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Abstract: A disadvantage of the commercial Raney Ni is that the Ni active sites are prone to leaching
and deactivation in the hydrogenation of xylose to xylitol. To explore a more stable and robust catalyst,
activated carbon (AC) supported Ni-Re bimetallic catalysts (Ni-Re/AC) were synthesized and used
to hydrogenate xylose and hemicellulosic hydrolysate into xylitol under mild reaction conditions.
In contrast to the monometallic Ni/AC catalyst, bimetallic Ni-Re/AC exhibited better catalytic
performances in the hydrogenation of xylose to xylitol. A high xylitol yield up to 98% was achieved
over Ni-Re/AC (nNi:nRe = 1:1) at 140 ◦C for 1 h. In addition, these bimetallic catalysts also had superior
hydrogenation performance in the conversion of the hydrolysate derived from the hydrolysis reaction
of the hemicellulose of Camellia oleifera shell. The characterization results showed that the addition of
Re led to the formation of Ni-Re alloy and improved the dispersion of Ni active sites. The recycled
experimental results revealed that the monometallic Ni and the bimetallic Ni-Re catalysts tended to
deactivate, but the introduction of Re was able to remarkably improve the catalyst’s stability and
reduce the Ni leaching during the hydrogenation reaction.
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1. Introduction

The depletion of fossil resources has attracted considerable interest in the valorization of renewable
biomass materials for the production of valuable chemicals. The catalytic conversion of naturally
occurring sugars, such as xylose and glucose, into their corresponding sugar alcohols is an attractive
pathway for the production of value added chemicals, such as sweeteners and pharmaceutical
intermediates [1–11]. Xylitol is an important artificial sweetener and has been widely used in various
fields [12–16]. At present, the production of xylitol proceeds mainly through the reduction reaction
of xylose derived from the hydrolysis of corncob [17–22]. Camellia oleifera is a woody oil crop that
is distributed in the southern provinces of China [23–26]. The seeds of camellia oleifera are used to
produce an edible oil, which contains plentiful vitamins and unsaturated fatty acids and is comparable
to the well known olive oil. However, Camellia oleifera shell, generated from the process residues, is
usually neglected and still not used efficiently. More than three million tons of Camellia oleifera shell are
annually produced as agricultural waste, and most of this is burned to provide thermal power [25].
Camellia oleifera shell is a lignocellulosic biomass that is composed of a high content of hemicellulose
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and lignin and a low content of cellulose. Therefore, Camellia oleifera shell is considered as an alternative
raw material to corncob for the production of xylose and xylitol due to its high hemicellulose content.

The catalytic hydrogenation of xylose into xylitol is traditionally performed in a three phase slurry
batch reactor on Raney Ni catalysts (Scheme 1) [12,27]. The Raney Ni catalyst exhibited high activity and
excellent xylitol yield with corn stover hydrolysate as a starting material [28]. The main advantages of
Raney Ni catalyst were its low price, good activity, and high selectivity. However, a major disadvantage
of Raney Ni catalysts is their easy deactivation due to Ni metal leaching and the deposition of the
reaction byproducts on the surface active Ni sites [14,27,29,30]. Moreover, Ni ions leached into xylitol
solution must be removed when xylitol is used in the food industry or as medicine, which leads to an
increase in the production cost of xylitol because of expensive purification steps. In recent years, much
effort has been undertaken to develop more stable and recyclable catalysts for the hydrogenation of
xylose into xylitol [28,31–33]. Pecchi et al. successfully prepared Ni containing perovskite-type oxides,
such as La1−xCexAl0.18Ni0.82O3 (x = 0.0, 0.1, 0.5, 0.7) and Nd1−xCexAl0.162Ni0.838O3 (x = 0.0, 0.1, 0.5, 0.7)
catalysts, for the hydrogenation of xylose to xylitol [30,31]. In their work, the reaction products were
composed of xylitol, xylulose, glycerol, and ethylene glycol, and selectivity toward xylitol up to 50%
was obtained at 100 ◦C under 25 bar H2 pressure [30]. Moreover, it was found that the formation
of crystalline structures rendered substantial leaching resistant catalysts because no significant Ni
leaching was detected in aqueous medium for these catalysts with Ce-free, as well as 50% and 70% Ce
contents [30]. It is still a great challenge to develop novel catalysts with highly stable and excellent
xylitol selectivity in the catalytic hydrogenation of xylose under mild conditions.
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In addition to the Ni based catalysts, various noble metals, such as Pt, Pd, and Ru, have been
utilized for the catalytic hydrogenation of xylose to xylitol [29,34–36]. It has been reported that Ru based
catalysts exhibit good catalytic performance and no leaching occurred during the xylose hydrogenation
reaction [14,36], which is an alternative catalyst to Raney Ni. For example, Hemandez-Mejia et al.
reported that Ru supported on rutile titania afforded 100% xylose conversion and up to 98% xylose
yield at 120 ◦C in 15 min [36]. Nevertheless, in comparison with the Ni based catalyst, the use of
a noble metal catalyst is very expensive and not the most desirable choice for a large scale xylose
hydrogenation process.

It has been revealed that the application of bimetallic catalysts could remarkably boost the catalytic
activity and improve the stability [37–40]. Zhu et al. reported that the bimetallic Ni-Re catalysts
had better hydrodeoxygenation performances of phenol into benzene compared to the monometallic
Ni catalyst due to the geometric effect and electronic effect after the introduction of Re metal [38].
However, Mikkola et al. revealed that a Mo promoted Raney Ni catalyst was prone to deactivation due
to the collapse of the catalyst pore structure and leaching of the promoter metals, Mo and alumina [27].
It has been widely reported that most metal oxide supports are unstable and prone to undergo structural
destruction or component leaching in aqueous hydrogenation reactions. AC has been shown to have a
good resistance to acids and bases, and it contains a variety of surface oxygen-containing functional
groups which can strongly anchor the active metal sites. Thus, AC is an excellent support for most
metal nanoparticle catalysts [41]. Therefore, it is of great significance for the development of a more
stable and efficient bimetallic Ni-based catalyst in the catalytic hydrogenation of xylose.
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In this work, activated carbon (AC) supported Ni-Re bimetallic catalysts with various Ni/Re
ratios were synthesized via the impregnation method. The aim of the use of supported catalysts is to
decrease the Ni loading and enhance its mechanistic intensity, thereby decreasing the catalyst cost.
The incorporation of Re into N based catalysts is to enhance its catalytic activity, as well as improve
its hydrothermal stability and decrease Ni leaching. The catalytic performances of these catalysts
were evaluated by the hydrogenation of xylose and hydrolysate containing xylose derived from
the hydrolysis of Camellia oleifera shell. The physicochemical properties of various catalysts were
characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), CO chemisorption,
and transmission electron microscope (TEM) techniques. The deactivated mechanism of these catalysts
was also discussed.

2. Materials and Methods

2.1. Catalyst Preparation

The monometallic Ni/AC or Re/AC and the bimetallic Ni-Re/AC catalysts with different Ni/Re
ratios were synthesized by the wet impregnation method. The activated carbon was derived from
coconut husk produced by steaming activation (SBET = 1500 m2/g). Ni(NO3)2.6H2O and NH4ReO4

were used for the catalyst precursors. A typical synthesis procedure is described as follows. First,
desired amounts of Ni(NO3)2.6H2O and NH4ReO4 were dissolved into deionized water, and then, the
activated carbon was added into the aforementioned aqueous solution. Subsequently, the mixture
was stirred for 12 h, followed by removing water using a rotary evaporator. Finally, the resulted solid
was calcined at 500 ◦C in N2 flow for 2 h and then was reduced in 1 vol%H2/N2 flow at the same
temperature for 2 h. The Ni loading of the catalysts was fixed to 5 wt%, and the Ni/Re ratios were 10:1,
4:1, 2:1, and 1:1. The catalysts were denoted as: Ni-Re/AC(nNi:nRe = x:y), where nNi:nRe refers to the
Ni/Re molar ratio. For comparison, a Re/AC with Re content of 15.8% was also fabricated, and its Re
content was equal to that of Ni-Re/AC(nNi:nRe = 1:1).

2.2. Catalyst Characterization

The XRD patterns were recorded on a Rigaku Ultima IV X-ray diffractometer (Rigaku,
Matsubaracho, Japan) equipped with a Cu Kα X-ray source operating at 40 kV and 30 mA. The TEM
images were measured on a JEM-200CX transmission electron microscope (JEOL, Tokyo, Japan). The size
of every particle was obtained through measuring its spherical diameter by the manual approach,
and then, a mean particle size was calculated by averaging the diameters of ~300 particles. The XPS
analyses were performed using a KRATOS AXIS Ultra DLD instrument (Shimadzu, Tokyo, Japan).
An Al Kα X-ray source was used for all samples, along with pressure in the analysis chamber of
7 × 10−8 Pa. The step size of 1 eV and the dwell time of 0.1 s were employed, and each peak was
scanned once for the survey scans.

The Ni dispersion was measured by CO chemisorption on an AutoChem II 2920 instrument
(Micromeritics, Norcross, GA, USA). Prior to CO chemisorption, the samples were reduced at 500 ◦C
for 1 h in flowing H2, followed by He purging for another 30 min. Subsequently, the sample was
cooled to 50 ◦C, and then, 10% CO/He was pulsed into the reactor through the six port valve until a
constant CO peak area was reached.

2.3. The Preparation and Purification of Hydrolysate

The hydrolysates were obtained by dilute sulfuric acid treatment of crushed Camellia oleifera shell,
and the reaction results can be seen in Table S1 of the Supplementary Material. The liquid fraction
was separated from the solid fraction by vacuum filtration. After the hydrolysis, the pH value of the
hydrolyte was adjusted to ca. 5 using CaCO3, and the resulting gypsum was removed by filtration
through vacuum filtration. After the neutralization, the resulting solution was further purified by
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activated carbon and then ion exchanged resin. Finally, the purified solution was evaporated and
concentrated to a desired concentration.

2.4. Catalytic Reaction

In a typical procedure, the catalyst (0.10 g), xylose or hydrolysates, and deionized water (50 mL)
were added into a 100 mL stainless steel reactor. The reactor was purified with pure N2 and H2 for
three cycles, respectively, and finally pressurized with 2 MPa of H2 at room temperature. The autoclave
was heated to a desired reaction temperature and kept at this temperature for 2 h under stirring. After
the reaction, the autoclave was cooled to room temperature before the liquid solution was separated
from solid catalyst by filtration. In each experiment, three parallel experiments were conducted, and
the error was obtained within 5%.

The liquid product was identified on an Agilent 1200 S LC (Agilent, Palo Alto, CA, USA) with a
NH2-S column with a refractive index detector (RID) by using a mixture of acetonitrile and water (75:25)
as a mobile phase at a flow rate of 0.8 mL/min at 303 K. The residual solid was washed with deionized
water several times followed by drying at 333 K overnight. The conversion of xylose was determined.
The xylose conversion and yields of xylitol were calculated according to Equations (1) and (2):

Conversion (%) = (xylose mole input in the reactor − xylose mole after the
reaction)/ xylose input in the reactor × 100

(1)

Yield (%) = xylitol mole after the reaction/xylose mole input in the reaction × 100 (2)

The stability of the catalysts was tested for two or three successive runs. The catalysts after reaction
were washed with deionized water several times before the next run. For the catalyst regeneration
procedure, the recovered solid was firstly dried and then further reduced in 1 vol% H2/N2 flow at
500 ◦C for 2 h. The leaching percentage of Ni in the filtrate obtained from the first run reaction was
determined by ICP-OES.

3. Results and Discussion

3.1. XRD Results

The XRD was used to study the crystalline structure of the monometallic Ni/AC, Re/AC, and
bimetallic Ni-Re/AC catalysts. As shown in Figure 1A, for 5% Ni/AC, several diffraction peaks were
observed at 22.5◦, 44.5◦, 51.7◦, and 76.4◦. The peak at 22.5◦ was assigned to the activated carbon
support, whereas the three peaks at 44.5◦, 51.7◦, and 76.4◦ were ascribed to Ni (111), Ni (200), and Ni
(220) of face centered cubic (FCC) Ni nanoparticles [42,43], respectively. For the monometallic Re/AC
(15.8 wt%) catalyst (Figure 1(f)), four diffraction peaks appeared at 37.5◦, 40.6◦, 42.6◦, and 67.1◦, which
were attributed to Re (100), Re (002), Re (101), and Re (110) of hexagonal closed packed (HCP) Re
metal [38], respectively. After the incorporation of Re species, the signal assigned to Ni (111) shifted
to a small diffraction angle. With increasing Re content, besides the diffraction peaks related to Ni
nanoparticles, two new signals at 38.8◦ and 42.0◦ were observed for the Ni-Re/AC (nNi:nRe = 1:1)
catalyst. Moreover, the diffraction peak related to Re (100) at 2θ of 37.5◦ shifted to a bigger value at 38.8◦,
and simultaneously, the signals assigned to Re (002), and Re (101) shifted to higher values (Figure 1B).
The shift in their diffraction angles demonstrated that the lattice expansion of the Ni unit cell took
place, likely due to the incorporation of Re into the Ni lattice during high temperature reduction.
The results clearly suggested the formation of Ni-Re alloy in the bimetallic Ni-Re catalyst. In addition,
there were no diffraction peaks ascribed to ReOx species in the monometallic Re/AC or the bimetallic
Ni-Re catalysts, indicating that ReOx species could be highly dispersed on all Ni-Re/AC samples.
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3.2. TEM Results

Figure 2 shows the three representative TEM and their high resolution TEM (HRTEM) images
of the Ni/AC and Ni-Re catalysts, and the corresponding mean Ni particle sizes are listed in Table 1.
It can be seen from Figure 2A–C that Ni particles or Re oxide particles were highly dispersed and
uniformly distributed on the AC support surface.

Table 1. Sizes and XPS results of various catalyst.

Entry Catalyst Ni Particle Size (nm) a Ni Dispersion (CO/Ni)

1 Re/AC 10.6 ± 5.0 Nd b

2 Ni-Re/AC (nNi:nRe = 1:1) 13.0 ± 5.0 0.080
3 Ni-Re/AC (nNi:nRe = 2:1) 15.1 ± 6.1 0.027
4 Ni-Re/AC (nNi:nRe = 4:1) 15.8 ± 6.1 /

5 Ni-Re/AC (nNi:nRe =
10:1) 16.0 ± 5.2 /

6 Ni/AC 22.0 ± 6.2 0.020
a The Ni particle size was determined by TEM; b not detected.

Table 1 shows that a large particle size of ca. 22.0 nm was observed for the monometallic
Ni/AC catalyst. After the introduction of Re, the particle size became smaller and more uniform
compared to the Ni/AC catalyst. Moreover, with an increase of Re metal, the average particle size
decreased from ca. 22.0 nm for Ni/AC to ca. 13.0 nm for Ni-Re/AC (nNi:nRe = 1:1), showing that the
addition of Re can effectively promote the dispersion of Ni metal nanoparticles (Table 1, Entries 2
through 6). The possible interpretation for the observation was that the introduction of Re was mostly
like a baffle plate, which could prevent the further migration and agglomeration of Ni atoms or
small particles from clustering into larger sized particles by the formation of alloy during the high
temperature reduction process. HRTEM images were also taken to investigate the fine structures
(Figure 2A’–C’). For the monometallic Ni/AC catalyst, the resulting lattice fringe was approximately
0.205 nm, which was attributed to that of Ni (111). After the incorporation of Re species, the lattice
fringe was approximately 0.207 nm, which was greater than that of Ni (111) for Ni/AC, but smaller
than that of Re (101) (0.211 nm) for Re/AC. The results were also consistent with the XRD results
that the penetration of Re atoms into the Ni lattice during H2 high temperature reduction led to the
expansion of the lattice, which further showed that the Ni-Re alloy was formed after the incorporation
of Re species. The composition of the bimetallic Ni-Re/AC (nNi:nRe = 1:1) catalyst was further analyzed
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by the EDS mapping method (Figure 3). As can be seen, the Ni and Re elements were uniformly
distributed on the AC support, which was also further indicative of the formation of Ni-Re alloy in
these bimetallic catalysts.
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3.3. XPS Results

XPS was used to analyze the surface elemental composition and valence state of the catalyst.
The XPS results of Ni 2p regions for Ni/AC and the bimetallic Ni-Re catalysts are illustrated in
Figure 4. As shown, the two samples exhibited similar Ni 2p spectra. Besides a binding energy at
approximately 862.5 eV assigned to the shake-up satellite of Ni 2p3/2, two peaks at approximately
853.0 and approximately 856.0 eV were observed, which were ascribed to Ni0 and NiO species [38,44],
respectively. Moreover, it was observed that the binding energy of Ni0 species shifted from 853.5 eV
for Ni/AC to a higher binding energy of 854.0 eV for Ni-Re/AC(nNi:nRe = 1:1). Similar observations
were also found for other Ni-Re samples (see Figure S2 in the Supplementary Material).
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Figure 5 presents the XPS spectra of the Re 4f region for Re/AC and Ni-Re/AC(nNi:nRe = 1:1). For
the two samples, five deconvoluted peaks appeared at 40.8, 41.9, 43.2, 45.0, and 45.8 eV, which were
assigned to the 4f7/2 of Re0, Re3+, Re4+, Re6+, and Re7+ species [38,44], respectively. Similar phenomena
for Re 4f spectra were also found for other Ni-Re samples (See Figure S3 in the Supplementary Material).
The presence of different oxidation states was attributed to the strong oxophilicity of Re. It should be
noted that partial oxidation of Re cannot be avoided upon exposure to air. Furthermore, it was observed
that the peak intensities of Re0 together with Re3+ and Re4+ species of Ni-Re/AC(nNi:nRe = 1:1) were
higher than those of Re/AC, albeit the two samples contained the same Re loading, while the situation
was converse for Re6+ and Re7+ with high valence states for the two samples. The results clearly
suggested that the Re species were reduced readily to lower valence states or low valence state species
(Re0, etc.) were more difficult to oxidize due to the formation of the Ni-Re alloy.
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3.4. CO Chemisorption

The amount of surface active Ni sites was determined by CO chemisorption. For the Re/AC
catalyst, the amount of adsorbed CO could be neglected, suggesting that Re species did not adsorb
CO at a low temperature. Thus, CO adsorption on the bimetallic Ni-Re catalysts may be regarded
as only related to the active Ni sites. As shown in Table 1, CO/Ni increased from 0.02 for Ni/AC to
0.08 for Ni-Re/AC(nNi:nRe = 1:1) and 0.027 for Ni-Re/AC(nNi:nRe = 2:1). For Re/AC, no CO adsorption
was detected. These results also showed that the incorporation of Re species markedly enhanced the
formation of surface active Ni sites.

3.5. Catalytic Performances

The effect of reaction temperature on the conversion of xylose and the yield of xylitol was
investigated (Table 2). It can be inferred from Table 2 that a xylitol yield of 77.6% with a xylose
conversion of 79.0% was obtained over Ni-Re/AC (nNi:nRe = 1:1) at 120 ◦C for 2 h. As the reaction
temperature was greater than 140 ◦C, complete conversion of xylose was achieved, but the xylitol yield
was reduced from 95.6% at 140 ◦C to 64.8% at 200 ◦C (Table 2, Entries 4 and 7). This was due to the fact
that high temperature led to the formation of byproducts including furfural produced from xylose
dehydration, even ethylene glycol (EG), and 1,2-propanediol formed from xylitol hydrogenolysis
at 200 ◦C.

The influence of the reaction time on the hydrogenation of xylose to xylitol was also investigated.
When the reaction time was 0.5 h, a xylitol yield of 57.2% at a xylose conversion of 59% was afforded
over Ni-Re/AC (nNi:nRe = 1:1) at 140 ◦C. A high yield up to 98.0% was achieved at 140 ◦C for 1 h.
As the reaction time was extended to 2 h, the xylitol yield slightly dropped to 95.6% because of the
occurrence of side reactions such as xylose dehydration.
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Table 2. Effect of different reaction conditions on the hydrogenation of xylose to xylitol a.

Entry Temperature (◦C) Time (h) Xylose Conversion (%) Xylitol Yield (%)

1 120 2.0 79 77.6
2 140 0.5 59 57.2
3 140 1.0 99 98.0
4 140 2.0 99 95.6
5 160 2.0 99 93.0
6 180 2.0 99 85.8
7 200 2.0 99 64.8

a Reaction conditions: 1.0 g xylose, 20 mL H2O, 0.1 g Ni-Re/AC (nNi:nRe = 1:1) catalyst.

Figure 6 shows the effect of the Ni/Re ratio on the hydrogenation of xylose to xylitol over various
catalysts at 140 ◦C for 1 h. Ni/AC afforded a xylitol yield of 62.7% with a xylose conversion of 70%.
As the Re loading increased, complete xylose conversion was achieved over four Ni-Re bimetallic
catalysts, suggesting that the incorporation of Re could obviously promote the xylose conversion,
i.e., the formation of alloy favored the conversion of xylose and enhanced the hydrogenation activity.
Additionally, an increase in Re content resulted in an increase in xylitol yield from 92.5% for Ni-Re/AC
(nNi:nRe = 10:1) to 98% for Ni-Re/AC (nNi:nRe = 1:1). The possible explanation is that as the Re
loading increased, the particle size also decreased, resulting in approximately 16.0 nm for Ni-Re/AC
(nNi:nRe = 10:1) to approximately 13.0 nm for Ni-Re/AC (nNi:nRe = 1:1) because smaller particle sizes
afforded higher catalytic activity. It should be noted that the monometallic Re/AC catalyst did not
show any hydrogenation activity of xylose under identical reaction conditions.
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Figure 6. Effect of the Ni/Re ratio on the conversion of xylose and the yield of xylitol over various
catalysts: (1) Ni/AC; (2) Ni-Re/AC (nNi:nRe = 1:1); (3) Ni-Re/AC (nNi:nRe = 2:1); (4) Ni-Re/AC
(nNi:nRe = 4:1); (5) Ni-Re/AC (nNi:nRe = 10:1). Reaction conditions: 1.0 g xylose, 20.0 mL deionized
water, 0.1 g catalyst, 2 MPa of H2, and 140 ◦C for 1 h.

Figure 7 displays the impact of xylose concentration on the hydrogenation of xylose to xylitol on
Ni-Re/AC (nNi:nRe = 1:1). When the xylose concentration was 50 mg/mL, a xylitol yield of 96% was
obtained. As the xylose concentration further increased, the xylitol yield was only slightly reduced to
93% for a 100 mg/mL concentration and 92% for a 200 mg/mL concentration. This also indicated that
the catalyst still kept its high catalytic performances even as the xylose concentration was close to 20%.

Table 3 summarizes the experimental conditions and the catalytic results of the hydrogenation
of xylose to xylitol. Most of the noble metal catalysts (i.e., Pd, Ru, Rh) and non-noble metal catalysts
(i.e., Ni) were active for the xylose hydrogenation. A comparison of the catalytic properties reported in
the literature is very complicated because of various experimental conditions. It can be inferred from
Table 3 that the Ru/AC catalyst gave a high selectivity up to 98.7% toward xylitol. Moreover, it was
found that AC was an excellent support because Ru/AC showed a superior catalytic performance as
compared to other supported Ru based catalysts. The Ru based catalysts were demonstrated to have a
good stability in catalyst recycling experiments. The disadvantage of the Ru based catalysts was that



Nanomaterials 2020, 10, 73 10 of 14

Ru metal was more expensive than Ni metal. Ni-Re/AC used in this work exhibited a comparable
performance to that of Raney Ni or Ru/TiO2. The drawback of Ni based catalysts was that the surface
Ni active sites were prone to leaching.
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Table 3. Summary of the catalytic hydrogenation of xylose to xylitol with various catalysts.

Catalyst Tem. (◦C) Time (h) H2 pre. (bar) Conversion (%) Selectivity (%) Ref.

Ru/AC 110 1.5 50 100 98.7 [35]
Rh/perovskite 100 2.0 25 100 51.0 [32]
Ru/polymer 120 2.0 55 99.8 94.1 [34]

Ru/TiO2 120 1.0 20 100 98.0 [36]
Ru/Y 120 1.0 55 62 98.0 [29]

NdCeAl0.162Ni0.838 100 2.0 / 20 50.0 [36]
Raney Ni 120 2.0 55 96.9 96.7 [14]
Ni-Re/AC 140 1.0 20 99 98 This work

3.6. Hemicellulosic Hydrolysate Hydrogenation Reaction

The hemicellulosic hydrolysate was also used for the hydrogenation of xylose into xylitol.
The authors employed the optimal reaction conditions that were obtained by optimizing the reaction
conditions using commercial xylose as the model substrate. The obtained hydrolysate generated from
the hydrolysis reaction of hemicellulose of Camellia oleifera shell was used for xylose hydrogenation
reaction at 140 ◦C for 1 h. A high xylose yield of 88.2% with a xylose conversion of 93.2% was achieved
under the optimized reaction conditions. An inferior yield of xylose using the hydrolysate as the
starting material was obtained in comparison with using commercial xylose because the hydrolysate
contained a higher concentration of metal impurity ions or other trace impurities, such as lignin
fragments, which led to a reduction in the hydrogenation activity of xylose.

3.7. The Recycling Experiment

The long term stability of heterogeneous catalyst is very important for catalytic reactions.
Thus, the stability of the catalysts (Ni/AC and (b) Ni-Re/AC(nNi:nRe = 1:1)) catalysts) in the
hydrogenation reaction of xylose was evaluated. The recovered catalysts were washed and dried
before their reuse. As shown in Figure 8, for the second run, the xylose conversion and xylitol yield
were substantially reduced, but the xylitol selectivity was not changed, showing that the two catalysts
were very prone to deactivation. According to the literature results previously mentioned in the
Introduction, the authors prospected that the catalyst deactivation was owed to the deposition of
organic compounds on the active Ni sites. Thus, a regeneration procedure was employed under 1% H2

flow at 500 ◦C for 2 h. After the regeneration, the third recycle was conducted. The result showed that
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the catalyst’s activity was markedly recovered, but the xylose conversion and xylitol yield were still
lower than those obtained from the fresh catalyst. The deactivation reason was further analyzed by
ICP-OES, and the results revealed that the Ni leaching for Ni/AC and Ni-Re/AC(nNi:nRe = 1:1) took
place after the first run. However, the leaching percentage of Ni for Ni-Re/AC(nNi:nRe = 1:1) (ca. 2.1%)
was approximately one fifth that of Ni/AC (ca. 10.2%), clearly demonstrating that the presence of
Re evidently enhanced the stability and decreased the Ni leaching. The other factors, such as Ni
nanoparticle sintering and poisoning by strongly absorbed degradation products, probably further led
to deactivation of the catalyst. Thus, albeit that the Re can substantially improve the catalyst stability
and the catalytic performances, further effort needs to be undertaken, which includes the choice of
other supports with strong metal–support interaction or other transition metals that may enhance the
stability of the Ni based catalyst.
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Figure 8. Reusability of (A) Ni/AC and (B) Ni-Re/AC(nNi:nRe = 1:1) catalysts. Reaction conditions:
20 mL deionized water, 0.1 g catalyst, 2 MPa of H2, and 140 ◦C for 1 h.

4. Conclusions

A series of Ni-Re/AC bimetallic catalysts with different Ni/Re ratios was developed and used
for the hydrogenation of xylose and the xylose containing hydrolysate into xylitol. The bimetallic
Ni-Re/AC catalysts exhibited excellent catalytic performances in the hydrogenation of xylose and the
hydrolysate from Camellia oleifera shell. Ni-Re/AC (nNi:nRe = 1:1) with 5 wt% Ni loading afforded a
xylitol yield as high as 98% at 140 ◦C for 1 h, which was attributable to the synergistic effect between
Ni and Re, as well as small Ni particle sizes. The reusability experimental results indicated that the
Ni leaching occurred over both monometallic Ni and bimetallic Ni-Re catalyst, but the incorporation
of Re remarkably enhanced the catalyst stability and decreased the Ni leaching level during the
hydrogenation reaction.
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