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Abstract: The construction of heterojunctions provides a promising strategy to improve photocatalytic
hydrogen evolution. However, how to fabricate a nanoscale TiO2/g-C3N4 heterostructure and hinder
the aggregation of bulk g-C3N4 using simple methods remains a challenge. In this work, we use a
simple in situ construction method to design a heterojunction model based on molecular self-assembly,
which uses a small molecule matrix for self-integration, including coordination donors (AgNO3),
inorganic titanium source (Ti(SO4)2) and g-C3N4 precursor (melamine). The self-assembled porous
g-C3N4 nanotube can hamper carrier aggregation and it provides numerous catalytic active sites,
mainly via the coordination of Ag+ ions. Meanwhile, the TiO2 NPs are easily mineralized on
the nanotube template in dispersive distribution to form a heterostructure via an N–Ti bond of
protonation, which contributes to shortening the interfacial carrier transport, resulting in enhanced
electron-hole pairs separation. Originating from all of the above synergistic effects, the obtained
Ag/TiO2/g-C3N4 heterogenous photocatalysts exhibit an enhanced H2 evolution rate with excellent
sustainability 20.6-fold-over pure g-C3N4. Our report provides a feasible and simple strategy to
fabricate a nanoscale heterojunction incorporating g-C3N4, and has great potential in environmental
protection and water splitting.
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1. Introduction

With the development of semiconductor photocatalysis [1–4], semiconductor photocatalysts
ushered in a glorious era of the photocatalytic water decomposition of H2 [5–8]. Graphitic carbon
nitride is currently a prominent semiconductor material that has garnered tremendous attention in
academia due to its low cost, environmental friendliness, suitable band structure and impressive
physical and chemical stability [9–11]. However, the major bottlenecks, such as small specific surface
areas and, especially, grievous charge recombination, will generate inferior photocatalytic activity.

The surface plasmon resonance effect (SPR) is expected to enhance the photocatalytic energy
conversion efficiency in the construction of composite photocatalytic materials due to its unique
light-substance interaction characteristics, which has attracted much attention in recent years. Metal
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nanoparticles (Ag, Au, Cu, etc.) with this SPR effect possess excellent electrical conductivity, which
can be used as electron acceptors to effectively inhibit the recombination course of photoinduced
carriers [12–14]. Thus, it is especially suitable for the construction of highly efficient composite
photocatalytic materials. For example, Feliz et al. prepared an octahedral molybdenum cluster
catalyst for the photocatalytic degradation of water, providing a new strategy for environmentally
friendly and low-cost photocatalysts [15]. However, beyond that, as we know, the construction of a
heterojunction through coupling g-C3N4 with various semiconductor materials is still deemed as an
effective way to suppress charge recombination and boost photocatalytic activity [16–20]. Given the
well-matched band edge offsets and the superior surface activity, titanium dioxide (TiO2) stands out
among diverse photocatalysts to construct g-C3N4/TiO2 heterostructures. The tacit cooperation between
them prompts the charge transfer at the phase interface and optimizes carrier separation efficiency
ulteriorly. Consequently, numerous recent research achievements of the g-C3N4/TiO2 nanocomposite
have also emerged [21–24].

Generally, ingenious morphology with structure can inhibit the agglomeration of nanoparticles,
and are also conducive to the charge migration, while porous, one-dimensional nanostructures can
provide a powerful bow for expanding the specific surface area, accelerating the mobility of charge
carriers and inhibiting the recombination of the charge carrier [25–28]. Unfortunately, the most reported
g-C3N4/TiO2 heterostructures so far are achieved by conventional thermal polymerizing of the mixtures
of g-C3N4 (or their precursors, such as sulfonylurea, cyanamide, melamine) and TiO2 (or titanium
sulfate, butyl titanate), which mostly generates dense and massive particles as well as the badly
agglomerated lamellar structure [29–31]. Obviously, the large accumulation of g-C3N4 is not conducive
to the formation of a low specific surface area and excellent charge transfer ability. Thus, g-C3N4/TiO2

nanocomposite remains a concern for ameliorating catalytic activity.
Herein, we elaborately designed an Ag/TiO2/g-C3N4 heterostructure by a small-molecular

co-assembly of AgNO3, Ti(SO4)2, melamine in hot solution (70 ◦C) and further calcining.
Heterostructures can form spontaneously in the designed solution. All these Ag/TiO2/g-C3N4

heterogenous materials excellently equipped the carrier migration rates with superior photocatalytic
H2 evolution over bulk g-C3N4 to couple the morphology control in TiO2/g-C3N4 heterojunctions with
Ag SPR effects by in situ co-assembly.

2. Materials and Methods

2.1. Materials

Melamine (C3H6N6) and titanic sulfate (Ti(SO4)2) were ordered from Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China). Silver nitrate (AgNO3) was purchased from Aladdin Chemicals (Tianjin,
China). Polyvinylpyrrolidone (PVP, Mw = 40,000) was provided by Stem Chemicals (Beijing, China).
1-propyl alcohol (99.7%) was gained from J&K Chemicals (Beijing, China).

2.2. Synthesis of Ag/TiO2/Melamine Heterojunction Nanotubes

Typically, melamine (375 mg), AgNO3 (85 mg), Ti (SO4)2 with different contents (0, 24, 72 and
144 mg) were added into the mixture of aqueous solution and 1-propyl alcohol (99.7%) containing
PVP (50 mg), which followed by incubation at 70 ◦C for 2 h with a continuous magnetic stirrer to in
situ construct a series of Ag/TiO2/melamine-X nanocomposites (X represents the different dosages of
Ti(SO4)2 precursors, labeled as 0, 1, 2, 3). Finally, the samples were freeze-dried and labeled as Ag/MA,
Ag/TiO2/MA-1, Ag/TiO2/MA-2, Ag/TiO2/MA-3, respectively.

2.3. Preparation of Ag/TiO2/g-C3N4 Heterogenous Photocatalysts

Under Ar atmosphere, Ag/TiO2/g-C3N4-X (X = 0, 1, 2, 3) was prepared by burning
Ag/TiO2/Melamine-X precursors to 550 ◦C for 4 h at a heating rate of 2 ◦C/min in a tube furnace.
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2.4. Monitoring of Photocatalytic Hydrogen Evolution Activity

The photocatalytic water-splitting experiments were performed in a 10 mL quartz test tube
equipped with a rubber stopper. A 350 W xenon lamp with a 400 nm optical filter was regarded as a
light source at a distance of 10 cm away from the photocatalytic reactor. In a typical photocatalytic
experiment, 10 mg catalyst was dispersed in 5 mL aqueous solution containing 0.5 mL triethanolamine
as a sacrificial agent. Additionally, 0.5 mL potassium tetrachloroplatinate (II) (K2PtCl4) was added into
the hybrid solution with 1 wt % of Pt cocatalyst to photocatalyst. To provide an anaerobic environment,
the reaction system was adequately removed from the dissolved oxygen by discharging Ar for 30 min
and then sealing with paraffin. In order to keep the sample in suspension status, the photocatalyst was
stirred continuously by a magnetic stirrer during the whole experiment. The reaction was monitored
for 4 h, and 0.2ml of gas was sampled at intervals of an hour through the septum to analyze by gas
chromatography (TRACE 1300, Thermo Fisher Scientific, Waltham, MA, USA, TCD, 5Å molecular
sieve column).

2.5. Characterization

The morphology of the Ag/TiO2/g-C3N4 composite sample was observed by a transmission
electron microscope (TEM, HT7700, High-Technologies Corp., Tokyo, Japan) and a high-resolution
transmission electron microscope (HRTEM, JEM-2100F, JEOL, Tokyo, Japan). X-ray diffraction (XRD)
was obtained on an X-ray diffractometer equipped with a CuKα X-ray radiation source and a Bragg
diffraction apparatus (SMART LAB, Rigaku, Tokyo, Japan). The thermogravimetric (TG) method was
carried out under an Ar atmosphere using a NETZSCH STA 409 PC Luxxsi simultaneous thermal
analyzer (Netzsch Instruments Manufacturing Co., Ltd., Ahlden, Germany). The FTIR spectrum of the
photocatalyst was recorded by Fourier infrared spectroscopy (Thermo Nicolet Corporation, Hemel
Hempstead, UK), including KBr flakes. UV-visible diffuse reflectance spectra were examined on a
UV-visible spectrophotometer (Hitachi U3010, Tokyo, Japan) using barium sulfate (BaSO4) as the
substrate. The Brunauer–Emmett–Teller (BET) method was carried out to measure the specific surface
areas and pore size distribution on an ASAP 2460 system. X-ray photoelectron spectroscopy (XPS)
analyses were achieved via the Thermo Scientific ESCALab 250Xi (Thermo Fisher Scientific, Waltham,
MA, USA) with 200 W monochromatic Al Kαradiation. The Hitachi F-4500 fluorescence spectrometer
(Hitachi Ltd., Tokyo, Japan) was carried out by monitoring the steady-state fluorescence spectra of the
nanocomposites. The time-resolved fluorescence spectrum was acquired on an Edinburgh Instrument
F900, for which the above excitation wavelengths are 360 nm.

3. Results and Discussions

Herein, as shown in Figure 1, we elaborately designed the Ag/TiO2/g-C3N4 heterostructure by a
small-molecular co-assembly of AgNO3, Ti(SO4)2, melamine in hot solution (70 ◦C) and further calcining.
Heterostructures can form spontaneously in the designed soup. Specifically, AgNO3 can direct the
π-stacked structures of melamine into orientationally-organized, one-dimensional nanotubes by a
multi-scale synergy of interactions, including the coordination effect and electrostatically-enhanced
hydrogen bonds. Meanwhile, TiO2 nanoparticles can be easily incubated and self-mineralized
on the nanotubes due to the high protonation reactivity of H+ from Ti(SO4)2 with the amine of
melamine molecule.

The features of as-synthesized samples were researched by TEM. The assembly Ag/MA exhibits
nanotube structures with a smooth surface, upon which the mean diameter can reach several hundred
nanometers, as shown in Figure 2a. However, only a few nanometers of Ag nanoparticles were found
in Ag/MA, as seen in Figure 2i, which may be associated with a limited amount of silver. For all
the Ag/TiO2/MA nanocomposites, there are numerous TiO2 NPs uniformly assembled on the Ag/MA
nanotubes as seen in Figure 2b–d. Due to the strong reactivity of H+ generated by the hydrolysis of
Ti(SO4)2 under hydrothermal conditions, it can easily be protonated with a large number of basic groups
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in melamine to form TiO2 NPs and in situ anchor simultaneously on the Ag/MA NTS. Interestingly,
the mineralized TiO2 NPs gradually become larger by increasing the content of Ti(SO4)2 as showed in
Figure 2j–f.
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Figure 2. (a) Transmission electron microscopy (TEM) images of Ag/MA, (b) Ag/TiO2/MA-1, (c)
Ag/TiO2/MA-2, (d) Ag/TiO2/MA-3, (e) Ag/g-C3N4, (f) Ag/TiO2/g-C3N4-1, (g) Ag/TiO2/g-C3N4-2, (h)
Ag/TiO2/g-C3N4-3, (i) size histograms of Ag nanoparticles in Ag/g-C3N4, (j) TiO2 nanoparticles
in Ag/TiO2/g-C3N4-1, (k) TiO2 nanoparticles in Ag/TiO2/g-C3N4-2, (l) TiO2 nanoparticles in
Ag/TiO2/g-C3N4-3.

This indicates that the growth of TiO2 NPs can be readily manipulated in the assembly process
by simply adjusting the precursor mass. After the thermal treatment, all the Ag/TiO2/g-C3N4 present
porous structures because of the release of NH3 molecules, as seen in Figure 2e–h.

For the representative morphology of Ag/TiO2/g-C3N4-2 as shown in the Figure 3A TEM image,
AgNPs and TiO2 NPs of varying sizes are scattered across the g-C3N4 NTS. The HRTEM image
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(Figure 3B) shows that the different stacking distances are 0.22, 0.35 and 0.335 nm, corresponding
to the (111) lattice spacing of Ag, anatase TiO2 (101) crystal plane and (002) lattice plane of g-C3N4,
respectively, which verify the successful co-assembly of Ag, TiO2 and g-C3N4 [32,33]. Additionally, the
element mapping images (Figure 3B) of the C, Ti, Ag and O elements in the Ag/TiO2/g-C3N4-2 make it
obvious that the Ag element is distributed on the full of the g-C3N4 NTs surface, but the Ti element
is not. Therefore, it further indicates that there is a certain accumulation between Ag and TiO2 NPs,
which may be beneficial for efficient plasmonic resonant energy transfer between g-C3N4 NTs and
TiO2 NPs by the Ag bridge to accelerate charge separation in photocatalytic reactions.
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Furthermore, TGA was carried out to confirm the mineralization amount of TiO2 for the
Ag/TiO2/g-C3N4 HNCs from Figure 4. All the samples of Ag/TiO2/g-C3N4 HNCs have significant
weight loss at 480–700 ◦C, which may be correlated with the decomposition of the g-C3N4 part. So, in
other words, the remaining TiO2 contents for Ag/TiO2/g-C3N4-x (x = 1, 2, 3) are about 7.47%, 28.62% and
57.66% by subtracting the residue contents of Ag, respectively. Amazingly, the incubated content of TiO2

is linearly relying on the mass of Ti(SO4)2 by feeding in the co-assembly process, as shown in Figure 4b.
All the above results adequately prove that it is easy to achieve the controllable surface morphology
and depositing amount of TiO2 NPs mineralized on g-C3N4 in the whole assembly evolution.
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X-ray photoelectron spectroscopy (XPS) generally reveals the chemical interfacial bonding state
of various composites. The results of Ag/TiO2/g-C3N4-2 HNCs for XPS analysis are displayed in
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Figure 5a–e. The C 1s spectrum exhibits three different peaks located at 282.8, 284.8 and 288.3 eV are
ascribed to the calibration of XPS measurement, sp2 hybridized C atoms in the lattice (C–N bond)
with the coordinate N–C=N of the s-triazine rings, respectively. The peaks situated at 397.3, 398.5,
399.4 and 403.4 eV on the N 1s spectrum belong to representative peaks of g-C3N4, mainly containing
sp2-coordinated N from the C=N–C group, sp2 hybridized N in the N–(C)3 groups and terminal imino
group (C–NH–) in heptazine rings, respectively. Another signal peak located at 396.5 eV, corresponding
to a Ti–N bond, suggests that the mineralized TiO2 might possess interactions with g-C3N4. Two
peaks at 456.9 and 459.3 eV on the Ti 2p spectrum signify the existence of the N–Ti bond [21,22], also
including the Ti 2p3/2 peak at 458.2 eV with the Ti 2p1/2 peak at 464 eV of two TiO2 characteristic bands,
respectively. In the O 1s spectrum, the peaks at 529.8 and 530.4 eV originate from the Ti–O bond and
O–H bond, respectively. The above analysis suggests that the TiO2 NPs are firmly chemically bound to
the surface of g-C3N4 NTs. For the Ag 3d spectrum, the two characteristic peaks of Ag0 at the Ag 3d5/2

and Ag 3d3/2 states can be observed from 367.9 eV and 373.6 eV, respectively. As shown in Table 1, the Ti
components obviously increased from 1.25% to 9.73% calculated from the cumulative area of XPS peaks
for Ag/TiO2/g-C3N4-1 to Ag/TiO2/g-C3N4-3, while Ag and N components slightly decreased oppositely.
In addition, the XRD patterns of TiO2 NPs, pure g-C3N4, Ag/g-C3N4 NTs, Ag/TiO2/g-C3N4-X HNCs in
Figure 5f. All the diffraction peaks for the TiO2 NPs can be perfectly attributed to the (101), (004), (200),
(105), (211), (204), (116), (220) and (215) lattice planes of anatase phase TiO2 (JCPDS, 84-4921) [34]. The
distinct peaks located at 13.1◦ and 27.4◦ pertain to the tri-s-triazine repeating motif of the (100) plane
and the (002) interlayer stacking of pure g-C3N4, respectively [35]. For Ag/g-C3N4 NTs, new peaks at
around 38.1◦, 44.2◦, 64.4◦ and 77.4◦ are connected with the (111), (200), (220) and (311) planes of the
cubic phase of Ag (PDF#04-0783) [36]. Remarkably, the peaks of TiO2 become stronger, while the peak
intensity of g-C3N4 gradually becomes weaker with increasing concentrations of the precursor Ti(SO4)2

for Ag/TiO2/g-C3N4 heterojunction nanocomposites, suggesting that TiO2 NPs can be continually
assembled onto the Ag/g-C3N4 NTs [37,38].
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Table 1. Contents (at.%) of prepared composites Ag/TiO2/g-C3N4-X (X = 1, 2, 3) from XPS data.

C Ag N O Ti

Ag/TiO2/g-C3N4-1 67.53 3.37 24.43 3.42 1.25
Ag/TiO2/g-C3N4-2 56.69 3.25 22.19 12.95 4.92
Ag/TiO2/g-C3N4-3 40.84 3.06 20.76 25.61 9.73

Figure S1 describes the FTIR spectra of all samples. The wide absorption peak around 500 cm−1

can be traced to the Ti–O–Ti bond vibration mode of TiO2 and the peak intensity enhances with an
increasing concentration of Ti(SO4)2, which accords well with the result of XRD [39]. Several strong
peaks ranging from 1200 cm−1 to 1600 cm−1 belong to the characteristic stretching vibration pattern in
the hybrid aromatic CN. The characteristic band centered around 800 cm−1 belongs to the breathing
modes for the triazine ring [40]. Moreover, the broad peak in the range of 3000 cm−1 to 3500 cm−1

pertains to the stretching vibration for the NH or NH2 groups. Nitrogen adsorption–desorption
isotherms were usually used to estimate the specific surface area of the samples [39,40]. As shown in
Figure 6, bulk g-C3N4 possess a relatively small specific surface of 15.344 m2g−1, while the specific
surface areas gradually expand to 18, 23, 34 and 71 m2g−1 for Ag/g-C3N4 NTs, Ag/TiO2/g-C3N4-x
HNCs (x = 1, 2, 3), respectively [41–44]. All of the Ag/TiO2/g-C3N4-x HNCs display the existence of
mesopores around 12.5 nm, and the gradual narrowing of the peak may be related to the growth of
TiO2 NPs based on the BJH pore-size distribution curves in Figure S2, which are coincident with the
TEM results. These results suggest that the construction of hierarchical self-assembly is beneficial in
inhibiting the accumulation of g-C3N4, and thus enlarging their specific surface area at different scales.
Additionally, the porous tubular structures were conducive to the fast transfer of carriers to the surface,
and further increase the photocatalytic performance.
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Generally, the UV-vis diffuse reflectance spectra, transient steady-state spectrometer, enabled us to
evaluate the photophysical behaviors of carriers in the photoconductors. The light absorption ability
was distinctly revealed by UV-vis absorption spectra. In the visible light region, all the photocatalysts
presented the broadened absorption bands and possessed steep curves in the 375–450 nm spectral
range (except TiO2 NPs), as shown from Figure 7a, which was related to the band gap transition
of semiconductors. Due to the optical interaction by combining g-C3N4 with TiO2, the visible light
response of the heterogeneous photocatalyst diminishes with the increase of mineralized TiO2 NPs.
The peak red shift observed from Figure 7a for composite materials resulted from the presence of
narrow band gap C3N4 and probably from the plasmonic properties of silver nanoparticles. In addition,



Nanomaterials 2020, 10, 1 8 of 13

high light absorption capacity does not always mean excellent photocatalytic activity, but also depends
on enough low photoinduced electron-hole recombination rates.
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It is known that the peak intensity in steady-state fluorescence spectra was closely related to the
detached capability of the photo-generated carrier. According to the steady PL spectra in Figure 7c,
all of the Ag/TiO2/g-C3N4-x HNCs present much lower emission peak intensity compared with
bulk g-C3N4, and almost no PL emission was monitored over Ag/TiO2/g-C3N4-3, which is probably
because TiO2 NPs dominated in the composition. The damped intensity of Ag/TiO2/g-C3N4-x HNCs
indicates their better photo-generated electron-hole separation, and thus their recombination was
greatly hindered, which could be benefited from the design of heterostructure with Ag SPR effects.
Transient fluorescence spectrum of the photocatalysts was measured to ulteriorly inspect the charge
carrier’s separation and transfer efficiency from Figure 7d. The emission decay curves of all samples
presented exponential attenuation, and could be fitted by the double-exponential formula [30,43]. It
is seen that Ag/TiO2/g-C3N4-2 HNCs decayed much faster than pure g-C3N4 and Ag/g-C3N4 NTs,
which may result in interfacial electron transfer after the construction of a heterojunction. Significantly,
the average lifetime of Ag/TiO2/g-C3N4-2 HNCs was about 1.096 ns, which was shorter than the
bulk g-C3N4 (6.15 ns) with Ag/g-C3N4 NTs (2.409 ns), confirming the relatively better separation of
photogenerated carriers. These results further demonstrated the high separation efficiency of interfacial
carriers for Ag/TiO2/g-C3N4-2 HNCs, which may promote enhanced hydrogen production activity
associated with the formation of good heterostructures [45–47].

The photocatalytic performance of the Ag/TiO2/g-C3N4-x HNCs for the H2 production reaction
was executed upon solar-simulated light (Figure S3). As given in Figure 8, the bulk g-C3N4 purely
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generated about 3.1 µmol of H2 after 4 h of illumination. When Ag was introduced to assemble with
MA, the calcined sample Ag/g-C3N4 NTs produced about 24.3 µmol of H2 and the value nearly 8-fold
more than bulk g-C3N4, due to Ag SPR effects and the formed porous nanotube structures.
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When incubating AgNO3, Ti(SO4)2 with MA to form a composite by one-pot co-assembly and
calcining their precursors, the obtained Ag/TiO2/g-C3N4-1 HNCs generated about 31.75 µmol of H2,
which is 10.2 times more than pure g-C3N4, and slightly higher compared with the Ag/g-C3N4 NTs,
benefiting from the constructed Ag/TiO2/g-C3N4 heterojunction. The Ag/TiO2/g-C3N4-2 HNCs presents
a substantially enhanced H2 evolution amount of 64 µmol, which leads to a 20.6-fold increase on pure
g-C3N4 and much superior to Ag/g-C3N4 NTs. However, the inconspicuous hydrogen precipitation
activity of Ag/TiO2/g-C3N4-3 HNCs may derive from the abundant defects which bring poor photo
adsorption and further suppress the carrier transfer process by the introduction of high TiO2 content.
It should be noted that triethanolamine is a typical sacrificial agent and hole trapping agent often
used for photocatalytic hydrogen production. In our present reference system of hydrogen evolution
during sacrificial agent photolysis in the absence of a photocatalyst, the obtained generated H2 amount
shows slight values in comparison with these cases with the photocatalyst, as shown in Figure 8. These
consequences mean the significant improvement of photocatalytic activity in samples thanks to the
nanoscale structure of g-C3N4 and the well-established heterojunction in Ag/TiO2/g-C3N4. Specifically,
one-dimensional, tube-like g-C3N4 with the increased specific surface area can effectively avoid carrier
aggregation, and provide many more catalytic active sites [48–51]. Moreover, the heterogeneous
structure with nanometer size can reduce the charge diffusion length and effectively facilitate the
separation process of charge carriers at the interface, which is also confirmed with the steady-state and
transient fluorescence spectrum. In view of the above results, the presently prepared new heterojunction
materials provide an exploration of new catalyst fields such as water oxidation and self-assembled
composites [52–63].

4. Conclusions

In summary, we provide a simple and feasible strategy to construct a nanoscale heterojunction
model with controllable morphology based on the co-assembly of coordination donor (AgNO3),
inorganic titanium source (Ti(SO4)2) and g-C3N4 precursor (Melamine). The obtained Ag/TiO2/g-C3N4

heterojunction nanocomposite possessing self-organization of multiple kinds of features leads to the
superior photocatalytic hydrogen production efficiency and sustainability, which is a 20.6-fold increase
compared to pure g-C3N4. The excellent catalytic performance may have benefited from the following
aspects: (1) one-dimensional porous structure, accelerating the separation of charge carriers and
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providing more reactive sites for photocatalytic process; (2) tight interface, reducing the interfacial
charge diffusion migration length and immensely utilizing photogenerated charges; (3) heterostructure,
facilitating photogenerated electron-hole pair separation and resulting in improved quantum efficiency
with enhanced photocatalytic activity.

Our work highlights the critical role of the structure nanosizing in the heterojunction system and
develops a realistic method to build a platform for potential applications including water oxidation
and CO2 reduction on the utilization of solar energy.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/1/1/s1, Figure
S1. FT-IR spectra of TiO2, Ag/g-C3N4, Ag/TiO2/g-C3N4-1, Ag/TiO2/g-C3N4-2, Ag/TiO2/g-C3N4-3. Figure S2.
The typical BJH pore-size distribution curves (a) Ag/g-C3N4; (b) Ag/TiO2/g-C3N4-1; (c) Ag/TiO2/g-C3N4-2; (d)
Ag/TiO2/g-C3N4-3. Figure S3. TEM image (A) and Elemental mapping images (B–F) of the photodeposited
Ag/TiO2/g-C3N4-2, of the C, O, Ti, Pt and Ag elementals.
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