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Abstract: The development of visible-light active photocatalysts is a current challenge especially
energy and environmental-related fields. Herein, methylammonium lead iodide perovskite
(MAIPb) was chosen as the novel semiconductor material for its ability of absorbing visible-light.
An easily reproducible and efficient method was employed to synthesize the as-mentioned
material. The sample was characterized by various techniques and has been used as visible-light
photocatalyst for degradation of two model pollutants: rhodamine B (RhB) and methylene-blue
(MB). The photo-degradation of RhB was found to achieve about 65% after 180 min of treatment.
Moreover, the efficiency was enhanced to 100% by assisting the process with a small amount of H2O2.
The visible-light activity of the photocatalyst was attributed to its ability to absorb light as well as
to enhance separation of photogenerated carriers. The main outcome of the present work is the
investigation of a hybrid perovskite as photocatalyst for wastewater treatment.

Keywords: halide perovskite; photocatalysis; visible-light; Rhodamine B; oxidation

1. Introduction

Nowadays, environment pollution and energy related issues captured the attention of new century
researchers [1–5]. In particular, accelerated release of pollutants because of a combination of growing
population and a rapid industrial development have dramatically increased the water pollution in
many parts of the world. On the other hand, it is equally urgent to answer the increasing energy
demand and mitigate the negative effect of global warming by means of renewable energy sources.
Thus, efficient and eco-friendly methods for the degradation of organic pollutants based on renewable
energy source, such as solar light, have become an imperative task worldwide [6–11].

Heterogeneous photocatalysis consists in the dispersion of a solid material, usually a
semiconductor, that when irradiated at appropriated wavelengths is capable to generate highly
reactive oxygen species (ROS) which can degrade organic pollutants [12,13]. Photocatalysis main
advantages are: the room temperature operation, the utilization of clean and renewable solar light
as the driving force and any production of hazardous residues after mineralization to align with the
“zero” waste scheme for industries [14,15].

Recently, hybrid organic–inorganic halide perovskites (HOIPs) have gain a lot of attention,
especially in photovoltaics, because of their remarkable properties. It was 2009 when for the first time
Miyasaka and his colleagues employed hybrid perovskites in photovoltaic devices [16]. Then, the
studies of the HOIPs have stunned the research community with their remarkable performance and
rapid progress [17].
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Perovskite general formula is ABX3. HOIP A-site is occupied by an organic cation, B-site by a
metal od group IVA in a divalent oxidation state and X-site by a halogen anion [18]. As reported
in previous studies, the electronic properties of the mentioned perovskites is mainly governed by
the B-X bonds [19]. Electronic properties are fundamental in the understanding of heterogeneous
photocatalysis [20].

Herein, focusing on the compositional, structural, optical, and charges transportation properties,
we investigated this class of materials as promising candidate for photocatalytic applications [18,21–25].
First, the advantageous properties are a favorable mobility of the photogenerated charges, a reduced
surface recombination and long electron–hole diffusion length because of the strong defect tolerance,
the shallow point defects and the benign grain boundary. Second, these materials are known to own
an enhanced visible-light shift absorption ability and suitable band gap [23,24]. Moreover, they can be
produced by low cost solution processes [26].

According to literature, lead-based HOIPs (MAIPb) has achieved the best efficiency among all
the studied hybrid perovksites [27–31]. In MAIPb, A-site is occupied by methyl ammonium cation
(CH3NH3

+), the B-site by lead cation (Pb2+), and the X-site by iodine anion (I−) (Figure 1) [32,33].
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Herein, we propose to determine the feasibility of MAIPb, as one of the most promising HOIPs,
as visible-light photocatalyst for the degradation of some dyes having different chemical structures.
In particular we investigate the photocatalytic degradation on rhodamine B (RhB, fluorone dye)
and methylene blue (MB, thiazine dye) because these dyes are extensively used in industries and
medicines [34,35]. Moreover, the effect of key operating conditions on degradation efficiency were
studied: catalyst loading, addition of hydrogen peroxide, radiation intensity, solution pH, solution
temperature, pollutant initial concentration, and potential recycling test.

2. Experimental

2.1. Materials

Methylamine (CH3NH2, 33 wt% in ethanol), hydriodic acid distilled (HI 57 wt% in water), diethyl
ether (DE purity ≥ 99.8%), lead (II) iodide (PbI2 purity 99%), γ-butyrolactone (GBL purity ≥ 99%) were
purchased from Sigma Aldrich (Darmstadt, Germany) and used as received. The target dye pollutants
RhB, was obtained from Sigma Aldrich (Darmstadt, Germany).

2.2. Photo-Catalyst Synthesis

Hybrid organic-inorganic perovskite was prepared with a one-step, solution-processed method as
described in previous literature report [18]. CH3NH2 (11.39 mL, 0.09 mol) and HI (10 mL, 0.08 mol)
were stirred for 2 h in an ice bath kept at 0 ◦C to synthesize the precursor, CH3NH3I. The solution
was evaporated at 50 ◦C and the solid was washed three times with DE and dried at 50 ◦C on a hot
plate. The CH3NH3I (0.39 g) and PbI2 (1.16 g) were mixed in GBL (10 mL). Finally, the sample was
dried at 60 ◦C for 6 h until the solution was completely evaporated. Before performing photo-catalytic
oxidation process, the catalyst was washed several time with deionized water. It should be mentioned
that methylammonium was selected as precursor because it is most widely used as A-site cation
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since its radius appeared to be the more suitable resulting in low packing symmetry and high band
gap [36,37]. In comparison to other elements of group IV, Pb was selected because of its performance
and stability [18,38–40]. In particular, along group IV from Pb to Ge, it was previously reported a
decrease in stability of the divalent oxidation state and a consequent decrease in band gap value
combined with a reduced inert electron pair effects [41]. Among the halogens, iodide was selected for
its higher efficiency compared to other elements [16]. Moreover, in the periodic table iodide lies close
to Pb, thus, they result in more stable structure by sharing similar covalent character [18]. However,
we must notice that many factors remain not entirely understood. Moreover, some barriers are still to
overcome as stability and toxicity in large-scale implementation.

2.3. Photo-Catalyst Characterization

The X-ray powder diffraction (XRD) spectrum of the catalyst was recorded by PANalytical
instrument with the empyrean program (PANalytical, Cambridge, UK) with Co-Kα (λ = 1.7809 Å)
as the radiation source, 40 kV generator voltage and 40 mA tube current. The diffraction angle (2θ)
ranged from 20◦and 80◦ with intervals of 0.05◦. The sample functional groups were characterized by
Fourier transform infrared spectra (FT-IR) (Bruker, Solna, Sweden) in the region from 400 to 4000 cm−1

at room temperature using Horiba FT-730 FT-IR spectrometer. The microstructure and morphology
of the material were defined using scanning electron microscope (SEM) Hitachi SU3500 (Chiyoda,
Tokyo, Japan). Energy dispersive spectroscopy (EDS) (Thermo Scientific, Waltham, MA, USA) detected
the elemental composition of the pure hybrid organic-inorganic perovskite. The surface composition
and the electronic states of elements in the valence-band region were determined by ESCALAB 250
X-ray photoelectron spectroscopy (XPS) (ThermoFisher Scientific, Waltham, MA, USA) with Al-Kα

(1486.6 eV) as the X-ray source. Absorption spectra were measured with a PerkinElmer Lambda 1050
spectrophotometer (UV-vis) (PerkinElmer, Waltham, MA, USA) to establish the absorption spectrum
and band gap of the sample.

2.4. Procedure for Photo-Catalysis

The visible-light photocatalytic efficiency was evaluated based on the degradation of RhB. All
experiments were carried out in Pyrex vessels (100 mL) with 50 mL of RhB (20 mg·L−1). Specified
amount of reaction mixture was withdrawn at regular time intervals and analyzed with UV-vis
spectrophotometer at emission wavelength of 554 nm [42]. The efficiency of RhB removal was
determined as follow:

Removal efficiency % = C/C0 (1)

where C0 is the initial concentration of RhB and C is the measured concentration at the time of
withdrawal [43,44]. Electron spin resonance (ESR) technique with proper spin traps was used to
determine the presence of reactive oxygen species (ROS). TEMP (2,2,6,6-tetramethylpiperidine) was
used as spin trap for singlet oxygen and DMSO (dimethyl sulfoxide) for superoxide and hydroxyl
radicals [45,46]. The specifics of the visible-light device, used in the current research, are reported in
the Supporting Information (Table S1 and Figure S1).

3. Results and Discussion

3.1. Photo-Catalyst Characterization

The morphology of the material was investigated with SEM, the results, shown in Figure 2A,B,
suggest an aggregation of nanoparticles with hexagonal shape domains with nanometers size.
The specific morphology of the crystal lattice is mainly influenced by the synthesizing temperature
and may affect the optical, electrical, and transmission properties of the material, as confirmed in the
study of Li et al. [47].
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Figure 2. (A,B) Scanning electron microscopy (SEM) image of the as-prepared MAIPb
(methylammonium lead iodide perovskite).

In order to access the sorption behavior of these materials in aqueous phase, N2 sorption can
provide some useful information for the characterization and evaluation of the performance of the
photocatalyst [48]. As indicated by the analysis in Figure S2, the sample showed type III according to
IUPAC classification.

Figure S3 shows EDS spectra of the sample. The analysis confirms the presence of C, N, O, Pb,
and I. The ratio C:N:I:Pb was found to be 4.06:0.58:42.33:49.62. Lower signals for carbon and nitrogen
can be assigned to their lighter atomic weights. XRD pattern of the sample is presented in Figure 3A.
Hexagonal crystal system was mainly detected with space groups P3m1. Dominant diffraction peaks at
2θ = 14.7, 30.2, 40, 46.26, and 53.01◦ were assigned respectively to the (002), (012), (104), (110), and (106)
facets of the hexagonal crystalline structure. Peaks at 14.7 and 30.2◦ were also be indexed to (110) and
(220) facets of the tetragonal structure of perovskite according to literature [49]. It should be noted the
diffraction peaks of PbI2, assigned at 2θ equals to 12.8◦. The miller indexes (h, k, l) recorded suggested
more than one preferred crystal orientation in our samples.
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Figure 3. (A) X-ray diffraction (XRD) spectrum of the as-prepared MAIPb, (B) UV-vis spectrum and
Tauc plot of the as prepared MAIPb.

Figure S4 displays FT-IR spectrum of the synthesized organo-halide perovskite. The sample
showed broad vibrations N-H from 2800 to 3350 cm−1, the characteristic features of hydrogen bonds
overlapped the C-H vibrations signs. The peaks at 1450 cm−1 and around 650–750 cm−1 belong to
the organic cation vibrations since the Pb-I and Pb-I-Pb appeared in very lower energy [50,51]. Peaks
displayed at 1500 and 956 cm−1 an be respectively assigned to N-Pb-I stretching mode and Pb-I-NH
bending. The wide bend around 3100 cm−1 was assigned to CH-NH stretching vibration [52].

The optical properties were further investigated in terms of light absorption capability because
the absorption of light energy is one of the key of photocatalytic processes. Hybrid organic–inorganic
perovskite achieves an optical absorbance across the entire visible spectrum as highlighted by
Dualeh [53]. Carrier diffusion lengths was found to reach up to 100 nm for both electrons and holes
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in MAIPb via transient photo-luminescence measurements [54,55]. A nearly instantaneous charge
generation and dissociations of balanced free charge carriers with high mobility has been observed,
and the charges were proved to remain in that state for up to tens of microseconds [56]. From previous
literature, it was found that the electronic levels for hybrid perovskites consist of an antibonding hybrid
state between the Pb-s and I-p and a non-bonding hybrid state between the Pb-p and I-p orbitals
corresponding to highest occupied and lowest unoccupied molecular orbitals, respectively [57]. The
electronic properties were not influenced by organic fraction. In particular, Frost et al. showed that VB
transition is primarily affected by the ionization potential of halogen ions contribution [58].

In Figure 3B the optical band gap of the perovskite was calculated. From extrapolation of the
linear part of the Tauc plot (Kubelka–Munk theory), the optical gap was estimated to be 1.58 eV, which
is in close agreement with previous reports [18,21,59–62].

XPS measurements were performed in order to investigate the chemical bonding states of the
element in the envisaged catalyst Figure 4A. According to Navas et al. [18], peaks at 143 and 138.1
eV can be assigned to Pb 4f (Figure 5B); peaks around 412 eV, showed in Figure 4B, were assigned to
Pb 4d5/2. The bigger peaks can be associated with the Pb component in the halide hybrid perovskite
structure, while the smaller to metallic Pb probability decomposed from PbI during the synthesis [63].
Peak corresponding to 401 eV peak were assigned to N1s Figure 4D. In accordance with the studies
performed by Chen et al. [64], N state may vary and the associated peaks can be found at different
BE. Different peaks positions were found in a range of 396–404 eV in agreement with Nakamura
and Mrowetz et al. [65]. Conforming to the study of Navas et al. [18], the peaks shown in Figure 4C
belong to I 3d3/2 and I 3d5/2. It was further shown that the spectrum shows well separated spin–orbit
components, separation of around 11.4–11.5 eV was recorded as typical evidence of the presence of
I−0 [18]. Figure 4E shows peak belongs to C1s around 285 eV. Shen et al. [54], in their interesting
research on hybrid organic-inorganic perovskite for solar cell application, assigned this peak to the
methyl group. The conclusion obtained here agrees well with that reported by previous literature
confirming the achievement of the synthesis processes [18,63–66].
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spectrum, (B–E) zooming on specific binding energy range.

3.2. Photocatalytic Activity

Among the persistent contaminants, organic dye molecules are toxic and their uncontrolled
discharge from various industries into the water can have a huge impact on the environment [67].
In our study, the photocatalytic activity of the synthesized nano-catalyst was examined on RhB
removal, which is considered as one of the most abundant dyes in the textile industries effluents
and commonly chosen as model pollutant for photocatalytic treatment [68,69]. The photocatalytic
performance of investigated material was evaluated as the decrease of the relative concentrations of
RhB (C/C0) plotted over time in different conditions. The removal efficiency achieved by photolysis
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was found to be negligible. This fact suggests that the chosen pollutant owns excellent photo-stability,
as highlighted by Drexhage et al. and Beija et al. [70,71]. Control experiment in dark conditions was
evaluated. The results showed moderate affinity between the halide perovskite and RhB molecules
in terms of adsorption in darkness. The result are in accordance with the low surface area measured
by BET analysis. As expected, significant improvement on RhB removal efficiency was observed
during the photocatalytic experiments Figure 5A. After 3 h of irradiation, the concentration of RhB
greatly decreased with respect to the initial concentration, proving the activity of the as-synthesized
photocatalyst. The UV-vis spectra indicate that the main absorbance peak was reduced as a function of
irradiation time and the dye molecules were decolorized. On the other hand, the peak position was
found to be invariable and the diminishing intensity suggested that the fused aromatic ring structures
and dye chromophores were destroyed (Figure S5). Kibombo et al. achieved similar results during their
researches on optimization of photocatalysts for persistent organic pollutant remediation in wastewater
management [72]. In their work it was deeply explained how the reactive oxygen species attack the
auxochromic groups, induce N-de-ethylation of the alkyl amine group and how photogenerated holes
can degrade both RhB suspended molecules and N-de-ethylated products. As depicted in Figure 5,
the removal efficiency appeared at the very first interval (15 min), this is in accordance with the ROS
generation that is higher at the earlier step of irradiation [73–75].
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The potential of the as-prepared material in photodegradation of a different organic compound
was further investigated. In particular, methylene blue (MB) was chosen as the target contaminant.
Methylene blue could be successfully removed by the assisted photocatalytic reaction after 60 min
under visible-light irradiation. The results were compared with blank experiments to demonstrate
the photocatalytic nature of the reaction. The results and the comparison are shown in Supporting
Information (Figure S6).

The photocatalytic activity of the as-prepared nanoparticles showed higher photocatalytic efficiency
for MB dye compared to RhB. The differences in the recorded efficiencies can be attributed to the
chemical structures of the organic dyes and the nature of the functional groups present on their surfaces.

3.3. Effect of H2O2 on the Photocatalysis Treatment

Many techniques have been applied to reduce the effect of recombination of charges and to
enhance the heterogenous photocatalysis performance. Among these techniques, the assistance of
external electron acceptor such as hydrogen peroxide (H2O2) in the photocatalytic process has gained
more and more attention. The effect of H2O2 on photocatalytic oxidation of RhB in aqueous suspensions
of the as-synthesized material was investigated. Various concentrations of oxidant were used. Test
without the presence of a photocatalyst was performed. In addition, the photocatalytic degradation of
RhB was found to follow the pseudo first-order reaction model:



Nanomaterials 2020, 10, 115 7 of 17

ln(C/C0) = −kt (2)

The degradation rate constant k and the correlation coefficient of the curve R2 were obtained using
regression analysis. The value of R2 were higher than 0.92, thus it was assumed that the regression line
fits well with the data (Table 1).

Table 1. Degradation rate constant k and the correlation coefficient.

Experiment Rate (s−1) R2

Assisted photocatalysis H2O2 10−5 mol·L−1 0.0045 0.94
Assisted photocatalysis H2O2 10−3 mol·L−1 0.0215 0.92
Assisted photocatalysis H2O2 10−3 mol·L−1 0.1087 0.92

The reaction rate increased with H2O2 dosages. For the highest concentration of oxidant (10−3

mol·L−1), the kinetic rate was found to be almost 25 times higher than the lowest concentration and
5 times higher than the average concentration. For practical application and considering the cost of
hydrogen peroxide, 10−4 mol·L−1 was considered as the optimal value. The combination of halide
perovskite and H2O2 under visible-light illumination was found to greatly enhance the degradation
rates of RhB. When H2O2 concentration increases, more hydroxyl radicals are produced thus the
oxidation rate increases. ROS were considered as dominant mechanism in the photocatalytic process.
The first hypothesis is a direct photolysis of H2O2 by visible light that may generate free radicals
at a wavelength of 405 nm [76]. A second minor mechanism proposed by Ollis et al. [77] and Ilisz
et al. [78] suggested that H2O2 may partially contribute to the rate enhancement of photo-catalytic
process behaving as an electron acceptor. According to these theories, H2O2 cannot only generate ·OH
but also as electron acceptor, reduce the electrons-holes recombination increasing the photocatalytic
efficiency. On the other hand Dionysiou et al. [79] in their studies on assisted-H2O2-photocatalysis
showed that high concentrations of hydrogen peroxide may decrease the degradation rates because of
the consumption of hydroxyl radicals.

3.4. Effect of Catalyst Loading

The effect of catalyst load on the ability to remove RhB in aqueous solution is shown in Figure 6A.
The results suggest that the removal performance increased with the catalyst load up to 0.5 g·L−1 and
decreased when the load is higher. This is in agreement with the case observed in heterogeneous
photo-catalysis reaction. This behavior can be rationalized both in terms of availability of active sites
on material surface and light penetration of photo-activating light into the system. The availability
of active sites increased with catalyst loading, but on contrary the light penetration and, hence, the
photo-activated volume of particles decreased [80]. Moreover, higher amount of catalyst may induce
the deactivation of particles by collision with ground state molecules reducing the rate of reaction [81].
The trade-off of these effects was studied by considering also the organic contaminant concentration.

3.5. Effect of Initial Concentration of RhB

The effect of RhB initial concentration is an important parameter to consider [82]. Figure 6B
depicts the effect of RhB initial concentration on its removal. The result reveals that the increase of the
RhB concentration decreases the removal, corresponding to those from literature [1].

At higher RhB concentration, the generation of radicals on the surface of catalyst may be reduced by
the competition of the active sites covered by RhB ions. Moreover, with the increase in the concentration
the photons may be intercepted before they can reach the catalyst surface, decreasing the absorption
of photons by the catalyst [83]. Higher concentration of RhB may also cause aggregation and even
surface dimerization and have consequentially an effect on the degradation rates [42].
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3.6. Effect of Initial pH

The pH of the dye solution was altered by adding incremental amounts of either dilute HCl or
diluted NaOH in order to study the effect of pH on dye removal. Previously, it was confirmed that
none of the salts used had any effect on the dye spectra in the absence of light. The solution was
subjected to irradiation and change in absorbance value was noted.

The removal rate was found to increase in acidic media as shown in Figure 6C. The photolytic dye
degradation appeared to be the best at pH 3 and it decreased when pH was increased. The results
implied that in alkaline medium new oxidizing species, such as hydroperoxy anion can be formed.
The new species can react with both the reactive oxygen species such as hydroxyl radicals as well as
H2O2 molecules. This can consequently lower the dye contaminant removal rate. Future studies will
be required to clarify the effect of pH on dye discoloration.
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3.7. Effect of Temperature on H2O2-Assisted Photo-Catalysis

According to Wang et al. [84], temperature is another parameter that affects the heterogenous
photo-catalysis. Therefore, in this study, 25 ◦C, 35 ◦C, 45 ◦C were selected to examine the effect of
temperature on photo-catalysis under visible light irradiation. As the temperature increased from 25 to
45 ◦C, the first-order rate constant k1 increased almost 40% (Table 2). This behavior was associated to a
decrease in the viscosity and to an enhanced diffusion of the sorbate molecule [85].

Table 2. Impact of temperature on the RhB removal kinetic rate under the CH3NH3PbI3/visible
irradiation system, experimental conditions RhB: (20 mg·L−1), H2O2 (10−4 M), photo-catalyst (0.5 g·L−1),
pH 5.

Temperature (◦C) Kinetic rate (min−1) R2

25 0.0328 0.9632
35 0.0499 0.9143
45 0.0840 0.8526

The Arrhenius equation was used to determine the activation energy as follows:

K = A*exp(−Ea/RT) (3)
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where K is the constant rate that controls the entire process, A is the Arrhenius constant, T the
solution temperature in K, Ea apparent activation energy (kJ·mol−1), and R the ideal gas constant
0.0083 kJ mol−1

·K−1. The data are fitted using a linear regression (R2 0.9935). From the Arrhenius-type
plot (Figure 7). Ea value was calculated as 36.96 kJ·mol−1. Mcheik and El Jamal found similar result in
their study on removal of RhB with persulfate and iron activation [86]. The reaction appeared to be
activated also at room temperature and proceeded with relatively low energy barrier.Nanomaterials 2020, 10, x FOR PEER REVIEW 9 of 17 
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3.8. Recyclability of the H2O2-Assisted Photo-Catalysis System

Recyclability of the photocatalyst represents one of the most important advantages of a
heterogeneous application. Thus, the recyclability of the synthesized material was evaluated by
using H2O2 to activate the process for multiple cycles. Figure 8 shows three cycles of the RhB removal
using the H2O2-hybrid organic-inorganic perovskite system irradiated under visible light. It can be
seen that after 3 cycles, the system showed a stable and effective catalytic activity on the removal
of the selected dye, and the activity loss was negligible. RhB degradation efficiency showed slight
decrease from 93% to 80% after 120 min of the third treatment. The results obtained may be caused
by active sites saturation. Moreover, the recycle was performed in series, thus a slight decrease in
photocatalyst content should be considered. It must be mentioned that the main aim of the former
study is to investigate the potential of HOIPs in photocatalytic processes. Further development on
material and process technology should be applied.
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3.9. Active Species and Possible Mechanism

In a typical photocatalytic application, when a semiconductor is irradiated with equivalent or
greater light-energy, the electrons (e−) in the valence band (VB) are excited into the conduction band
(CB) leaving holes (h+) in the VB. The photo-generated electrons and holes trigger the redox reaction.
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When the bottoms of the CB is below the reduction potential of H+ to H2 (0 V vs. NHE), and the
tops of the VB must be located more positively than the oxidation potential of H2O to O2 (1.23 V vs.
NHE) both oxidation and reduction sites are created [87]. The electron/hole pairs and reactive oxygen
species (ROS), including O2·

−, and ·OH, are widely considered the main active species responsible for
photocatalytic degradation of organic contaminants [88,89].

As deeply studied by Han et al. [90], the electron spin resonance (ESR) spin-trap technique
confirms the presence of free radicals. DMPO and TEMP were used as spin trap for superoxide or
hydroxide radicals anions (O2·

−, ·OH) and singlet oxygen species (1O2), respectively.
In detail, upon visible light photo-excitation of the mixture of the organo-halide perovskite and

diamagnetic 2,2,6,6-tetramethylpiperidine (TEMP), three lines with equal intensities were observed
in the recorded spectrum in Figure 9. This indicates the capture of singlet oxygen (1O2) generated
by TEMP, leading to the formation of the TEMPO radical. The irradiation period was set at 5 min,
a signal of g = 2.0001 appeared confirming photo-generation of radicals. The time of irradiation
increased and the intensity of peaks decreased, after half-hour of irradiation the resulting spectrum is
shown in Figure 9A. The decrease in spectrum intensity of peaks suggests that 1O2 radical generation
occurred in the very first intervals of the photo-catalytic process that is mainly due to their nano-second
lifetime [46,91,92]. 5,5-dimethylpyrroline N-oxide (DMPO) was utilized as superoxide and hydroxide
radical anions (O2·

−, ·OH) spin trap. Four typical peaks appeared in the ESR spectrum revealing the
presence of the radicals, g factor was found equal to 1.9985. Later, the sampling period was increased,
and the lower peaks were recorded, indicating that radical generation belongs to the initial period
of irradiation. Figure 9B shows the radical peaks after 5 min of irradiation. The signal recorded
after 30 min shows a decrease in the intensity of peaks implying that no more radicals are present in
the solution.

Nanomaterials 2020, 10, x FOR PEER REVIEW 10 of 17 

 

As deeply studied by Han et al. [90], the electron spin resonance (ESR) spin-trap technique confirms 
the presence of free radicals. DMPO and TEMP were used as spin trap for superoxide or hydroxide 
radicals anions (O2∙−, ∙OH) and singlet oxygen species (1O2), respectively. 

In detail, upon visible light photo-excitation of the mixture of the organo-halide perovskite and 
diamagnetic 2,2,6,6-tetramethylpiperidine (TEMP), three lines with equal intensities were observed in 
the recorded spectrum in Figure 9. This indicates the capture of singlet oxygen (1O2) generated by 
TEMP, leading to the formation of the TEMPO radical. The irradiation period was set at 5 min, a signal 
of g = 2.0001 appeared confirming photo-generation of radicals. The time of irradiation increased and 
the intensity of peaks decreased, after half-hour of irradiation the resulting spectrum is shown in Figure 
9A. The decrease in spectrum intensity of peaks suggests that 1O2 radical generation occurred in the 
very first intervals of the photo-catalytic process that is mainly due to their nano-second lifetime 
[46,91,92]. 5,5-dimethylpyrroline N-oxide (DMPO) was utilized as superoxide and hydroxide radical 
anions (O2∙−, ∙OH) spin trap. Four typical peaks appeared in the ESR spectrum revealing the presence of 
the radicals, g factor was found equal to 1.9985. Later, the sampling period was increased, and the lower 
peaks were recorded, indicating that radical generation belongs to the initial period of irradiation. 
Figure 9B shows the radical peaks after 5 min of irradiation. The signal recorded after 30 min shows 
a decrease in the intensity of peaks implying that no more radicals are present in the solution. 

 

 
Figure 9. Electron paramagnetic resonance (EPR) spectra using as spin-trap: (A) TEMP, red for 5 min, 
black for 30 min; (B) DMPO, red for 5 min, black for 30 min. 

Finally, to evaluate also the effect of RhB in the production of radicals, a solution of equal content 
(100 μL) of RhB (20 mg∙L−1) and DMPO (100 mM) was prepared and irradiated in the presence of 
photo-catalyst. After an irradiation time of 5 min, the ESR spectrum was recorded revealing the 

333 334 335 336 337 338 339 340

In
te

ns
ity

 (a
.u

.)

Magnetic field (mT)

A

333 334 335 336 337 338 339 340

In
te

ns
ity

 (a
.u

.)

Magnetic field (mT)

B

Figure 9. Electron paramagnetic resonance (EPR) spectra using as spin-trap: (A) TEMP, red for 5 min,
black for 30 min; (B) DMPO, red for 5 min, black for 30 min.
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Finally, to evaluate also the effect of RhB in the production of radicals, a solution of equal content
(100 µL) of RhB (20 mg·L−1) and DMPO (100 mM) was prepared and irradiated in the presence of
photo-catalyst. After an irradiation time of 5 min, the ESR spectrum was recorded revealing the
presence of ·OH radicals (Figure 10). Four typical peaks were recorded also in presence of RhB,
revealing a potential synergetic effect between photo-catalyst and organic dye in the production of
hydroxyl and superoxide species. A mixed solution of RhB and DMPO was also prepared in the
absence of photo-catalyst to confirm the absence of the radicals.
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From the results described above, it may be concluded that both 1O2, O2·
− and ·OH radicals were

produced during the visible-light photo-catalyst treatment of RhB [93,94].
The photocatalytic degradation process proceeds through excitation, transportation, and

degradation pathways. As highlighted by Yin et al. [19], during the investigation mechanism
of photocatalytic degradation of RhB by TiO2/Eosin-Y system under visible light, dye molecules
transfer electrons onto conduction bands (CB) of catalyst leading to the formation of dye cationic
radicals. Then the involved electrons generate a series of active oxygen species such as O2·

−, ·OH, and
1O2 which are considered to be involved in the organic contaminant degradation. In a similar study
performed by Dutta et al. [95], two main mechanisms were proposed to promote dye degradation, one
governed by dye sensitization and the other by the photo-catalyst excitation. In the self-sensitized dye
degradation, the photo-induced electrons flow from the dyes to photo-catalyst surface as suggested
by their potential energy values. In particular, Lv et al. [96], with their respective co-authors, deeply
described the direction of the charge flow; the difference in the potential energy between the CBs
induces the electrons to transfer from higher energy level of the photo-excited dye to the lower ones of
catalyst. On the other hand, visible light excitation of MAIPb structures could also generate holes in
the valance band (VB) and electrons in the CB. Egger et al. studied the tunability of VB (ionization
potential) and CB (electron affinity) energies by the atomic orbitals of the anions and cations in different
organohalide perovskite [97]. Band energy and band gap engineering of these organic–inorganic solids
are indeed possible to be controlled by the chemical composition, and iodine presence was found
to upshift the VB and generally narrowing the band gap, favorable condition for bleaching organic
compound in aqueous solutions.

The CB transported electrons in both the materials may react with the dissolved oxygen in the
water to produce a reactive oxygen species, main responsible for the oxidative dye degradation under
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visible light irradiation. As confirmed by an interesting study on nanosized Bi2WO6 performed under
visible light by Fu et al. [98], the presence of oxygen is responsible for the activation of photo-catalysis
process. In their experiments, they confirmed the importance of the presence of dissolved oxygen in
the treated solution, since its effect is primarily to act as an efficient e− trap, leading to the generation
of reactive oxygen species and preventing the recombination of charges. Furthermore, Dutta et al.
highlighted a similar conclusion in their study on ternary nano-composite based on cadium sulphide
(CdS), TiO2, and graphene oxide. Herein, they proved how generated electrons react with the dissolved
oxygen in water to produce a reactive oxidizing agent initially in the specific form of oxygen radical
anion O2·

-, responsible for the oxidative dye degradation under visible light irradiation [95].
Based on the previous discussion, a possible mechanism of RhB is depicted in Figure 11. After

self-sensitization of RhB and the excitation of organohalide perovskite, separation of charges occurs,
and transport of electron is promoted. On the other hand, dissolved oxygen can act as an electron
acceptor, and can be reduced by the promoted electron in the conduction band to form a superoxide
specie O2·

− (3). The O2·
− can subsequently re-oxidize to 1O2 or, in the presence of water and H2O2,

it can form ·OH. The strong oxidation power of the hole enables a one-electron oxidation step with
water to produce a hydroxyl radical ·OH. These radicals are highly ROS, able to oxidize directly organic
contaminant. In our study, the generation of O2·

− and ·OH was confirmed by the ESR spectra by using
DMPO as the spin trap reagent [14], instead, TEMP was used to detect singlet oxygen and it proved
electrons and holes generation during visible light irradiation [46].
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