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Abstract: Due to the limited availability of agricultural land, pH sensing is becoming more and more
important these days to produce efficient agricultural products. Therefore, to fabricate eco-friendly
and disposable sensors, the black carbon, which is called biochar, is formed by irradiation of a UV
pulsed laser having a wavelength of 355 nm onto wood and applying the resulting material as a pH
sensor. The surfaces of three types of wood (beech, cork oak, and ash) were converted to the graphitic
structure after UV laser irradiation; their morphologies were investigated. In addition, since the
content of lignin, an organic polymer, is different for each wood, optimal laser irradiation conditions
(laser fluence) needed to form these woods into pH sensors were considered. Depending on the
degree of oil-like material generated after laser irradiation, a disposable pH sensor that can be used
from one to three times is fabricated; due to the environmental characteristics of wood and biochar,
the sensor shows high availability in that it can be easily discarded after use on agricultural land.
After that, it can be used as filter in soil. Our wood-based pH sensor sensitively measures sequential
changes from pH 4 to pH 10 and shows a very linear change of 4R/R, indicating its potential for use
in agriculture.
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1. Introduction

Recently, studies on fabricating graphitic structure by irradiating a laser under specific conditions
on commercial polyimide films (PI, Kapton®) have been actively published [1–3]. Many papers
have been published delineating the use of the graphitic structure, fabricated by irradiating a
laser on polyimide, as platforms for supercapacitors, physical sensors, and humidity sensors [4–7].
We previously reported a strain sensor in which electrical changes occur with strain induced by
irradiating polyimide (Kapton®, HN) with a 355 nm ultraviolet pulsed laser. Furthermore, in recent
years, graphitic materials derived from organic polymers, such as cloth, paper, potato, coconut,
cork, and wood have been actively reported [2,8]. Compared to previously discovered polymer
precursors, these organic polymers are renewable, inexpensive, easily found around us, biodegradable,
and eco-friendly. Above all, it is important to form a flat surface so as to minimize laser focus changes
on the non-uniform surfaces [2]. In order to irradiate the laser onto a flat sample surface, among various
organic polymers, we conducted an experiment using wood. A renewable resource, wood is used
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even today as an indoor building material and furniture material due to its aesthetic patterns, ease of
processing in various forms, and excellent mechanical properties. Moreover, wood is an excellent
source for the development of electrochemical devices and microelectromechanical systems [9,10].
In this paper, we report the fabrication of an graphitic pattern, which is called biochar, with high
electrical properties by scribing a 355 nm ultraviolet pulsed laser onto three different types of wood
(beech, cork oak, and ash) [11]. The biochar generated from the pyrolysis of biomass not only improves
soil quality and reduces greenhouse gas emissions from the soil but also reduces the toxicity of metals
in the soil and helps the more efficient use of phosphorus and potassium [12–14]. Here, we report on a
sensor made with biochar fabricated on a wood surface for application to the smart farm industry.
As available farmland cannot be increased, harvesting crops effectively within a limited area is the
biggest issue in the field of agriculture [15]. Nitrogen (N), phosphorus (P), and potassium (K) are
the main macronutrients, the three most important nutrients for plants [15–18]. Inadequate content
of nitrogen (N), phosphorus (P), and potassium (K) reduces crop quality and quantity. Nitrogen
is important in the amino acids that are the basis of proteins [19–21]. Phosphorus is an important
component of the complex nucleic acid structure of plants and plays an important role in cell division
and the formation of new tissues [21]. Phosphorus is associated with plant tolerance, root growth,
and complex energy exchange. Potassium is the most important nutrient for crop quality [19–21].
High content of these three nutrients enhances plant defenses and improves the shape, color, taste,
and shelf life of fruits and vegetables [14,20]. Another pivotal point is that agriculture is the pH
concentration of the nutrient soil [21]. When the soil becomes acidic, iron (Fe) and aluminum (Al)
combine with phosphoric acid and the resulting iron phosphate and aluminum phosphate cannot be
absorbed by plants; nitrogen become nitrous acid and evaporates into the air. By monitoring the pH
level of the soil, crop productivity can be improved. Consequently, to measure pH level, we used an
biochar platform to fabricate a disposable organic eco-friendly sensor. More specifically, we report an
eco-friendly organic polymer-based pH sensor and suggest its suitability for use in smart farms.

2. Materials and Methods

2.1. UV Pulsed 355 nm Laser System

In this study, a graphitic pattern was fabricated by irradiation of a 355 nm UV pulsed laser
(AONano 355-5-30-V from Advanced Optowave, Ronkonkoma, NA, USA). The 355 nm UV pulsed
laser system we used is shown in Figure 1. Among lasers of UV wavelength, the 355 nm nanosecond
laser has very short wavelength characteristics and high power [22,23]. UV laser micromachining
is a very attractive process for biodegradable polymeric materials because the laser can minimize
thermal effects transmitted to the processed material as the wavelength of the beam becomes shorter,
greatly reducing the thermal damage to unprocessed areas [22,24,25]. As a result, such lasers are widely
used for industrial cutting and surface modification, offering stable operation and high productivity
and utilization of work surfaces.

The 355 nm UV pulsed laser is a high-powered laser of ultraviolet wavelength; it has the advantage
of stability when used for micro-processing of polymers and is widely used in many industry fields.
The laser specifications are shown in Table 1.

Table 1. UV pulsed 355 nm laser specifications.

Parameter Value Unit

Wavelength 355 nm
Average power ~2.5 Watt

Pulse length 25 nsec
Repetition rate 30 kHz
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2.2. Lignin in Wood

As shown in the Figure 2, wood has an organic polymer called lignin, which forms an
important structural material that supports tissues in certain algae and vascular plants. Lignin is a
precursor of p-coumaryl alcohol (H), coniferyl alcohol (G), and sinapyl alcohol (s), forming a complex
three-dimensional polymer by β-O-4 or carbon–carbon bonding [26–28].
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and (c) sinapyl alcohol.

Under certain conditions, these lignin-containing precursors can be converted to graphitic structure
by laser irradiation [2,12]. In addition, because the conversion to biochar is determined by the lignin
content of the wood, lignin, which is a heterogeneous aromatic polymer, is a decisive factor in the
manufacturing of biochar by irradiating wood with a laser [12]. We utilized a direct laser writing (DLW)
method to irradiate a 355 nm ultraviolet pulsed laser on wood samples with different lignin contents,
including ash, with low lignin content of 7.2%, cork oak (23.6%), and beech (25.5%). A direct laser
writing (DLW) method using a Galvano scanner (hurrySCAN III 14, SCANLAB, Pucheim, Germany)
can quickly produce biochar in a single step. Figure 3 depicts the scheme for the fabrication of biochar
on wood. The resulting graphitic pattern on the wood surface can be easily and simply patterned into
various shapes by computer design. According to previous structural studies, the higher the lignin
content is in the wood containing lignocellulose, the better the synthesis of high-quality graphite or
graphitic layers [2,12,29].
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2.3. Fabricaton of Biochar

Figure 3 shows that the surface has been successfully converted to biochar even though laser
irradiation was performed under ambient conditions without the use of an inert gases, such as argon.
This biochar fabricating process simply overcomes the disadvantages of the conventional graphitic layer
manufacturing process and the demerits of wood-based graphitic material, which had to be irradiated
with a laser under inert gas conditions [12]. The fabricated biochar on the wood surface was patterned
by computer design and produced in the desired shape using a Galvano scanner. Each of the wood
samples used in the experiment was found to form a graphitic pattern with optimal electrical properties,
such as low sheet resistance, high capacity, and good I-V characteristics, when laser irradiation was
performed at specific laser fluences of 20.37 mJ/cm2 (beech), 14.12 mJ/cm2 (cork oak), and 23.14 mJ/cm2

(ash). The dimension of the carbonized area is 4 × 10 mm, which was irradiated with a scan speed
of 40 mm/s. Certain threshold laser fluence was required to make each wood convert biochar (beech
wood: 9.28 mJ/cm2, cork oak wood: 4.34 mJ/cm2, and ash wood: 10.99 mJ/cm2). In addition, from these
threshold laser fluence, the higher the pulse energy density, the higher the degree of carbonization.

2.4. Appying Organic Polymer-Based Sensor to Agriculture

Our organic polymer-based sensor was fabricated simply by using silver paste to connect electrodes
for pH sensing and electrolyte concentration sensing. Unlike the annealing process and the complex
manufacturing process that conventional graphitic material-based sensors have to undergo, our sensor,
which has a quick and simple fabricating process, has been used to conduct various types of sensing
tests according to the type of wood. Depending on the amount of oil-like material produced by
irradiating the UV laser on the wood, the numbers of iterations of pH sensing and electrolyte sensing
were set as follows: beech: 2 times/cork oak: 3 times/ash: 1 time). These oil-like substances called
wood tar extracted from the formed due to wood pyrolysis. As can be seen in Figure 4, the pH buffer
was carefully dropped dropwise onto the sensor and had a stabilization time of about 1 min. After that,
the pattern functions as a pH sensor based on the chemiresistor principle. Furthermore, the change
of electrical properties of our sensor was measured with an LCR meter (LCR meter 4410, Keithley
Tektronics, Beaverton, OR, USA).
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3. Results and Discussion

3.1. Graphitic Pattern Formed on Wood

Here, our biochar, fabricated using simply the photo-thermal and -chemical effects of wood
generated by irradiation of a 355 nm ultraviolet pulsed laser, easily overcomes the demerits of high
cost and high manufacturing time necessary in conventional graphene manufacturing. Figure 3
demonstrates that our graphitic logo pattern can be plotted by a computer program and freely scanned
on the wood samples through a Galvano scanner.

3.1.1. Morphology

The morphology of the graphitic pattern fabricated simply by laser irradiation of the wood
samples under ambient conditions without inert atmosphere has been observed by scanning electron
microscopy (SEM, TESCAN (VEGA II LSU), Brno, Czech Republic). In addition, SEM images of
pristine woods are shown in Figure S1.

Figure 5a–f shows how the surfaces of beech, cork oak, and ash wood change with the given
values of laser fluence. A quantity of oil-like material is shown to be generated in descending order of
cork oak, beech, and ash wood; this oil clearly controls the amount of moisture absorbed by the wood
and strongly influences the test of dropping liquid onto the surface. Figure 5 shows that the surface of
each wood sample has a porous structure after laser irradiation at a specific laser fluence; each laser
fluence level was applied to the wood samples through a change in scanning speed. Until the laser is
applied at the optimal laser fluence, as the laser fluence increases, the surface of the wood becomes
more and more porous and hierarchical. Moreover, laser irradiation induces material carbonization
making the substrate conductive. The content of conductive carbon sp2 species could be explored
by analyzing C KLL Auger spectra or analyzing Raman spectrum [30,31]. As shown in Figure 6,
chemical structural analysis of our organic polymer-based sensor was investigated through Raman
spectroscopy analysis. Until the optimal laser fluence value to convert biochar on the surface of each
wood sample was more and more distinct, Raman signals were observed as the laser fluence increased
(Figure 6a–c). The D peak at ~1350 cm−1 is associated with a disorder in sp2 hybridized core. In our
materials, it has great intensity because the structure has more defects/replacement points. The G peak
at ~1580 cm−1 is produced by stretching in sp2 system and, therefore, is essential for graphite-related
materials. The 2D peak (~2700 cm−1), which is called the overtone mode of the D mode, is known to
enhance the signal due to the double resonance phenomenon, making it is easy to confirm the layer
thickness in the graphene and graphite crystals. In addition, in general, a material in which n-layers
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of graphene are laminated has a peak intensity proportional to the intensity thickness of the G peak,
and the line shape of the 2D peak also changes according to the thickness.
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Figure 6. Changes in characteristics of beech, cork oak, and ash wood according to laser fluence;
(a–c) Raman spectrum of three wood surfaces, (d) full-width-at-half-maximum (FWHM) and I2D/IG
ratio of G peak according to laser intensity.

For the analysis of the graphene structure, the full-width-at-half-maximum (FWHM) of the G peak
and the I2D/IG ratio were investigated. As the laser fluence increases, the I2D/IG ratio increases and
the FWHM of the G peak increases, which means that stacking fewer graphitic layers and maximized
crystalline size of graphitic materials. This is attributed to the fact that this phenomenon results from
the higher quality graphene-like material produced. In addition, the more lignin-rich wood (in the
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order of beech, cork oak, ash), the more pronounced the peaks are in the Raman spectrum. These results
indicate that the surface of the wood can be successfully converted to biochar with a 355 nm UV pulsed
laser, even without specific inert gas conditions. The comparison of the molecular structure of the
biochars generated and each wood before laser irradiation was analyzed by Fourier transform infrared
spectrometer (FT-4100 JASCO, Easton, MD, USA). As shown in Figure S2, the peak at 3413 cm−1 is
characterized by the –OH hydrogen bond in wood, the peak at −2927 cm−1 is assigned to the CH3

(Methyl) and CH2-(methylene) groups in the wood, and 1217 cm−1 is assigned to interrogator ring
breathing using CO and C–O stretching [32]. Notable change here is peak at 2344 cm−1, which indicates
formation of CO2 [33] and more graphitic structure is formed by 355 nm pulsed laser irradiation.

Thermogravimetric analysis (TGA) results suggest that the weight loss at around 100 ◦C is caused
by evaporation of moisture on the surface and inside the wood (Figure 7a). The large weight loss in
the temperature range of 240–400 ◦C results from the decomposition of aliphatic and aromatic carbon
at ~240 ◦C and ~320 ◦C, respectively [34]. Lignin is composed of a high-molecular-weight substance
mainly containing an aromatic polymer substance composed of strongly crosslinked constituent units.
Therefore, it requires a relatively high thermal decomposition temperature compared to cellulose
and hemicellulose. Figure 7a shows that beech wood (25.5%) with high lignin content, has higher
thermal stability than cork oak wood (23.6%) and ash wood (7.2%). Figure 7b–d shows the change
in thermal stability according to the laser fluence. As can be seen in Figure 7b–d, thermogravimetric
analysis (TGA) results in air suggest that increasing the laser fluence enhances the thermal stability of
beech, cork oak, and ash wood. The BET surface area of beech wood was measured by N2 adsorption
and desorption technique based on the Barrett–Joyner–Halenda model (Figure 8a). Figure 8b shows
the calculated pore size distributions. N2 adsorption-based surface area analysis yielded a value of
132.968 m2/g of BET surface area; average pore radius is 12.18 Å.
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3.1.2. pH Sensor

pH measurement is necessary for bio-sensing, environmental monitoring, clinical diagnosis,
water quality measurement, and soil measurement [35–41]. Nan Lei et al. reported the fabrication
and characterization of a simple gate-free graphene device as a pH sensor. It has been shown that
the resistance of the device decreases linearly (in the pH range of 4–10) as the pH value increases in
the surrounding liquid environment [42]. Rinky Sha et al. demonstrated a Gr-PANi composite-based
amperometry pH sensor. The as-fabricated pH sensor exhibits short response time and excellent
sensitivity of −50.14 µA pH−1 cm−2 in the range of pH 1–5 and 139.2 µA pH−1 cm−2 in the range
of pH 7–11 [43]. These conventional pH sensors include a post-treatment annealing process that
is complex, time-consuming, and expensive. We report very sensitive, eco-friendly, disposable,
and low-cost manufacturable sensors that show different electrical resistance levels depending on the
pH value. Figure 5 shows that the surface of each wood sample has a porous structure after laser
irradiation at a specific laser fluence; each laser fluence was applied to the wood by changing the
scanning speed. The analysis system was connected to the sensor, and the change in electrical resistance
was measured in real time by an LCR meter. After using a nanopipette to carefully drop the pH buffer
into the organic graphitic pattern, and after stabilization time of about 1 min, various concentration pH
measurement tests were performed, with results shown in Figure 9.

When irradiated with a laser, beech and ash wood have relatively less oil-like materials than
does cork oak wood, and the pore size of their graphitic patterns is large; so, when the pH buffer
was dropped, sensors made from beech and ash wood did not recover to their original states after
1–2 experiments. As shown in Figure 9a, the wood-based sensors formed on the surface of the
beech wood exhibited a linear change in electrical properties in the range of pH 4 to 10. Likewise,
other wood-based pH sensors (cork oak wood and ash wood) can detect the change of the pH value
sensitively as well (Figure 9b–c). A linear relationship is observed between the standard resistance and
the pH value from 4 to 10. As shown in Figure 9d, when the pH value increases, the resistance of the
sensor increases. The normalized resistance, defined as Equation (1)

∆R
R

=
R−Rmin

Rmax −Rmin
(1)

is used to evaluate the performance of wood-based sensors, where ∆R, R, Rmax and Rmin are the
real-time sensor resistance relative to its lowest value, the range of resistance in the entire measurement
scheme, the highest resistance, and the lowest resistance, respectively. Real-time resistance changes at
different pH values demonstrate that the sensor is highly sensitive to pH changes. All curves show an
immediate reaction after the buffer solution covers the wood-based sensor.
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electrical properties of beech wood-based and changes in electrical resistance of each sensor according
to pH value.

Figure 10b shows the three different pH buffer drops on cork oak wood. The first pH 4 buffer drop
was carefully placed on top of cork oak wood sample. Then, after a stabilization time of 1 min, pH 7 and
pH 10 buffers were sequentially dropped onto the sample. A decrement of the electrical resistance
was observed when the buffer was changed to pH 4, pH 7, and pH 10. The sensor made of cork oak
wood was valid until the third experiment when the pH buffer was dropped. Ash wood produced
relatively smaller amounts of oil-like substances, which is called wood tar, than did beech or cork oak,
so it did not recover to its original state after one experiment (Figure 10a). When a drop of pH 7 buffer
was placed on top of the ash wood, after dropping of the pH 4 buffer, the resistance rapidly decreased.
Wood-based sensors have superb responses to pH changes, providing high potential for real-time
sensing applications. We report very sensitive, eco-friendly, disposable, low-cost process pH sensors
that are simple to manufacture. The pH sensing principle can be explained by the adsorbed ions on the
inner Helmholtz plane. The adsorption of H+ or OH− at the inner Helmholtz plane is non-Faradaic,
and so the charges cannot transmit across the graphene interface. Both hydroxyl ions (OH−) and
hydroxonium (H3O+) ions are adsorbed on the graphene surface, according to the configuration of
the electrical double layer of graphene. As the concentration of H+ ions is higher in the acidic region,
H+ ions are adsorbed at the inner Helmholtz plane, which attracts electrons and becomes n-doped.
Likewise, in the alkaline region, the concentration of OH− ions is higher; H+ ions are adsorbed at the
inner Helmholtz plane, which attracts holes and becomes p-doped.
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4. Conclusions

This paper reports on a study of the characteristics of biochar on the surface of three kinds of wood
converted by irradiation with a 355 nm UV pulsed laser according to the content of lignin, the organic
polymer of wood. An application of this process for the formation of pH sensors is detailed. The main
motivation for this experiment was that there is no efficient method of raising crops in limited farmland
in the modern agricultural environment. The direct laser writing (DLW) technique using a 355 nm
UV pulsed laser can produce biochar simple in a single step, enabling application of the material as
a pH sensor. This process makes it possible to manufacture large numbers of sensors inexpensively
and quickly. The graphitic pattern can be fabricated within very short time (beech wood- and cork
oak wood-based sensor: ~280 s and ash wood-based sensor: ~70 s). The biggest advantage of this
pH sensor is that it is wood-based, making it environmentally friendly and disposable. After that
the sensor can be utilized as biochar in the soil so that it not only improves soil quality and reduces
greenhouse gas emissions from the soil, but also reduces the toxicity of metals in the soil and helps the
more efficient use of phosphorus and potassium. After laser irradiation, quantities of oil-like materials,
which are called wood tar, were formed descending order of cork oak, beech, and ash wood; the larger
the quantity of this material, the smaller the pore size, and the more difficult it is for moisture to
penetrate. In addition, our sensor showed a very linear 4R/R, which indicates the good sensitivity of
the pH sensor, making it possible to measure the change of pH value in real time.
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Figure S1: SEM images of pristine wood surfaces, Figure S2: Fourier transform infrared spectroscopy of three
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