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Abstract: The main objective of this study is to design and characterize silver suspensions based on
poly(ethylene glycol) PEG400, Ag/PEG400, as energy storage media for low-temperature applications.
A polyvinylpyrrolidone (PVP) treatment was applied to ~22 nm silver nanoparticles to ensure good
stability in poly(ethylene glycol). An array of different experimental techniques was utilized to
analyze the molecular mass and purity of base poly(ethylene glycol), morphology of dry PVP-capped
Ag nanoparticles, hydrodynamic average size of dispersed Ag particles, as well as thermal stability
of PEG400 and Ag/PEG400 dispersions. Samples exhibited good temporal stabilities with average
hydrodynamic diameter around 50 nm according to dynamic light scattering analyses. Melting and
solidification transitions were investigated in terms of temperature and enthalpy from differential
scanning calorimeter (DSC) thermograms. The thermophysical characterization was completed with
thermal conductivity (k), dynamic viscosity (η), isobaric heat capacity (Cp), density (ρ), and surface
tension (σ) measurements of designed materials using a Hot Disk thermal conductivimeter, a rotational
rheometer, a DSC calorimeter working with a quasi-isothermal modulated method, a U-tube
densimeter and a drop shape analyzer, respectively. For a nanoparticle loading of only 1.1% in mass,
sub-cooling reduced by 7.1% and thermal conductive improved by 3.9%, with almost no penalization
in dynamic viscosity (less than 5.4% of increase). Maximum modifications in Cp, ρ, and σ were 0.9%,
2.2%, and 2.2%, respectively. Experimental results were compared with the values provided by
using different theoretical or semi-empirical equations. In particular, good descriptions of dynamic
viscosity as functions of temperature and nanoparticle volume concentration were obtained by using
the Vogel–Fulcher–Tammann equation and a first-order polynomial η(φv,np) correlation, with absolute
average deviations of 2.2% and 0.55%, respectively.

Keywords: silver nanoparticles; PEG400; NePCM; heat storage; thermal conductivity; dynamic
viscosity; surface tension

1. Introduction

Better integration of renewable energy in power systems and enhancement of energy efficiency in
thermal facilities are essential pathways to improve energy-related environmental issues [1]. In this
sense, thermal energy storage (TES) is a useful strategy to address the intermittency of renewable
sources and assist an effective utilization of energy by relieving the mismatch between power supply
and demand. TES methods are commonly categorized as latent heat using phase change materials
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(PCMs), sensible heat, and thermochemical storage technologies [2]. PCMs or latent heat storage media
are attracting particular attention due to the high energy storage density (5 to 14 times larger than
with only sensible heat [3]) and fewer degradation/reversibility issues throughout a large number of
cycles when compared to thermochemical approaches. In recent years numerous materials have been
proposed as potential solid–liquid or solid–solid PCMs for applications such as smart housing [2],
heat management of electronics [4], or energy generation [5], among others. Refrigeration, one of the
major energy consuming processes, has not been an exception. Thus, the use of phase change materials
for cold thermal energy storage is also raising increasing interest [6–9].

PCMs are categorized into different groups according to material nature [10]. Among non-paraffinic
organic PCMs, poly(ethylene glycol), PEGs, are some of the most promising candidates with melting
transitions that can be selected within a wide range of temperatures, from 277 to 343 K, by means of
molecular mass [11–13]. In particular, the poly(ethylene glycol) with an average molecular mass of 400
g·mol−1, PEG400, used as based material in this work, has its melting transition at ~277 K, which is
attractive for cold thermal energy storage [8,14]. PEGs exhibit good chemical stabilities, small volume
variations, and high latent heats of fusion [15]. However, as with other organic PCMs, the main
disadvantage of poly(ethylene glycol) is their low thermal conductivity, which can unacceptably slow
the heat transfer rate of stored energy, precluding practical implementation [14].

Different techniques have been proposed to face the low thermal conductivity of PCMs, such as
inclusion of high-conductive particles, encapsulation, shape stabilization, metal foams, or embedding
in finned/porous structures, among others [16–18]. In recent years, the addition of nanostructures
has been found particularly effective not only to increase thermal conductivity, but also to reduce the
large sub-cooling characteristic of different PCMs [19]. Latent media obtained from the dispersion of
nano-sized particles in phase change materials are known as nano-enhanced phase change materials
(NePCMs) or nano-PCMs [4,20,21].

A proper evaluation of NePCMs or other nanotechnology-derived PCMs as both heat transfer
and storage media relies on the characterization of melting and solidification transitions, but also on
the study of other thermophysical properties such as thermal conductivity (k), viscosity (η), isobaric
heat capacity (Cp), density (ρ), or surface tension (σ).

Thus, modifications in rheological behavior or dynamic viscosity can considerably affect pumping
power and even flow nature of designed fluids [22–24] while mass flow rate depends on Cp and
ρ [25,26]. Although less studied, surface tension also plays an important role in heat and mass transfer
processes with low Bond dimensionless numbers, such as microfluidic or systems working under
microgravity conditions, for instance [27,28]. A revision of previous studies on storage materials or
nanofluids formulated using poly(ethylene glycol) and/or Ag nanoparticles is presented below.

Singh et al. [29] evaluated different techniques to enhance the heat transfer performance of
PEG1000, including the addition of carbon powder or the inclusion of either aluminum or carbon
fins to the PCM system. An improvement in thermal conductivity of ~31% was observed when 2.5
wt% of carbon powder was dispersed in PEG1000. This enhancement is marginal when compared
with the rise in k of more than 40 and 30 times obtained with aluminum and carbon fins, respectively.
However, aluminum fin stack occupies ~22.7% of storage system volume (which represents ~42.5%
in mass), while carbon framework corresponds to ~24.7% of volume (~34% in mass). Thus, larger
reductions in storage capacity are expected for the strategies aiming at enhancing the heat transfer rate
by using fins (in comparison with approaches based on carbon powder loading). Marcos et al. [30]
formulated dispersions of functionalized graphene nanoplatelets (GnPs) in PEG400 and experimentally
investigated the influence that GnP loading has on solid–liquid phase change transition temperatures,
latent heat of fusion, thermal conductivity, or thermal diffusivity. A maximum thermal conductivity
enhancement of 23% and a reduction in crystallization temperature of 4 K was obtained for a graphene
nanoplatelet concentration of 0.5 wt%. Yang et al. [31] prepared PEG1000-based PCMs for efficient
light-to-heat conversion, collection, and storage using graphene nanoplatelets (GnPs) and boron nitride
(BN). The PCM-composite formulated at a BN:PEG:GnP ratio of 30%:69%:1% showed enhancements in
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thermal conductivity up to 336% and reductions in sub-cooling up to 2 K, in both cases in comparison to
pure PEG1000. Multi-walled carbon nanotube/PEG400 dispersions were proposed by Marcos et al. [32]
from a chemical, physical, and thermal approach. For the maximum nanoadditive content (1% in mass),
thermal conductivity and diffusivity improved by 12.7% and 13.5%, while maximum modifications in
density and isobaric heat capacity did not exceed 0.42% and 3%, respectively.

Conversely, authors observed that the incorporation of additives reduced latent heat capacity by
~30%. Babapoor, Karimi and Khorram [15] produced NePCM nanofibers using PEG1000, polyamid6
(PA6), and several nanoparticles (SiO2, Al2O3, Fe2O3, and ZnO). The highest enhancement in
thermal conductivity (above 40% when compared with the former PEG1000) was observed for
the PEG:PA6 mixture at a 1:2 ratio and containing 4 wt% of Al2O3 nanoparticles. Anghel et al. [33]
formulated spherical macrocapsules of PEG6000 in epoxy resin using an aluminum nanopowder
as filler to reduce charging and discharging processes. Several sets of PEG/SiO2 composite form
stable phase change materials doped (or not) with other nanoadditives were designed by [34–36],
Feng et al. [37], Yang et al. [38], or Li et al. [39], among others. PEG/SiO2 composite materials containing
multi-walled carbon nanotubes [40], active carbon [37], or carbon fibers [41] did not only prove excellent
shape-stability and high thermal conductivity but also unique characteristics such as wider absorption
range for sunlight, high light-to-heat conversion or energy storage efficiencies.

Despite some carbon nanostructures such as carbon nanotubes or graphene exhibiting
thermal conductivities about one order of magnitude higher than those of copper, gold, or silver,
large enhancements in the thermal conductivity of common heat transfer fluids were also obtained
when dispersing small amounts of metallic nanoparticles [42–44]. Zeng et al. [45] investigated Ag
dispersions in 1–Tetradecanol as organic phase change material. These authors indicated that thermal
conductivity rises with increasing Ag loading but did not report any value of how much those
enhancements were. Deng et al. [46] prepared advanced PCMs based on PEG4000 using expanded
vermiculite (EVM) as a shape stabilizer and silver nanowires as a thermal conductivity nano-enhancer.
Prepared composites exhibited reductions in super-cooling by 7 K (for the EVM:PEG:Ag composition
of 28.2%:64.7%:7.1%) and a thermal conductivity 11.3 times higher than that of PEG4000 (in the case
of the EVM:PEG:Ag composition of 1.9%:58.8%:19.3%). Qian et al. [47] modified PEG4000 using
Ag nanoparticle-decorated diatomite. The presence of additives (either silver or diatomite) did not
significantly reduce the sub-cooling (less than 4 K). However, thermal conductivity increased by 127%
(in comparison to the mixture of PEG and diatomite used as based) when the shape-stabilized PCM
was doped with a silver loading of 7.2 wt%. As a consequence, absorption and release of thermal
energy during the phase change was considerably reduced.

The surface tension of silver dispersions in water was studied by Chen et al. [48] and
Godson et al. [49]. Chen et al. [48] observed decreases in σ with either surfactant addition or
Ag concentration (especially when nanoparticle loading overcame 0.2 wt%). Also a decreasing trend
with silver content was detected by Godson et al. [49]. In this last study, maximum reductions in
surface tension reached 10.3% at 323.15 K for the highest analyzed silver concentration (1.2 vol%).
Silver-particle colloids have been considered as potential conductive inks for inkjet printing. Thus,
Lee et al. [50] designed silver colloids based on a diethylene glycol–water mixture (50:50 in mass) and
stabilized with a 40·103 molecular weight PVP (with an Ag:PVP ratio of 1:8), and the authors studied
the effect of Ag concentration on the dynamic viscosity and surface tension of designed samples.
Both properties were found to increase with nanoparticle loading, reaching enhancements of ~3%
(σ) and ~400% (η) at the highest Ag concentration (35 wt%). Also important increases in dynamic
viscosity were reported by Ankireddy et al. [51] when they studied dispersions (up to 66 wt%) of
carboxylic-acid-encapsulated silver nanoparticles in toluene. However, the authors observed that
surface tension decreased with the addition of nanoparticles, with maximum diminutions of ~29% for
the highest Ag content. Reductions in this property were attributed to a lessening in the interactions
between toluene molecules at the droplet surface.
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There is still substantial need for further investigative techniques to improve the thermal
conductivity of organic PCMs [29]. Thus, the present study aims to develop and characterize
stable phase change materials based on poly(ethylene glycol) PEG400 and containing Ag silver
nanoparticles as a new stable solution for thermal storage. The effectiveness of Ag loading reducing
sub-cooling effect or improving the thermal conductivity and diffusivity is experimentally investigated.
Moreover, the thermophysical characterization is completed with the analysis of the dynamic viscosity,
isobaric heat capacity, density, and surface tension of presented phase change materials for a wide
range of temperatures.

2. Materials and Methods

2.1. Materials

A NePCM based on poly(ethylene glycol) PEG400 and containing 1.1 wt% of silver nanoparticles
was specifically prepared for this investigation by NANOGAP Sub-NM-Powder S.A. (A Coruña,
Spain). PVP-capped Ag nanoparticles (DS0476, also commercialized by NANOGAP Sub-NM-Powder)
were subjected to a surfactant treatment with polyvinylpyrrolidone, PVP, (at a fixed PVP:Ag ratio
of 0.068) in order to ensure good temporal stability in poly(ethylene glycol). Merck PEG400 (Merck,
Sigma–Aldrich Darmstadt, Germany) poly(ethylene glycol) for synthesis was used as based fluid.
This same PEG400 was employed to prepare the other two studied nanofluid concentrations (0.10 wt%
and 0.50 wt%) by dilution from 1.1 wt% dispersion. In order to ensure homogeneous composition of
the samples, dilutions were sonicated for 2 min in a low power ultrasonic bath (Ultrasounds, JP Selecta
S.A., Barcelona, Spain). Density values of 10.49 g·cm−3 corresponding to crystalline silver [52] and
1.20 g·cm−3 for PVP were considered in this investigation. In the case of base PEG400, density was
experimentally measured in this work. Therefore, at room temperature studied 0.10%, 0.50%, and 1.1%
mass fractions (φm,np) of silver nanoparticles corresponded to volume fractions (φv,np) of 0.011%,
0.057%, and 0.13%, respectively. A Mettler AE-200 analytical balance (Mettler Toledo, Greifensee,
Switzerland) with an accuracy of 1·10−5 g was utilized to weigh reagents and samples.

2.2. Nanoparticle and Base Fluid Characterization

UV–Vis spectroscopy is considered a reliable technique in the primary identification of synthesized
nanoparticles [53]. In silver NPs, the proximity of conduction and valence bands allows free movement
of electrons between both bands. This electron freedom gives rise to a surface plasmon resonance
(SPR) absorption band, which confers unique optical properties at certain wavelengths of light [53].
The UV–Vis absorption spectrum of nanoparticles in wavelengths from 300 nm to 800 nm (Figure 1)
was recorded on an HP 8452 UV–Vis diode array spectrophotometer (Hewlett Packard, Palo Alto, CA,
USA). A highly diluted aliquot of initial Ag/PEG400 dispersion (containing 1.1 wt%) was studied in a
standard 10 mm quartz cuvette.
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Figure 1. Absorption UV–Vis spectrum of diluted silver dispersion based on PEG400.
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The UV–Vis spectrum of Ag nanoparticles exhibited an absorption peak at ~418–428 nm.
The presence of a peak close to ~420 nm and ascribed to SPR was well documented in literature [54–57]
for other silver nanoparticles of sizes ranging from 2 nm to 100 nm.

Morphology of silver nanoparticles was examined in a JEOL JEM-1011 (JEOL, Tokyo, Japan)
scanning transmission electron microscope (S-TEM) working at an acceleration voltage of 100 kV.
One drop of diluted NePCM was deposited on a Formvar-covered 400 mesh copper grid and allowed
to evaporate at room temperature. Figure 2 shows a representative S-TEM image in which the
quasi-spherical morphology of silver nanoparticles can be observed.
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All peaks present in the mass spectra correspond to molecules cationized with H+ (m/z = 19.02
+ 44.03·n, where n = 7–16), Na+ (m/z = 41 + 44.03·n, where n = 8–13), or K+ (m/z = 57.11 + 44.03 n,
where n = 8–14). Therefore, average number molar mass is equal to Mn = 520.50 g·mol−1, average mass
molar mass being Mw = 532.94 g·mol−1 and polydispersity index Mw/Mn = 1.02 (quasi-monodisperse
polymer). Molecular mass values obtained by ESI-MS were larger than expected for a poly(ethylene
glycol) commercialized as PEG400 [30,32,58,59].

2.3. Thermal and Temporal Stability

Thermal stabilities of neat/base PEG400 and the three Ag/PEG400 dispersions of nanoparticles
were investigated by thermogravimetric analysis (TGA) using a Setaram Setsys 1750 TG-DTA (Setaram
Instrumentation, Caluire, France). Sample size determinations with this device had a precision of
0.04 µg, while temperature was measured with accuracy better than 2 K. About 30 mg to 35 mg of
sample was tarred into ceramic crucibles. Experiments were performed in two steps. Temperature was
first raised from 298 to 1023 K with a scanning rate of 1 K·min−1 under inert N2 atmosphere (flow rate
of 30 mL·min−1). Then, air atmosphere was introduced in the chamber while temperature was further
increased up to 1123 K. Figure 4 shows weight loss and differential weight loss curves obtained for
neat PEG400 and the dispersion loaded with 1.1 wt% of silver nanoparticles.
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Figure 4. (—) weight loss, TGA, and (- - -) differential weight loss, dTGA, thermograms of (a) base
fluid PEG400 and (b) 1.1 wt% Ag/PEG400 nano-enhanced phase change materials.

In the TGA thermogram of PEG400, a major weight loss step occurs in the temperature range
between 510 and 690 K, while weight loss is lower than 5% for temperatures below 579 K, and Tonset

degradation temperature is 609 K. A comparison between PEG400 and Ag(1.1 wt%)/PEG400 curves
shows that the addition of Ag nanoparticles only leads to a slight shift (less than 10 K) to the left in the
TGA curve.

The average hydrodynamic size of dispersed Ag nanoparticles in PEG400 was analyzed by
means of a Zetasizer Nano ZS (Malvern Instruments, UK) based on dynamic light scattering (DLS).
The experimental uncertainty in size measuring suspended particles was estimated to be 2%, further
details can be found in Fedele et al. [60] and Colla et al. [61]. In order to ensure appropriate operation
conditions, a diluted concentration was selected to carry out DLS investigations. Thus, in this work
analyses were performed for an Ag/PEG400 dispersion containing 0.01 wt% of nanoparticles at 298 K
and with a scattering angle of 173◦. As previously reported for other nanostructured materials [61],
hydrodynamic nanoparticle sizes of Ag/PEG400 samples at higher concentrations were expected to be
similar to the diameters here obtained for 0.01 wt% loading. Figure 5a shows the nanoparticle size
distribution of Ag(0.01 wt%)/PEG400 NePCM. For this last dispersion, the average hydrodynamic
diameter is ~50± 1 nm. DLS value is almost twice the diameter observed by using transmission electron
microscopy. The reason is that DLS size is not based on direct measurements of dry nanoparticles (as in
the case of TEM investigations), but on an estimation of hydrodynamic size obtained from an analysis
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of nanoparticle diffusion behavior. Differences between DLS and TEM size determinations were also
reported in the literature for other silver nanofluids by different authors [54,55]. With the objective of
evaluating Ag/PEG400 temporal stability, the evolution of average nanoparticle size was monitored in
the timeframe of four weeks. Following a procedure similar to the one proposed by Fedele et al. [62],
two DLS cuvettes were filled with ~1 mL of Ag(0.01 wt%)/PEG400 dispersion. The first cuvette was
kept in static conditions, while the other was hand shaken for some seconds just before performing the
measurements. Figure 5a shows the nanoparticle size distributions obtained at three different days
after preparation for the static sample, while the temporal evolution of size determinations under static
and shaken conditions is plotted in Figure 5b.
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Figure 5. (a) Nanoparticle size distribution of static sample based on dynamic light scattering
measurements: zero day (—), 7th day (- - -), and 26th day (- · - ·). (b) Temporal evolution of average
nanoparticle size in Ag(0.01 wt%)/PEG400 dispersion under shaken and static conditions.

As it can be observed in Figure 5, in both samples (under static and shaken conditions) average
nanoparticle size remains centered at ~50 nm for the whole analyzed period. This allows us to rule
out the presence of any nanoparticle agglomeration or aggregation phenomena and confirm the good
stability of designed NePCMs.

2.4. Thermophysical Characterization

Solid–liquid phase change characteristics were determined for PEG400 and the three NePCMs
by means of a heat-flux differential scanning calorimeter (DSC) Q2000 (TA Instruments, New Castle,
DE, USA) equipped with a refrigerated cooling system RSC90. Analyses were conducted at cooling
and heating rates ranging from β = 1 to 10 K·min−1 in a nitrogen atmosphere (mole fraction purity
better than 0.99999) flowing at 50 mL·min−1. Each measurement condition was repeated at least three
times for three different aliquots. Uncertainties in the characterization of thermal events are 0.3 K
(temperature) and 1.2 J·g−1 (enthalpy). A further description of this instrument and experimental
method can be found in Cabaleiro et al. [63].

Thermal conductivity, k, was obtained at temperatures ranging from 283.15 to 333.15 K for PEG400
and Ag/PEG400 suspensions using a Hot Disk Thermal Constants Analyzer (Hot Disk AB, Göteborg,
Sweden). This device works with the transient plane source (TPS) technique [64]. In this case, a Hot
Disk probe consisting of a double spiral made of nickel (2 mm in diameter) and appropriate to measure
the thermal conductivity of liquids was selected. Experiments were performed using a low thermal
power, 20 to 25 mW, and a short power input time, 4 s. At least four different tests were performed for
each sample. The instrument accuracy declared by the supplier was 5%, however, previous tests with
deionized water [60] showed deviations with literature [65] better than 2%. More details can be found
in Fedele et al. [60].

Shear rate dependence of dynamic viscosity, η, was studied for base PEG400 and NePCMs at shear
rates between 80 and 1600 s−1 and temperatures from 278.15 to 343.15 K. Flow curve rheological tests
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were developed on an AR-G2 rotational magnetic bearing rheometer (TA Instruments, New Castle, DE,
USA). This device is based on a combined motor and transducer instrument and utilizes an induction
motor to minimize the friction. Tests were conducted in a cone–plate geometry with a diameter of
40 mm, a 1◦ steel cone and a truncation gap of 35 µm. Dynamic viscosity results reached repeatability,
reproducibility, and comparability requirements of the ASTM D445 standard. An intermediate
instrument calibration was performed every three measures to confirm results reliability. After each
calibration and series of assays, a check was carried out with distilled water to verify that the rheometer
was working in optimal conditions. Water measurements using this experimental device [66] showed
accuracy better than 2% with Refprop 9.0 [65].

Isobaric heat capacity, Cp, was analyzed for base PEG400 and silver nanoparticles in the temperature
range between 283 and 333 K. Measurements were performed using the DSC Q2000 calorimeter above
described, working with a quasi-isothermal temperature-modulated differential scanning calorimetry
(TMDSC) method. In this investigation, TMDSC analyses were carried out sinusoidally modulating
sample temperature with amplitude of 0.5 K and a period of 80 s for at least 40 min. In the studied
temperature range, an uncertainty of 3% was experimentally estimated for Cp [26].

Density, ρ, was measured within the temperature range from 288.15 to 313.15 K by means of an
oscillating U-tube densimeter DMA 500 (Anton Paar, Graz, Austria). Water and toluene were selected
as reference materials to perform device calibration. Relative uncertainty of density measurements
with this device was established to be lower than 0.1% [67].

Surface tension, σ, at the air–sample surface was studied by means of a DSA30 drop shape
analyzer (Krüss GmBH, Hamburg, Germany). Tests were performed in a TC40 environmental chamber
(also from Krüss GmBH), in which the sample temperature was stabilized from 288.15 to 328.15 K
each 10 K. σ was obtained from the shape analysis of sample drops suspended at the apex of a
vertical syringe (15-gauge needle with an outer diameter of 1.835 mm) based on the Young–Laplace
equation. Reported results were calculated from the study of at least three different drops (with a
minimum of 10 recordings each). Necessary density values were experimentally obtained in this work
at 288.15, 298.15, and 308.15 K while predicted values, at 318.15 and 328.15 K, were obtained by a
second-order polynomial fitting based on the temperature dependence of PEG400 densities measured
in Marcos et al. [30] and the influence of adding PVP-capped Ag nanoparticles on this physical property
determined in the present study, following a procedure similar to that used by Berrada et al. [68].
Experimental uncertainty of surface tension measurements was previously estimated to be better than
1% [24]. A more detailed description of the experimental device and followed procedure can be found
in Gómez-Villarejo et al. [69].

3. Results and Discussion

3.1. Phase Change Characterization

The solid–liquid phase transitions were studied by temperature scans at cooling/heating rates
of 1, 2, 5, and 10 K·min−1 for PEG400 as base material, and three Ag/PEG400 mass concentrations
(0.10%, 0.50%, 1.1%). After completing the necessary runs to study the samples at the predefined
cooling/heating rates, some representative DSC scans were repeated to verify that no significant change
occurred between the original test and replicate, and thus validate the characterization of phase change
transitions. In addition, in order to analyze the reliability of designed materials, base PEG400 and
NePCM loaded with 1.1% of silver nanoparticles were subjected to 100 heating–cooling cycles and no
reduction in latent heat or shift in melting or solidification transitions was observed. As an example,
Figure 6 shows the thermograms obtained at cooling and heating rates of 2 K·min−1.

As it can be observed, the addition of nanoparticles did not significantly modify the onset
temperature of the freezing process. Thus, while recrystallization started at around ~259.3 K for
pure PEG400, this transition occurred at ~259.8 K in the case of the NePCM loaded with the highest
nanoparticle concentration. However, with increasing silver loading, a slight shift towards lower
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temperatures was found in the melting transition. These lower melting temperatures (due to the
dispersion of nanoparticles), led to a reduction in sub-cooling of up to 7.1% in the case of the
Ag(1.1 wt%)/PEG400 sample (in comparison with neat PEG400).
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Figure 6. DSC cooling and heating thermograms obtained for base fluid and different Ag/PEG400
NePCMs at scanning rates of 2 K·min−1.

3.2. Isobaric Heat Capacity

Experimental isobaric heat capacities, Cp, for PEG400, the dry powder of Ag nanoparticle, and the
Ag(0.5 wt%)/PEG400 nanofluid in the temperature range from 283.15 to 333.15 K are shown in Figure 7.
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Figure 7. Temperature dependence of isobaric heat capacity of (×) PEG400, (#) dry Ag nanoparticles,
and (�) Ag(0.50 wt%)/PEG400 nanofluid. (·····) Second-order polynomial fitting and (—) values provided
for Ag(0.50 wt%)/PEG400 by using Equation (1).

Obtained values for base fluid exhibit a good agreement with data reported by Francesconi et al. [70]
and Marcos et al. [30,32] for other poly(ethylene glycol) with similar average molecular weights,
around 400 g·mol−1. Results measured for dry silver nanoparticles were also compared with the values
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recommended by Touloukian and Buyco [71] for bulk silver. In the case of the nanofluids, Cp values
were determined by using the following weighted-average equation [72,73]:

cp,nf = φm,np·cp,np +
(
1−φm,np

)
·cp,bf (1)

where φm,np is the mass fraction of nanoparticles, while np, bf, and nf subscripts stand for nanoparticles,
base fluid, and nanofluid, respectively. For comparison, the values estimated for the sample prepared
with the silver loading 0.5 wt% are also plotted in Figure 7. In the studied temperature range, the specific
heat capacities experimentally measured for the silver nanopowder are ~84% lower than the values
obtained for base PEG400 at the corresponding temperature. Cp property slightly decreases with
increasing mass concentration of silver nanoparticles, with reductions lower than 0.9% within studied
concentration range of silver nanoparticles. This trend is in agreement with that predicted from Cp

data measured in our laboratory for the base fluid and dry PVP-capped Ag nanoparticles by using
Equation (1). Other studies on nanofluids using PEG400 as base fluid found diminutions of 3% for the
concentration of 1wt% of multiwalled carbon nanotubes (MWCNT) [32], or 0.34% for a dispersion
of 0.5 wt% using functionalized graphene nanoplatelets [30]. Hence, it can be concluded that the
addition of the PVP-capped Ag nanoparticles does not lead to a significant reduction in the sensible
heat capacity of the phase change material.

3.3. Thermal Conductivity

Experimental thermal conductivities obtained for the base fluid and the three Ag/PEG400
dispersions are shown in Figure 8. As it can be observed, the addition of nanoparticles slightly
improved the thermal conductivity of the base phase change material. Those enhancements rose with
increasing nanoparticle loading, a maximum improvement of 3.9% being reached in the case of the
1.1 wt% concentration. Other studies conducted with PEG400 as base fluid reported higher increases
in thermal conductivity, 12.7% for 1 wt% MWCNT/PEG400 nanofluid [32] and 23% for a PEG400
dispersion containing 0.5 wt% of functionalized graphene nanoplatelets (fGnP) [30]. The PVP-capped
procedure carried out with silver nanoparticles to favor the stability of the conceived dispersions
entailed a penalty in the expected improvement of the intrinsic heat transfer of the sample. According
to the results shown in the Figure 8, a slight improvement in thermal conductivity was observed.
Modifications in this property were within the experimental uncertainty of this device. In any case,
an upward trend with increasing mass fraction was obtained.Nanomaterials 2020, 10, x FOR PEER REVIEW 11 of 22 
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Figure 8. Temperature dependence of thermal conductivity for pure PEG400 (×) and the Ag/PEG400
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Over the last century, huge research efforts have been directed towards understanding and
theoretically describing the thermal conductivity of solid–liquid colloidal systems.

In this work, results experimentally measured for Ag/PEG400 NePCMs were compared with the
values provided by using some representative theoretical or semi-empirical equations. Maxwell [74]
proposed the first equation to estimate the thermal conductivity of solid–liquid suspensions (in our
case nanofluids, knf) from the volume concentration of particles, (φv,np), and the thermal conductivities
of base fluid, kbf, and particles, knp:

knf =
knp+2kbf + 2(k np − kbf

)
φv,np

knp+2kbf − (k np − kbf

)
φv,np

kbf (2)

However, the Maxwell model does not take into account several parameters such as particle size,
agglomeration, or temperature, while those parameters have been found to strongly influence
the thermal conductivity of several nanofluid systems [75–77]. Different studies have been
developed [75–79] in order to identify the main mechanisms governing thermal conductivity in
the solid–liquid interface.

Murshed et al. [80] proposed a model that considers the size of dispersed particles but also
suggests the existence of an interfacial layer in which thermal conductivity takes an intermediate
value between those of the base fluid and nanoparticles. According to the fundamental theory behind
interfacial thermal resistance, heat exchange through the solid–liquid interfacial layer is an important
function of the affinity between the two phases [81]. The Murshed et al. [80] equation can be expressed
for spherical nanoparticles as follows:

knf =

(
knp − klr

)
φv,npklr

(
2γ3

1 − γ
3+1

)
+

(
knp+2klr

)
γ3

1

((
φv,npγ3(klr − kbf)+kbf

))
γ3

1

(
knp+2klr

)
−

(
knp − klr

)
φv,np

(
γ3

1+γ
3 − 1

) (3)

where φv,np is the volume fraction of the nanoparticles in suspension, γ1 = 1 + h/r and γ = 1 + h/2·r
relationships depend on the thickness of interfacial layer (h) and radius (r); while klr, knp, and kbf are
the thermal conductivities of the interfacial layer, nanoparticles, and base fluid, respectively. In our
analysis, a value of h = 12.5 nm was assumed for that interfacial layer considering that nanoparticles
are spherical and the STEM and DLS average sizes are ~22 nm and ~53 nm (measurement of day
0), respectively.

A comparison between the experimental relative thermal conductivities and the values predicted
by using the Maxwell and Murshed equations is graphically presented in Figure 9.

A thermal conductivity of knp = 429 W·m−1
·K−1 was considered in this work for the silver

nanoparticles [71]. As it can be observed, experimental thermal conductivities for the nanofluids are
larger than the values predicted by the Maxwell and Murshed models. For the highest nanoparticle
loading, 1.1 wt% of silver, absolute average differences, AAD%, between experimental and theoretical
data sets reach 2.1% (Maxwell) and 0.5% (Murshed). Other studies conducted with PEG400 as base
fluid reported that Hamilton–Crosser, Murshed, Xue, or Nan models also underestimated thermal
conductivity results. So, differences of 5.6% (H–C), 5.5% (Murshed) and 2.6% (Xue), were obtained
when dispersed MWCNT [32] while the Nan correlation allowed obtaining 1% for GnP suspensions [30].
The cause of those larger experimental enhancements in thermal conductivity may be due to the size
dependence of thermal conductivity. The smaller the particle size, the larger is the surface–volume
ratio and, consequently, the heat transfer capacity of the nanoparticles also increases [82,83]. However,
in the case of metallic nanoparticles, this is not always true. As an example, reductions in the thermal
conductivity of copper or silver nanoparticles with decreasing particle size were previously published
in the literature by Warrier and Teja [84] or Nath and Chopra [85].
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≈ 520 g·mol−1) at 298.15 K is 0.07% higher than the result reported for PEG400 (Mn = 415 g·mol−1) by 
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Figure 9. Relative thermal conductivity, knf/kbf, as a function of volume fraction, φv,np, for Ag/PEG400
nanofluids at 313.15 K. (�) Experimental results obtained in this work and predicted values by (- - -)
Maxwell [74] and (—) Murshed et al. [80] models.

3.4. Density

Densities of base fluid and NePCMs at silver concentrations of 0.10, 0.50, and 1.1 wt% were
measured at atmospheric pressure in the temperature range from 288.15 to 313.15 K. Experimental
results are displayed for the four samples in Figure 10. According to the normal PEG density
dependence on polymer molar mass [86], results obtained in this work for base PEG400 agree well
with the ρ values reported in the literature for other poly(ethylene glycol) with similar molecular
mass [58,86–88]. With the objective of evidencing this good agreement, some of those literature
results are also plotted in Figure 10. As an example, ρ value determined in this study for PEG400
(Mn ≈ 520 g·mol−1) at 298.15 K is 0.07% higher than the result reported for PEG400 (Mn = 415 g·mol−1)
by [88] and 0.06% lower than the data provided for PEG600 by Trivedi, Bhanot and Pandey [86] at
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Figure 10. Temperature dependence of density (ρ) for: (×) base PEG400, (4) 0.10 wt%, (�) 0.50 wt%,
and (3) 1.1 wt% NePCMs. (—) Second-order polynomial fittings. Values reported for (+) PEG400 by
Han et al. [88] and for (*) PEG600 by Trivedi, Bhanot and Pandey [86].
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Density rises with the addition of nanoparticles and these enhancements do not depend on
temperature. Average ρ rises (regarding base PEG400) for 0.10, 0.50, and 1.1 wt% PVP-capped Ag
loadings are 0.16%, 0.94%, and 2.2%, respectively. Other studies in which PEG400 was used as base
fluid observed a maximum increase of 0.42% for 1 wt% MWCNT/PEG400 nanofluid [32] or 0.33% for
0.5 wt% GnP/PEG400 one [30]. Our density modifications (2.2%) for the NePCM containing 0.10 wt%
of PVP-capped silver nanoparticles are slightly larger than 0.03% reported by Nakhjavani et al. [89]
for a 0.1 wt% Ag/water nanofluid or 0.09% to 0.11% reported by Bahiraei and Heshmatian [90] and
Yarmand et al. [91] for aqueous hybrid nanofluids containing 0.1 wt% of graphene-decorated silver
nanoadditives. Experimental results here obtained for Ag/PEG400 dispersions were also compared
with the values provided by using the following weight-average equation:

1
ρn f

=
φm, np

ρnp
+
φm, s f

ρs f
+

1−φm, np −φm, s f

ρb f
(4)

where φm,np and φm,s f are the nanoparticle and surfactant volume fractions, while nf, np, sf, and bf
subscripts stand for nanofluid, nanoparticle, surfactant, and base fluid, respectively. Maximum
deviations between experimental results and values provided by Equation (5) are 1.1%.

As expected, density decreases with increasing temperature. This temperature dependence can
be fitted with AADs% of 0.02% using second-order polynomial fittings. In the studied range, average
density modifications each 5 K are 0.38% for base PEG400 and 1.1 wt% Ag/PEG400 considering a value
of ρnp = 10.49 g·cm−3 corresponding to crystalline silver [52].

3.5. Thermal Diffusivity

The higher the thermal diffusivity, α, of a material is, the faster the thermal energy is propagated.
For that reason, thermal diffusivity becomes even more important than thermal conductivity when
selecting NePCMs for energy storage. α is related to thermal conductivity, k, and heat capacity per unit
of volume, ρ·Cp, throughout the following expression:

α =
k
ρ·cp

(5)

Thermal diffusivities were calculated for base PEG400 and designed NePCMs from k, ρ, and Cp

data above presented for these materials. In the studied temperature range, neat PEG400 exhibits α
values from 7.13·10−8 to 7.15·10−8 m2/s. These results are similar to the data reported in literature for
other poly(ethylene glycol) with similar molecular mass [30]. Maximum improvements in thermal
diffusivity were obtained for the highest concentration (1.1 wt%) nanoparticle loading, for which
increases lower than 2% were obtained.

3.6. Viscosity

Shear viscosity was studied for base PEG400 and the three formulated NePCMs in the temperature
range between 278.15 and 343.15 K. Taking into account that the dynamic viscosity of poly(ethylene
glycol) is expected to increase with polymeric molecular mass [92], a good agreement is observed when
comparing η values here obtained for base PEG400 (Mn = 520 g·mol−1) and results previously reported
for other PEGs [30,32,58,88]. As an example, Figure 11a,b shows shear rate–shear stress flow curves
obtained for the four samples at 278.15 and 343.15 K.

A linear rise in shear stress with increasing shear rate was observed for all studied samples.
This linear relationship, which is temperature independent, confirmed that like base fluid, designed
dispersions are Newtonian. As pointed out by [93], this fact can be interpreted as an indication of
the quality of dispersions and lack of agglomerates or aggregates in proposed NePCMs. This result
agrees with the Newtonian behavior in the shear rate region of 1–200 s−1 observed by Tamjid and
Guenther [94] when investigating di(ethylene glycol)-based nanofluids containing 0.11% and 0.22%
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volume concentrations of silver nanoparticles. However, as reported in that study, larger amounts of
nanoparticles led to a non-Newtonian or pseudoplastic behavior.
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Figure 11. (a,b) Relationship between shear stress and shear rate at (a) 278 K and (b) 343 K.
(c) Temperature dependence of dynamic viscosity. (×) base PEG400, 0 wt%; (4) 0.1 wt%; (�) 0.5
wt%; and (3) 1.1 wt% Ag/PEG400 NePCMs. (—) Linear fittings, in (a,b); or VTF equation, Equation (6),
in (c).

The evolution of dynamic viscosity with temperature is depicted in Figure 11c. As expected,
this property exponentially decreased with increasing temperature. This behavior can be described by
using the well-known Vogel–Fulcher–Tammann (VFT) equation:

ln η = ln η0 +
D·T0

T − T0
(6)

where η0, D, and T0 are the fitting parameters. Table 1 reports the values of those three adjustable
coefficients as well as AADs% between our experimental results and those values fitted by the
VFT model.
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Table 1. η0, D, and T0 fitting parameters, standard deviations, s, and AADs%. from the VFT equation,
Equation (6), at different mass fractions.

Base Fluid (0 wt%) 0.10 wt% 0.50 wt% 1.1 wt%

η0/mPa·s 0.0659 0.0672 0.0239 0.0246
D 6.37 6.37 9.93 9.92

T0/K 158.19 158.08 135.41 135.57
s/mPa·s 1.4 1.3 2.4 2.1
AAD% 1.2% 1.1% 2.2% 2.0%

The good description (with AADs% better than 2.2%) of the Vogel–Fulcher–Tammann equation is
shown in Figure 11c. D coefficient is also known as the Angell strength parameter, while its inverse,
F = 1/D, was defined as fragility by Angell et al. [95]. Studied NePCMs exhibited Angell strength
coefficients similar to those of poly(propylene glycol) dimethyl ether [96] or ethylene glycol [97].
Reduced values of the D parameter were an indication of fluid fragility and that liquid configurational
structure rapidly breaks down with rising temperature [98].

On the other hand, dynamic viscosity increased with nanoparticle loading. In Figure 12,
the dynamic viscosity dependence with volume fraction is represented. In this case, average viscosity
rises were 1.4%, 2.8%, and 5.4% for Ag/PEG400 dispersions containing 0.011%, 0.057%, and 0.13%
in volume fraction of PVP-capped silver nanoparticles, respectively. These modifications were
significantly lower than those reported by Zadeh and Toghraie [99] in their study on Ag–EG nanofluids,
in which nanofluid apparent dynamic viscosity at 318 K rose by more than 90% as volume fraction
increased from 0.25% to 2%.
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Different equations have been proposed in the literature to describe η(φv) dependence of
solid–liquid suspensions [22]. For dilute non-interacting suspensions of spherical-shaped particles,
the well-known Einstein [100] predicted that viscosity linearly increases as a function of volume
concentration:

ηr = 1 + 2.5 φv,np (7)

where ηr = η/η0 is the so-called reduced viscosity and φv,np is the nanoparticle volume concentration.
With rising nanoparticle concentration, nanofluid viscosity usually increases in a non-linear manner
and, consequently, the Einstein relationship may greatly underpredict η data.
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According to Chow [101], the η(φv,np) relationship of Newtonian colloids can be formally written
as a virial of series:

ηr =
η

η0
= 1+

N∑
i=1

ci·φ
i
v,np (8)

where N is the degree of expansion and ci are the fitting parameters which may vary from one sample
to another [102].

Figure 12 shows a graphical comparison between experimental relative viscosities and the values
provided by the predictive Einstein (1906) equation or a linear (N = 1) correlation based on Equation (8).
In this case, values predicted using Einstein (1906) show AADs% with experimental data of 3%. A better
description with an AAD% of 0.22%, was obtained utilizing a linear fitting based on Equation (8) with
c1 = 43.

3.7. Surface Tension

Surface tension at the air–sample surface was determined for base PEG400 and Ag/PEG400
suspensions. Obtained results for the four samples are depicted in Figure 13.
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Figure 13. (a) Temperature dependence of surface tension: (×) base fluid, (4) 0.10 wt%, (�) 0.50 wt%,
and (3) 1.1 wt% nanoparticle concentrations of Ag/PEG400 nanofluids. (—) First–order polynomial
fittings. (b) Average modifications in surface tension regarding base fluid, i.e., (σnf–σbf)/σbf.

Our experimental values for base fluid showed maximum deviations lower than 0.9% with
previous results reported in the range from 298 to 318 K for a similar PEG by Fu et al. [103]. Surface
tension decreased with increasing temperature. In the studied temperature range, reductions of
~0.21–0.22% each 10 K were observed for base fluid and formulated NePCMs. This downward trend
with increasing temperature can be described by using a first-order polynomial fitting with ADDs%
lower than 0.25%. Lower surface tensions were also measured for formulated NePCMs when compared
with neat PEG400 (see Figure 13b). These diminutions, that reach 2.2% for the Ag(1.1 wt%)/PEG400
sample, can be attributed to the presence of PVP surfactant used to stabilize silver nanoparticles
(PVP:Ag ratio of 0.068) or other reagents remaining in the parent NePCM from the formulation process.
Surfactants are surface active molecules that improve suspension stability by recovering nanoparticles
and modifying particle–surface interaction forces. Surfactant molecules also place at the air–sample
surface, which in turn, reduces nanofluid surface tension.
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4. Conclusions

Three dispersions of PVP-capped silver nanoparticles in a poly(ethylene glycol) PEG400 at
nanoparticle mass concentrations from 0.10% to 1.1% were specifically synthesized for this study.
Such nanofluids were characterized for the purpose of being used as potential nano-enhanced phase
change materials. The poly(ethylene glycol) utilized as base fluid was an almost monodisperse
polymer with an average mass molar mass of 533 g·mol−1. Dry silver nanoparticles exhibited a
quasi-spherical morphology with an average diameter of ~22 nm. Once suspended in PEG400,
nanoparticles showed DLS hydrodynamic diameters of ~50 nm, a value that remained constant
over time indicating that no significant sedimentation or agglomeration occurred in the dispersion.
The dispersion of PVP-capped silver nanoparticles improved the thermal conductivity of nanofluids,
maximum enhancements reaching 3.9% for the Ag(1.1 wt%)/PEG400 sample. Calorimetry analyses
showed that the addition of silver nanoparticles slightly reduced undesirable sub-cooling phenomena,
in which a maximum improvement of 7.1% was found for the highest nanoparticle loading. Also at 1.1
wt% silver content, modifications in isobaric heat capacity, density, and surface tension were 0.9%,
2.2% and 2.2%, respectively. Studied NePCMs showed a Newtonian behavior with average increases
ranging from 1.4% to 5.4%, in comparison to neat poly(ethylene glycol). Obtained improvements in the
sub-cooling phenomenon and thermal conductivity evidence the potential that nanoparticle addition
has in the development of phase change materials with enhanced thermal properties. However,
more research in the selection of nanoadditives and the design of NePCMs is still necessary so that
those materials achieve a competitive edge over conventional thermal storage materials.
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