Supplementary Information

Sustainable Biomass Glucose-Derived Porous Carbon Spheres with High Nitrogen Doping: As a Promising Adsorbent for CO₂/CH₄/N₂ Adsorptive Separation

Yao Li^{1,2,+}, Shiying Wang^{1,+}, Binbin Wang^{3,*}, Yan Wang¹ and Jianping Wei^{1,2,*}

- ¹ School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China; leayao35@hpu.edu.cn (Y.L.); 211701010023@home.hpu.edu.cn (S.W.); yanwang@hpu.edu.cn (Y.W.)
- ² State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University, Jiaozuo 454000, China
- ³ School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
- * Correspondence: wangbb@hpu.edu.cn (B.W.); weijianping@hpu.edu.cn (J.W.); Tel.: +86-391-398-6901 (B.W.); +86-391-398-7885 (J.W.)

comm1cc	CO ₂ uptake (mmol g ⁻¹)	CH ₄ uptake(mmol g ⁻¹)	- Pof	
samples	25 °C 25 °C		Kel.	
ACSs-N	3.03	0.93	This work	
NPCs-2-500	2.5		S1	
WNPC-3	2.78		S2	
AC-PAIN-F	2.69		S3	
STC-2.5	1.3		S4	
500-2	3.5		S5	
SNMC-2-600	4.24	1.57	S6	
OTSS-1-550	3.1	0.5	S7	
sOMC	2.0	0.9	S 8	
Ni formate		0.82	S9	
Cu(hfipbb)(H2hfipbb)0.5	0.86	0.47	S10	
Cu(Me-4py-trz-ia)		1.12	S11	
MOF-177		0.56	S12	
MOF-5		0.13	S12	

Table S1. The gas adsorption performance for porous materials from reported results.

Table S2. Summary of the gas capacities of the ACSs-N under high pressure.

Sample	CO ₂ uptake (mmol g ⁻¹)	CH4 uptake (mmol g ⁻¹)	N2 uptake (mmol g ⁻¹)
0 °C	5.87	3.86	2.60
25 °C	5.25	3.40	2.12
45 °C	4.82	3.03	1.78

Figure S1. XPS high-resolution of (a,b,c) C1s and (d,e,f) O1s for the porous carbon samples ACSs-N, NCSs and ACSs.

Figure S2. Adsorption isotherms of (a) CO2, (b) CH4, and (c) N2 on ACSs-N at high pressure. The marker points represent the experimental data, while the black solid lines correspond to Langmuir-Freundlich equation fittings.

- [1] Wei, H.M.; Qian, W.; Fu, N.; Chen, H.J.; Liu, J.B.; Jiang, X.Z.; Lan, G.X.; Lin, H.L.; Han, S. Facile synthesis of nitrogen-doped porous carbons for CO₂ capture and supercapacitors. *J. Mater. Sci.* 2017, *52*, 10308-10320.
- [2] Li, Y.; Xu, R.; Wang, X.; Wang, B.B.; Cao, J.L.; Yang, J.; Wei, J.P. Waste wool derived nitrogen-doped hierarchical porous carbon for selective CO₂ capture. *RSC Adv.* 2018, *8*, 19818-19826.
- [3] Khalili, S.; Khoshandam, B.; Jahanshahi, M. Synthesis of activated carbon/polyaniline nanocomposites for enhanced CO₂ adsorption. *RSC Adv.* **2016**, *6*, 35692-35704.
- [4] Sivadas, D.L.; Narasimman, R.; Rajeev, R.; Prabhakaran, K.; Ninan, K.N. Solvothermal synthesis of microporous superhydrophobic carbon with tunable morphology from natural cotton for carbon dioxide and organic solvent removal applications. *J. Mater. Chem.* A 2015, 3, 16213-16221.
- [5] Lee, D,Y.; Zhang, C.Y.; Wei, C.; Ashfeld, B.L.; Gao, H.F. Hierarchically porous materials via assembly of nitrogen-rich polymer nanoparticles for efficient and selective CO₂ capture. *J. Mater. Chem. A* 2013, *1*, 14862.
- [6] Zhang, P.X.; Zhong, Y.; Ding, J.; Wang, J.; Xu, M.; Deng, Q.; Zeng, Z.L.; Deng, S.G. A new choice of polymer precursor for solvent-free method: Preparation of N-enriched porous carbons for highly selective CO₂ capture. *Chem. Eng. J.* 2019, 355, 963-973.
- [7] Zhang, Y.; Liu, L.; Zhang, P.X.; Wang, J.; Xu, M.; Deng, Q.; Zeng, Z.L.; Deng, S.G. Ultrahigh surface area and nitrogen-rich porous carbons prepared by a low-temperature activation method with superior gas selective adsorption and outstanding supercapacitance performance. *Chem. Eng. J.* 2019, 355, 309-319.
- [8] Yuan, B.; Wu, X.F.; Chen, Y.X.; Huang, J.H.; Luo, H.M.; Deng, S.G. Adsorption of CO₂, CH₄, and N₂ on ordered mesoporous carbon: approach for greenhouse gases capture and biogas upgrading. *Environ. Sci. Technol.* **2013**, *47*, 5474-5480.
- [9] Guo, Y.; Hu, J.L.; Liu, X.W.; Sun, T.J.; Zhao, S.S.; Wang, S.D. Scalable solvent-free preparation of [Ni₃(HCOO)₆] frameworks for highly efficient separation of CH₄ from N₂. *Chem. Eng. J.* 2017, 327, 564-572.
- [10] Wu, X.F.; Yuan, B.; Bao, Z.B.; Deng, S.G. Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal–organic framework. *J. Colloid Interface Sci.* 2014, 430, 78-84.
- [11] Möllmer, J.; Lange, M.; Möller, A.; Patzschke, C.; Stein, K.; Lässig, D.; Lincke, J.; Gläser, R.; Krautscheid, H.; Staudt, R. Pure and mixed gas adsorption of CH₄ and N₂ on the metalorganic framework Basolite[®] A100 and a novel copper-based 1,2,4-triazolyl isophthalate MOF. J. Mater. Chem. 2012, 22, 10274.
- [12] Saha, D.; Bao, Z.B.; Jia, F.; Deng, S.G. Adsorption of CO₂, CH₄, N₂O, and N₂ on MOF-5, MOF-177, and Zeolite 5A. *Environ. Sci. Technol.* **2010**, *44*, 1820-1826.