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Abstract: The mechanical and thermal properties of graphene kirigami are strongly dependent on
the tailoring structures. Here, thermal conductivity of three typical graphene kirigami structures,
including square kirigami graphene, reentrant hexagonal honeycomb structure, and quadrilateral
star structure under uniaxial strain are explored using molecular dynamics simulations. We find that
the structural deformation of graphene kirigami is sensitive to its tailoring geometry. It influences
thermal conductivity of graphene by changing heat flux scattering, heat path, and cross-section area.
It is found that the factor of cross-section area can lead to four times difference of thermal conductivity
in the large deformation system. Our results are elucidated based on analysis of micro-heat flux,
geometry deformation, and atomic lattice deformation. These insights enable us to design of more
efficient thermal management devices with elaborated graphene kirigami materials.
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1. Introduction

Strain engineering can effectively regulate the thermal conductivity of traditional bulk
materials [1–3] as well as low dimensional nanomaterials [4–8]. It has been found that the thermal
conductivity of bulk nanostructures increases with increasing compress strain but decreases with
increasing tensile strain [1–3]. Li et al. reported that the thermal conductivity of bulk Si decreases by
68% when strain increases from−0.09 (compression) to 0.12 (tension) [3]. For low dimensional materials,
the thermal properties of graphene [4,5], silicene [6], phosphorene [7], and nanotube [8] are also sensitive
to strain engineering. For instance, the thermal conductivity of graphene reduces under uniaxial tensile
strain and its maximum reduction reaches 60% at strain of 0.2 [5]. Xu et al. reported that the thermal
conductivity of single-walled carbon nanotube is reduced under both tension and compression [8].
Its thermal conductivity reduces by 32% and 30% at strain of −0.06 and 0.15, respectively.

For the most traditional materials, longitudinal deformation usually exhibits little effect on their
variation of cross-section area in lateral direction. Thus the effect of the minor variation of cross-section
area deriving from longitudinal strain on thermal conductivity is small and can be negligible. It is
because the global deformation of these structures actually derives from the microscopic deformation
of the atomic bonds and angles, thus the effect of strain on thermal conductivity is mainly attributed
to the phonon vibrational density of states, i.e., phonon softening/stiffening and phonon scattering.
Compared to traditional materials, there also exist some materials exhibit large deformation capacities
under longitudinal loading, the lateral deformation is mainly caused by the geometry deformation.
The kirigami graphene structures (KGS) were found to exhibit strong yield and fracture strains
than pristine graphene [9–11]. Wei et al. studied the effects of tailoring size on mechanical and
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thermal properties of KGS by introducing rectangular tailoring geometry [11]. Their results show
that the thermal response of KGS to uniaxial tensile strain is different from that of pristine graphene.
The deformation of KGS under tensile strain is resulting from the competition of the two mechanisms,
the geometry deformation and atomic lattice deformation. While, two of them lead to the different
thermal response.

When material is conducted uniaxial tensile/compressive strain, it usually deforms in the lateral
direction. The Poisson’s ratio is usually used to characterize the relationship between the deformation
in the lateral direction for a material and its longitudinal strain. Poisson’s ratio (v) is defined as
v = −εt/εl, where εl and εt are the longitudinal strain and the corresponding transverse strain,
respectively. Most traditional materials tend to contract in the lateral direction under longitudinal
elongation deformation. In contrast, there are also some auxetic materials that tend to expand in
the lateral direction, which are called as negative Poisson’s ratio materials, such as single-layer black
phosphorene [12], graphene oxide [13], and graphene nanoribbons with small width (<10 nm) [14].
Due to the fact that the magnitude of cross-section area (A) is closely related to thermal conductivity
of a material, κ = J/(A ∂T/∂L), thus Poisson’s ratio could highly affect the thermal conductivity of a
material in means of variation value of the cross-section area.

As a typical two-dimensional material, the mechanical property of graphene can be tuned by
kirigami. KGS has been realized in experiment using optical lithography [10] and showed a tunable
mechanical property. By adjusting tailoring geometry of graphene, kirigami not only improves the
deformation capacities of KGS, but also introduces negative Poisson’s ratio properties to KGS [15,16].
To investigate the effect of large deformation on thermal conductivity of materials and further study
the difference in structural variation caused by tailoring geometry, we employ three typical KGSs with
different tailoring geometry to study their mechanical and thermal properties.

In this paper, we investigate the thermal conductivity of KGSs using molecular dynamics
simulations. Three typical KGSs are considered in present study. The effect of tailoring geometry
on mechanical property is initially considered. We further choose the two typical kirigami
structures, i.e., square kirigami graphene with large deformation capacity, and quadrilateral star
structure with negative Poison’s ratio characteristics to explore their structure deformation effects on
thermal conductivity.

2. Models and Methods

Three kirigami structures, square kirigami model (SKG), reentrant hexagonal honeycomb (RHH),
and quadrilateral star structure (QSS), were considered in the present study. As shown in Figure 1,
the geometer parameters are also labeled.
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Figure 1. Three models of kirigami graphene structure (KGSs) are used in the present work. (a) Square
kirigami graphene (SKG) model; (b) reentrant hexagonal honeycomb (RHH) model; and (c) quadrilateral
star structure (QSS).

Molecular dynamics simulations were performed to explore the thermal transport properties of
KGS using large-scale atomic/molecular massively parallel simulator (LAMMPS) [17]. Intermolecular
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reactive empirical bond order (AIREBO) potential [18,19] was used to describe carbon–carbon atomic
interactions for it could well describe the variation of thermal conductivity of graphene [5,20] and
defective graphene [11]. Periodic boundary conditions were applied in both x and y directions.
The standard Newton’s equation of motion performed time integration using the Verlet algorithm with
a time step of 0.5 femtosecond. The Polak–Ribiere version of the conjugated gradient algorithm [21]
was initially adopted to minimize the total energy of system and optimize the structure of system.
After that, a 200 ps Nosé–Hoover thermal bath coupling [22,23] is conducted to ensure the system
reaches the equilibrium state at 300 K.

Reverse non-equilibrium molecular dynamics simulations [24] were performed to calculate the
thermal conductivity of the model. The model was divided into 50 slabs along the heat transfer (x)
direction as approaching the equilibrium state. Figure 2a,b shows the 1st slab was assigned to be the
heat sink while the 26th is the heat source, and the heat flux transfers from the heat source (hot region)
to the heat sink (cold region). The heat flux transport direction is defined as the length direction (L)
while the transverse direction is the width (W) direction. To generate a temperature gradient, the heat
flux J is released/injected by exchanging the kinetic energies between the hottest atom and the coldest
atom. The heat flux J can be obtained according to the following equations.

J =

∑
Nswap

1
2

(
mv2

h −mv2
c

)
tswap

, (1)

where Nswap is the amount of exchanging atoms pairs, tswap is the total time of exchanging kinetic
energy, m is the mass of atom, and vh and vc represent the velocity of exchanging atoms, respectively.
The temperature of each slab was collected and averaged over 3.0 ns to obtain temperature distribution
when system reaches non-equilibrium steady state (after 1.5 ns).
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The value of thermal conductivity was then calculated by using the Fourier’s law as

κ =
J

2A∂T/∂L
, (2)

where A is the cross-sectional area of heat transfer and ∂T/∂L denotes the temperature gradient after
the system reaches non-equilibrium steady state (see Figure 2c,d). The factor 2 represents the fact that
the heat flux transports in two directions away from the heat source. The thickness of model was
assumed to be the interlayer equilibrium spacing of graphene (0.34 nm) [25,26].

3. Results and Discussion

The mechanical properties of these kirigami structures were investigated. To avoid any nonphysical
strain hardening and spurious high bond forces [27,28], the cut-off distance was set to 0.2 nm [29–31].
When the system reached the equilibrium state, as the deformation-control method, the tensile loading
was applied with a strain rate of 0.0001/ps by scaling all atomic coordinates accordingly for each
1000 steps under the NPT ensemble. When the tensile strain was applied in one direction, the structure
was relaxed to 1 bar in the direction of perpendicular to the strain. Poisson’s ratio (v) is defined
as v = −εt/εl, where εt and εl are the transverse strain and the longitudinal strain, respectively.
The engineering stress is defined as:

σx =
1

V0

∂U
∂εx

, (3)

where U is the strain energy, V0 is the initial volume of the system, and εx is the loading strain.
The atomic stress of individual carbon atoms in the graphene sheet is calculated according to the
equation [11]:

σαi j =
1

Ωα

1
2

mαvαi vαj +
∑
β=1,n

r j
αβ f i

αβ

, (4)

where α and β are the atomic indices; mα and vα denote the mass and velocity of atom α, i and j
denote indices in the Cartesian coordinate system, and rαβ is the distance between atom α and β.
The second term sums over all atoms and incorporates the contributions of kinetic energy, pairwise,
and many-body interactions. The stress on each atom was averaged over the last latter 500 timesteps
of the relaxation period. The global stress of the system was then obtained by averaging the stress on
each atom over all.

All of these kirigami structure’s deformation and stress distribution under tension are plotted
in Figure 3 (along x-direction) and Figure 4 (along y-direction), respectively. It can be found that the
different tailoring structure induced diverse deform evolution and stress distribution field. For the
SKG model, it shows explicitly anisotropic mechanical behaviors under tensile loading along x-and
y-directions. When tension was conducted on SKG in x-direction, its system shrinked in the direction
perpendicular to loading direction and it gathered together before system failure. While when it was
stretched along the y-direction, tensile force was performed directly on y-parallel ribbons and it had
barely geometry deformation in the tensile loading. For the RHH model, its dimension size in tensile
perpendicular direction expanded (shrinked) under tensile loading along the x- (y-) direction. For the
QSS model, it shows similar trends of stress, strain, and Poisson ratio as a function of strain in both x-
and y-directions.



Nanomaterials 2020, 10, 126 5 of 15

Nanomaterials 2020, 10, x FOR PEER REVIEW 6 of 16 

 

 

Figure 3. Configuration deformation and stress distribution of KGSs for system under tensile loading 
along the x-direction. (a1–a6) is process of the SKG’s model deformation and stress distribution under 
tensile loading. (b1–b6) is process of the RHH‘s model deformation and stress distribution under 
tensile loading. (c1–c6) is process of the QSS’s model deformation and stress distribution under tensile 
loading. 

To further analyze the mechanical properties of three KGSs, the relationships of stress–strain (σ–ε), 
strain–strain (εx–εy), and Poisson’s ratio–strain (v–ε) of these models are shown in Figure 5. For the 
case of SKG model, the stress was almost zero at the initial elongation (strain <0.3). When the strain 
was over 0.3, the stress increased with strain sharply until its structure failed at a strain of 0.46. In 
comparison, the fracture strain for pristine graphene was 0.13 in armchair direction. The 
enhancement of fracture strain in SKG model was attributed to the geometry deformation under the 
tensile loading. This deformation process also reflected in the variation of strain perpendicular to the 
loading direction. As shown in Figure 5(a3), when strain-x <0.35, strain-y shrinked dramatically with 
loading along the x direction. It shows that in that period, tensile strain mainly induced geometry 
deformation. When the loading strain was over 0.35, strain-y changed slowly with increasing strain-
x. At that period, tension mainly induced variation of the atomic bond-length and bond-angle in 
graphene. Thus, stress rose sharply with tension in this period. Figure 5(a4) shows Poison’s ratio v 
changed with tensile strain. At the beginning of loading, there was a large fluctuation of v-strain 
curve due to the kirigami structure starting to deform. Then v increased dramatically with strain until 
strain-x reached 0.35. It suggests that the system shrinks fast in the perpendicular direction. When 
strain was over 0.35, v reached a plateau (1.4) with further elongation. This is because the geometry 
deformation induced by strain was replaced by variation of atomic bond-length and bond-angle. 
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along the x-direction. (a1–a6) is process of the SKG’s model deformation and stress distribution under
tensile loading. (b1–b6) is process of the RHH’s model deformation and stress distribution under tensile
loading. (c1–c6) is process of the QSS’s model deformation and stress distribution under tensile loading.

To further analyze the mechanical properties of three KGSs, the relationships of stress–strain
(σ–ε), strain–strain (εx–εy), and Poisson’s ratio–strain (v–ε) of these models are shown in Figure 5.
For the case of SKG model, the stress was almost zero at the initial elongation (strain <0.3). When
the strain was over 0.3, the stress increased with strain sharply until its structure failed at a strain
of 0.46. In comparison, the fracture strain for pristine graphene was 0.13 in armchair direction.
The enhancement of fracture strain in SKG model was attributed to the geometry deformation under
the tensile loading. This deformation process also reflected in the variation of strain perpendicular to
the loading direction. As shown in Figure 5(a3), when strain-x <0.35, strain-y shrinked dramatically
with loading along the x direction. It shows that in that period, tensile strain mainly induced geometry
deformation. When the loading strain was over 0.35, strain-y changed slowly with increasing strain-x.
At that period, tension mainly induced variation of the atomic bond-length and bond-angle in graphene.
Thus, stress rose sharply with tension in this period. Figure 5(a4) shows Poison’s ratio v changed with
tensile strain. At the beginning of loading, there was a large fluctuation of v-strain curve due to the
kirigami structure starting to deform. Then v increased dramatically with strain until strain-x reached
0.35. It suggests that the system shrinks fast in the perpendicular direction. When strain was over 0.35,
v reached a plateau (1.4) with further elongation. This is because the geometry deformation induced
by strain was replaced by variation of atomic bond-length and bond-angle.
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Figure 5. Mechanical properties of KGSs are explored by performing tensile loading along x-direction
(a1–c1). The relationships of stress–strain (σ–ε) (a2–c2), strain–strain (εx–εy) (a3–c3), and Poisson’s
ratio–strain (v–ε) (a4–c4) are plotted.

For the case of RHH model, its fracture stress and strain were 7.4 GPa and 0.127, respectively.
Its stress–strain curve was smooth in the whole loading process and no jump-discontinuity point.
It suggests that in the tensile loading process, the kirigami geometry deformation accompanies with
the atomic lattice variation (bond stretching and angle change). Strain-y increased with strain-x along
with some fluctuations (Figure 5(b3)) and strain-y was above zero thus its system expended in both
the x and y directions under tensile loading along the x-direction. In the initial stage (strain-x < 0.04),
strain-y increased sharply with strain-x. In this stage, the system obtained the minimum NPR’s value
at strain-x = 0.036 (see Figure 5(b4)). Then strain-y increased slightly with further loading until strain-x
at 0.127.

For the case of QSS model, its fracture strain and stress were about 0.3 and 0.77 GPa, respectively.
The same as the RHH model, the kirigami geometry deformation accompanied with the slightly
atomic lattice variation in the loading process. According to the strain-y and strain-x relationship
(Figure 5(c3)), the system size in the perpendicular direction (y-direction) enlarged with strain-x when
strain-x <0.15. It shows strong oscillation in strain-x and strain-y curve, which was attributed to the
oscillation of system under tensile strain. Its oscillation amplitude was related to the strain-rate and
it decreased with lower strain-rate. While it did not change the strain variation trend and structure
deformation. Then strain-y decreased monotonously with further tensile loading. Strain-y was found
to be larger than 0.0, which means that the system size in the y direction was greater than its initial
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size and its Poisson’s ratio value was negative (see Figure 5(c4)). All of these three kirigami models
generate geometry deformation at the beginning of the tensile loading period due to the existence of
tailoring vacancy.

Then we explored the mechanical properties of these kirigami structures by loading in y- directions
(see Figure 6). For the case of graphene, its fracture stress at armchair and zigzag directions were
104 GPa and 127 GPa, respectively [32]. While for the KGS, its tailored structure played a dominant role
in system deformation and its cutting shapes affected its anisotropic mechanical properties. For the
SKG model, its fracture stress and strain were about 15 GPa and 0.19 along y-direction, respectively,
which were smaller than its corresponding values along the x-direction (18 GPa and 0.46). That is
because of tensile loading along the y-direction, it cannot release strain through geometry deformation
(see snapshot of structural deformation in Figure 4). The fracture strain of SKG model in the y-direction
was almost the same as pristine graphene in the armchair direction. System size of the x-direction
shows a little variation in the loading process (its maximum deformation <0.04).

For the RHH model under tension along the y-direction, its stress did not increase explicitly
at the initial stage until strain-y was over 0.60 (see Figure 6(b2)). It was attributed to strain mainly
inducing geometry deformation at the initial stage. Therefore, its fracture strain reached 0.80 and its
corresponding stress was only 17 GPa. The strain in the perpendicular loading direction, strain-x,
decreased monotonously with strain-y, and it was less than zero in the whole loading process. Thus,
its Poison’s ratio was positive in the RHH model under the tensile loading y-direction. While for the
case of QSS model (see Figure 6(c2,c3)), its fracture strain and stress under loading along with the
y-direction were 0.32 and 0.82 GPa, respectively. Its values were greater than those corresponding
values under the x-direction loading, which were 0.3 and 0.77 GPa, respectively. The discrepancy of
mechanical properties along the x- and y-directions was induced by graphene intrinsic mechanical
anisotropic properties. Strain-x increased initially with strain-y and then reached a plateau (0.035)
when strain was greater than 0.2 (see Figure 6(c3)). Comparing with its mechanical properties along
the x-direction, we could see that their stress–strain, strain–strain, and v–strain curves were sharing the
similar trends and values. That is because the cutting structure of QSS model was identified in both
the x-and y-directions.

The mechanical properties of KGS were sensitive to its tailoring geometry and some tailored
structures show high deformation in some directions under uniaxial tensile strain. For instance, the
SKG shrinked by 73% in the y-direction when loading in the x-direction. The deformation parameters
of kirigami structures were much greater than that of pristine graphene [32]. Moreover, some KGS
exhibited the characteristics of a negative Poisson’s ratio. Considering that the thermal conductivity of
material was inversely proportional to its cross-section area, the variation of system cross-section area
affected its thermal conductivity. Moreover, as shown in Figures 5 and 6, tension only induced geometry
deformation in some KGS models, which had negligible effects on its phonon transport. To study the
effects of structure deformation on thermal property, we calculated the thermal conductivity of the
SKG and QSG in the x direction at various uniaxial tensile strains.
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The SKG and QSS structures with dimensions of 30 × 20 nm2 and 50 × 50 nm2 were employed to
study the strain effect on thermal conductivity of KGS. According to previous studies [11], thermal
conductivity of graphene kirigami was independent of the system size for it is mainly dominated
by short-range acoustic and optical phonons. We first calculated the thermal conductivity of models
at strain-free at room temperature (T = 300 K). The thermal conductivity of SKG (2.9 W/mK) and
QSS (1.2 W/mK) models were found to be much lower than that of pristine graphene sharing the
same length of 30 nm (259.6 W/mK) and 50 nm (407.2 W/mK), respectively, but was in considerable
agreement with previous studies by Wei et al. (5.1 W/mK) [11]. The reduction in thermal conductivity
of KGS was attributed to the phonon scattering at the vacancy regions [33–36] and the decrease in real
cross-section area [11].

To clarify the reduction mechanism of the thermal conductivity and study the difference between
KGS and pristine graphene in thermal transport, the spatial distributions of the heat flux on each atom
in SKG and QSS were calculated. The micro heat flux was extensively used in describing the thermal
transfer properties of low-dimensional materials. The atomic heat flux is defined as: Ji = eivi − sivi,
where ei, vi, and si represents the energy, velocity vector, and stress tensor of atom i, respectively [36].
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When the system reaches non-equilibrium steady state, the atomic heat flux will be calculated and
averaged over 2 ns. As shown in Figure 7, the global heat flux labeled by red rows transferred from the
heat source to the heat sink. The vector arrows labeled by blue rows show the migration and loss of
heat flux as well as phonon scattering around the vacancy regions. Similar to the defect effect [33–37],
the phonon scattering occurs when heat flux passes through a vacancy barrier, which results in the
reduction of the thermal conductivity. Especially for the QSS model (see Figure 7b), the transfer
direction of partial vector rows was opposite to that of global heat flux.
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According to the research by Wei et al. [11], the reduction of the thermal conductivity of KGS was
determined by three main factors, i.e., decreasing effective area of heat conduction, phonon scattering
in vacancy region, and the elongation of the heat path. The effect of these three factors on thermal
conductivity can be expressed as:

κ = δsδaδpκ0, (5)

where κ0 represents the thermal conductivity of pristine graphene in the same size and δs, δa, and
δp represent the reduction parameters caused by phonon scattering, effective area, and heat path,
respectively. The phonon scattering δs can be obtained from δs = κ/(δa × δp × κ0). The values of these
factors are shown in Table 1. We can see that the values of δs was one magnitude lower than that of
δa and δp, which indicates that phonon scattering was the dominant factor for the reduction of the
thermal conductivity. Moreover, it has been reported that the parameter of heat flux path plays the
main role in the reduction of the thermal conductivity of KGS in large system [11].

Table 1. The values of δa, δp, and δs of the SKG and QSS. κ and κ0 represents the thermal conductivity
of KGS and pristine graphene.

Model κ (W/mK) κ0 (W/mK) δa δp δs

SKG (30 nm × 20 nm) 2.9 259.6 (30 nm × 20 nm) 0.348 0.635 0.051
QSS (50 nm × 50 nm) 1.2 407.2 (50 nm × 50 nm) 0.188 0.469 0.033
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We computed the radial distribution function (RDF) of the SKG and QSS models to get the atomic
deformation. The results of graphene were also plotted for comparison (see Figure 8). The first peak at
0.14 nm was observed in graphene, SKG, and QSS at the strain-free state. It suggests the C–C bond
length was 0.14 nm in average [38,39].

The first RDF peak of graphene shifted to 0.143 nm at a uniaxial tensile strain of 0.1 in the
x-direction, which means that the bonds of graphene were stretched. In contrast, the RDF of SKG and
QSS show little difference between εx = 0 and εx = 0.1. It indicates that tensile strain barely induced
C–C bond stretching but resulted in kirigami structure deformation (Figures 3 and 4).
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Figure 8. The radial distribution function of carbon atoms of graphene (G), SKG, and QSS models at
strain-free and strain at 0.1. εx represents the uniaxial tensile strain in the x-direction.

In Figure 9, we show the thermal conductivity of SKG and QSS models in the x direction at various
uniaxial tensile strains. To analyze the effect of cross-section area of models on thermal conductivity,
the thermal conductivity was compared with (A) and without (A0) considering lateral cross-section area
variation, respectively. All the values were normalized by the thermal conductivity (κ0) at strain-free.
The values of κ0 of the SKG and QSS models were 2.9 W/mK and 1.2 W/mK, respectively.

As shown in Figure 9a, the thermal conductivity of the SKG was found to increase monotonously
with tensile strain. This phenomenon was exactly the opposite of pristine graphene with small size,
the thermal conductivity of which is reported to decrease with increasing tensile strain due to phonon
softening and phonon scattering [5,6]. According to the study on mechanical property in Figure 5(a2),
the global deformation of the SKG within small strain (<0.3) was mainly affected by the geometry
deformation and the little variations of bonds and angles could even be ignored. Therefore, the
strain effect of thermal conductivity of the SKG was mainly attributed to geometry deformation
rather than phonon scattering. For the KGS, its model length increased with tensile strain due to
geometry deformation, thus the acoustic phonons with longer wave-length were involved with heat
transfer [40,41]. Compared to the thermal conductivity of strain-free (ε = 0, κ0 = 2.9 W/mK), the actual
thermal conductivity of SKG model (κ = 3.9 W/mK) along the x direction increased by 34.7% when the
strain reached 0.12. This actual value was larger than the thermal conductivity calculated by initial
cross-section area under the same condition (κ = 3.2). The large difference between S and S0 was
attributed to the sharply variation of cross-section area of the SKG under tensile strain.
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As shown in Figure 9b, the thermal conductivity of the QSS model under uniaxial tensile strain
shows the same tendency with the SKG model. According to the stress–strain curve in Figure 5(c2),
the lower stress (<1.0 Gpa) indicates that the variation of microscopic atomic structure was so slight that
the effect of strain on phonon states could be ignored. Therefore, the increase in thermal conductivity
of the QSS model also derived from the increasing model length in the heat transfer direction due to the
structural deformation. In comparison to the thermal conductivity at strain-free (ε = 0, κ0 = 1.2 W/mK),
the actual thermal conductivity (κ = 1.4 W/mK) of the QSS model increased by 18.5% when the strain
reached 0.15. In particular, the actual thermal conductivity of the QSS model was found to be slightly
lower than that calculated by its initial cross-section area, which was exactly in contrast to the SKG.
The difference could be attributed to their different mechanical properties. As we described in Figures 5
and 6, the QSS model shows characteristics of negative Poisson’s ratio in the x and y direction, it means
that its lateral aspect will expand with longitudinal tension. Since the thermal conductivity was
inversely proportional to the value of cross-section area, the increasing cross-section area would lead
to the decrease in thermal conductivity.

Comparing with traditional materials, some KGSs show large deformation in lateral direction
under uniaxial strain. The variation of cross-section area led to a significant effect on thermal
conductivity of KGS, such as the SKG model (see Figure 9a). The variation of the cross-section area
was determined by the lateral strain εt, and its relationship with tensile strain εl, which could be
described by parameter Poisson’s ratio v = −εt/εl. Therefore, when the tensile strain εl is conducted,
one can directly obtain the corresponding lateral strain εt of the material based on its Poisson’s ratio v,
i.e., εt = −v × εl. The lateral system size W under tensile strain can be defined as:

W = W0 × (1 + εt) = W0 × (1− v× εl), (6)

where W0 represents the initial lateral size of the material. Then, the relationship between initial
cross-section area A0 and deformed area A can be expressed as:

A0

A
=

W0 × d
W0 × (1− v× εl) × d

=
1

(1− v× εl)
, (7)

where d is the thickness of the material. We defined κ0 as the thermal conductivity of KGS without
considering the variation of the system in the lateral dimension. Due to the inverse relationship
between the cross-section area and thermal conductivity, the thermal conductivity κ at various strains
can be obtained by:

κ =
1

(1− v× εl)
κ0. (8)
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According to the obtained relationship between Poisson’s ratio and strain (v–ε) in Figures 5 and 6,
we show the variation k/k0 in these kirigami models under various tensile strains (see Figure 10).
We can see that it could make almost four times the difference in thermal conductivity with and without
considering lateral structural deformation in Figure 10(a1,b2).
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4. Conclusions

In summary, we studied the strain engineering for thermal conductivity of tailored graphene
kirigami models using molecular dynamics simulations. Our results show that tailoring geometry
dominated the structural deformation of the system. It mainly influenced the thermal conductivity of
the system by changing the lateral area, which varied inversely to its thermal conductivity. The thermal
conductivity of square kirigami graphene and quadrilateral star structure increased by 34.7% and
18.5% when the strain reached 0.12 and 0.15, respectively. Moreover, we also found that it could reach
four times the difference in thermal conductivity in our studied models with and without considering
lateral area variation. Our results were explained by analyzing both the atomic scale, including heat
flux and lattice deformation, and global structural deformation. Our findings provide useful guideline
to use tailored graphene sheet in thermal management devices and thermoelectric materials.
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