63 ± 61.57 nm, which is three times and seven times
greater than the size of either Pos–AgNP or Neu–AgNP systems. Neu–AgNP exhibited a lower DI
and only changed −7 nm in HDD (i.e., 59.74 ± 0.64 nm), indicating subtle nanoparticle transformation.
When examining the effects of Scenario 2 transformed AgNP systems on the HepG2 cells, Neg–AgNPs
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induced a significant amount of oxidative stress in the cells when compared to either Pos–AgNP
or Neu–AgNP systems (Figure 5F–H). However, cytoskeletal degradation was observed in HepG2
cells exposed to Pos–AgNP in this scenario (Figure 5F). No change was reported for the Neu–AgNP
sample in the HepG2 system. Nanoparticles release ions in solution which may interact with the
cell surface and disrupt actin networks. Some nanoparticles disrupted the actin network more than
others due to the method of diffusion into the cell. Cytoskeleton heterogeneity may play a role in
nanoparticle uptake.
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Figure 6 shows AgNPs subjected to Scenario 3 (i.e., stomach acid incubation). Like Scenario
1, the Pos–AgNP, Neg–AgNP, and Neu–AgNP systems became unstable, as indicated by a change
in zeta potential from their pre-incubated charges to unstable values of –16.63, –28.07, and –17.23,
respectively. In this scenario, Neg–AgNPs and Pos–AgNPs agglomerated, whereas Neu–AgNPs
decreased in HDD. This observation could be due to the increased likelihood of charged particles
interacting with surrounding biomolecules and the high ionic concentration present in the scenario.
In short, Neu–AgNPs simply degraded in the acidic environment. When examining the effects of
Scenario 3 transformed AgNP systems on the HepG2 cells, Pos–AgNPs induced a significant amount
of oxidative stress and cytoskeleton damage in the cells when compared to either Neg–AgNP or
Neu–AgNP systems (Figure 6F–H).

Taken together, Pos–AgNP, Neg–AgNP, and Neu–AgNP systems transformed under all scenario
conditions. The transformation products can be related to the pre-incubation zeta potential
measurements. These results show that neutrally charged nanoparticles do not react with polar
biomolecules or high ionic content, causing little to no particle transformation. Not only are
strongly surface-charged nanoparticles able to enter cells more readily, but they also interact
with biomolecular constituents in the complex microenvironment and accumulate intracellularly
differently [54]. Thus, cellular effects induced by these particle types are likely to be caused by the
increased oxidative stress, which is consistent with what has been extensively studied with AgNP
behavior in the environment [55]. Neutrally charged nanoparticle surfaces readily dissolve in acidic
conditions. Therefore, effects induced by these particle types are more likely to be caused by metal ion
dissociation and subsequent ionic interferences with normal cellular processes.
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3.5. Negatively-Charged Silver Nanoparticles Influence Nanoparticle Biotransformation

Neg–AgNPs subjected to incubation in all three scenarios used in this study produced significantly
transformed products in terms of a large shift in dispersity index, increased hydrodynamic diameter,
weakened zeta potential, severe agglomeration, and induced cytoskeletal damage. Neu–AgNPs were
not transformed as much as Neg–AgNPs due to the neutral surface being ineffective at interacting
with the surrounding environment.

Pos–AgNP transformations were more noticeable than the Neu–AgNP results but were still minor
when compared to those of Neg–AgNPs. Evidence of this was observed in the blue shift in Neg–AgNPs
hyperspectral imaging. A blue shift is indicative of the nanoparticle de-aggregation or degradation,
indicating that nano-enabled drug products with positively charged surfaces have more surface area
available to interact with the complex mixtures. In comparison to the Pos–AgNPs had red shifts,
indicating severe agglomeration, a decrease in surface area, and decrease in biomolecule interactions.
The Neu–AgNPs having a slight red shift in Scenario 1, no shift in Scenario 2, and slight blue shift
in Scenario 3 is indicative of neutrality and these particle transformations are largely influenced by
the surrounding environment. These results indicate that there is a charge-dependent nanoparticle
biotransformation mechanism at play. Agglomeration, cellular internalization, and degradation
transformations of nano-enabled drug products may increase efficacy by transporting through the
surrounding environment easily. Alternatively, transformation products may decrease effectiveness by
modifying flux between biological compartments. Nanoparticle surface stabilizing agents can impact
the therapeutic efficacy of nano-enabled drug products by not only altering stability but also dictating
transformation after administration. The mechanisms of transformations observed in this study are
summarized in Figure 7.
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4. Conclusions

In summary, we studied three uniquely stabilized silver nanoparticles, each with a different surface
charge and subjected to three separate physiologically relevant incubation scenarios. The surface charges
included positive (conferred by bPEI), negative (conferred by lipoic acid), and neutral (conferred by PEG).
The incubation scenarios included serum which represented intravenous administration, lipid surfactant
fluid representing inhalation administration, and stomach acid representing oral administration. It
is clear that AgNP system transformation products after subjection to each incubation scenario are
strikingly different from their pre-incubated engineered structures. Changes in nanoparticle size and
agglomeration (measured by hydrodynamic diameter), surface charge (measured by zeta potential),
and agglomeration (measured by hyperspectral imaging and transmission electron microscopy) are
evident and ought to be considered in nanomedicine research and development. In this study, we
showed that the surface charge plays a substantial role in predicting agglomeration and intercellular
uptake. A one size fits all characterization approach for nan-enabled drug products is not sufficient;
multiple physicochemical properties are translatable to critical quality attributes.
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