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Abstract: A photocrosslinkable trehalose derivative carrying mesogenic groups was synthesized by
esterification reactions. The derivative (TC-HBPHA) was synthesized by the reaction of partially
cinnamoyl-modified trehalose (TC4) with 4-(4-hexyloxybenzoyloxy)phenoxy-6-oxohexanoic acid
(HBPHA) as a mesogenic unit. TC-HBPHA showed a nematic liquid crystalline mesophase at a
temperature range from 150 ◦C to 175 ◦C in the heating process under observation with a polarized
optical microscope. The dimerization of the cinnamoyl groups of TC-HBPHA by ultraviolet (UV) light
irradiation was monitored by ultraviolet-visible (UV-Vis) spectroscopy and Fourier transform infrared
(FT-IR) spectroscopy. The photocrosslinked film was obtained after the UV irradiation of TC-HBPHA,
and it kept the liquid crystalline mesophase at almost the same temperature range. Fibroblast cells
cultured on the photocrosslinked TC-HBPHA proliferated as well as on the polystyrene culture plate,
indicating that the film has no toxicity. Interestingly, some cells on photocrosslinked TC-HBPHA had
a spindle shape and aligned characteristically.
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1. Introduction

The liquid-crystal state is a unique phase with the characteristics of disordered liquid and
ordered solid, and liquid crystal materials have been widely applied to products such as display
devices and high performance polymer materials [1,2]. More recently, the photo-orientation technique
of liquid crystal has been developing and attracting attention [3–5]. Besides display devices and
high-performance materials, biomedical applications of liquid crystals are now in progress and
opening up new research fields [6,7]. Indeed, as biological membranes consisting of phospholipids are
known to be in a liquid-crystal state, the unfixed ordered state plays an important role in biological
systems [6,8,9].

Crosslinkable liquid-crystal monomers and polymers are expected to expand applications of
liquid crystals for use as nonlinear optical materials [10], tunable optical filters and polarizers [11,12],
and stabilized liquid crystal systems [13]. Especially, photocrosslinkable liquid-crystal polymers can
be used for the photo-orientation materials [14–16]. Though these materials are very attractive for
use in biomedical materials, there are few studies reported [17–20]. Zhou and Yi [17] studied in vitro
blood compatibility of composite films of polyurethane with three different liquid crystal molecules.
They showed that the composite membranes of polyurethane and cholesteryl oleyl carbonate (COC)
had hemocompatibility. The same research group (Li et al. [18]) also reported that polysiloxane
containing 20 or 30 wt % of COC had good anti-coagulant properties. Shih et al. [19] also showed
the hemocompatibility of COC-containing polyurethanes. Hwang et al. [20] reported the preparation
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of self-assembly of cholesterol-terminated oligo(L-lactic acid) and culturing of fibroblasts on their
materials. They observed enhanced proliferation and adhesion on their self-assembling materials
compared to poly(L-lactic acid). According to this research, materials derived from cholesterol, which is
naturally occurring, are favorable for biocompatibility. Relating to toxicity of artificial liquid-crystal
compounds, Woolverton et al. [21], Luk et al. [22], and Lockwood et al. [23] studied toxicity of liquid
crystals to bacteria, mammalian cells, and human embryonic stem cells, respectively. Some liquid
crystals are toxic and some are non-toxic.

Trehalose-derived materials are also receiving attention on the basis of their characteristic
structure and biocompatibility [24–27]. John et al. [24] synthesized trehalose diesters by an enzymatic
reaction using lipase. The trehalose diesters were found to be gelators for some organic solvents.
Mancini et al. [25] synthesized glycopolymers carrying trehalose units at side chains by reversible
addition-fragmentation chain transfer (RAFT) polymerization. They conjugated the glycopolymers
to protein and found that the glycopolymers increased the stability of the protein. Burek et al. [26]
synthesized diallyl compounds from trehalose and allyloxybenzaldehyde. They reported that the
trehalose-based diallyl compounds can be used as a crosslinker of poly(N-isopropylacrylamide)
hydrogels, and that the resulting hydrogels were non-toxic and degradable in acidic conditions.
We also have developed trehalose-derived materials for a decade [28], and demonstrated fibroblast
growth on photocrosslinked trehalose cinnamate (TC) [27]. Cinnamoyl groups are known to dimerize
under ultraviolet (UV) light irradiation to yield a four-membered ring. This photo-dimerization
reaction was often used for photocrosslinking of polymers [14,15,29–32]. Here we designed a
trehalose-derived photocrosslinkable compound carrying cinnamoyl groups and mesogenic groups
(Scheme 1). Liquid-crystal materials derived from saccharides are interesting materials, and their
preparation and properties have been reported in the literature [33–36]. As recognized by Noller and
Rockwell [33], higher alkylglycosides show liquid crystal behavior. Since then, many types of liquid
crystalline glycoside derivatives and mesogenic sugars have been reported [34]. Among them, Kohne
and Praefcke [35] reported the discotic liquid crystals from hexasubstituted inositols, and Tian et al. [36]
reported a chiral nematic star-shaped (undecasubstituted) liquid crystal synthesized from melitose
and mesogenic side arms. However, to our knowledge, there is no report on the biocompatibility of
these types of materials.
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Scheme 1. Synthesis of HBPHA, TC4, and TC-HBPHA.

In the present study, we synthesized photocrosslinkable trehalose derivatives carrying mesogenic
groups by the esterification reaction (Scheme 1), and investigated their liquid crystal behaviour and
biocompatibility. We intend to develop coating materials that can control cell alignment via the liquid
crystalline photoalignment technique as a final goal. Cells such as fibroblasts which grow on scaffolds
are known to have an effect via contact guidance, such as microscale topographies [37]. Very recently
fibroblast cells cultured on oriented nanofibers were reported to upregulate genes associated with
actin production, actin polymerization, and focal adhesion formation [38]. We expect that the materials
we synthesized here will provide a first step for development of such materials that can control
cell behavior.
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2. Results and Discussion

2.1. Synthesis of a Trehalose Derivative Carrying Cinnamoyl Groups and Mesogenic Groups

HBPHA, a carboxylic compound with a mesogenic group, was synthesized using the method
reported by Tian et al. [36]. We obtained HBPHA white powder after purification by silica gel
column chromatography. The final step of the synthesis of a trehalose derivative carrying cinnamoyl
groups and mesogenic groups (TC-HBPHA) was the reaction of partially cinnamoyl-modified
trehalose with HBPHA. The reaction was carried out by the esterification reaction using
N,N′-dicyclohexylcarbodiimide (DCC) as a condensation reagent. The reaction needed a long time
(72 h) because of hindrance of the reaction site. Furthermore, the crude product included a significant
amount of impurities such as unreacted DCC, unreacted HBPHA, and N,N′-dicyclohexylurea.
Therefore we needed to purify the product by washing many times with various solvents. The yield
became low after the purification steps. Figure 1 shows the proton nuclear magnetic resonance
(1H-NMR) spectra of TC4, HBPHA and TC-HBPHA. Each signal in the 1H-NMR spectrum of HBPHA
(Figure 1b) can be assigned to each proton on the chemical structure except for the signal at 1.6 ppm,
which is assigned to a trace of water. As reported in the previous literature [39], peaks observed
in the spectrum of TC4 (Figure 1a) were broadened, implying that the product contains some
variation of trehalose derivatives modified with a varied number of cinnamoyl and mesogenic
groups, i.e., with various degrees of substitution (DS). Here, DS represents the number of the
substituents based on one trehalose unit. Peaks observed in TC-HBPHA were also broadened, because
TC-HBPHA was synthesized from TC4. In Figure 1c, proton signals assigned to aromatic and vinylene
groups were observed at 8.2–6.3 ppm. Methine signals of the trehalose unit of TC-HBPHA were
significantly broadened and observed at 5.7–3.4 ppm. Methylene and methyl signals of hexyloxy
and 6-oxohexanoyl groups were observed at 4.0 and 2.5–0.9 ppm. The average DS for cinnamoyl
groups of TC-HBPHA was 3.0, and the average DS for mesogenic groups of TC-HBPHA was 2.1,
when calculated from the elemental analysis data. TC-HBPHA was soluble in many organic solvents
such as N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), acetone,
chloroform, diethyl ether, and toluene. It was insoluble in water, methanol, ethanol, and hexane.
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Figure 1. 1H-NMR spectra of (a) TC4; (b) HBPHA; and (c) TC-HBPHA. CDCl3 was used as a solvent
for the measurement.
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2.2. Photocrosslinking of TC-HBPHA

Cinnamoyl groups are known to undergo dimerization by irradiation of UV light (Scheme 2).
Because TC-HBPHA has several cinnamoyl groups in one molecule, photocrosslinking of TC-HBPHA
occurs by UV irradiation. Generally, the dimerization reaction is monitored by the UV-Vis spectral
analysis [40]. Figure 2 shows the UV-Vis spectral change during UV irradiation. During the course of
UV irradiation, the absorbance at 280 nm decreased significantly. On the other hand, the absorbance at
340 nm slightly increased simultaneously. These results imply that the isomerization of cinnamoyl
groups from the trans-form to the cis-form occurred to some extent during the UV irradiation, though
dimerization of cinnamoyl groups predominated [41]. The isomerization of cinnamoyl groups was not
observed at UV irradiation of TC4 in our previous report [39]. We considered that the isomerization
observed here occurred at some cinnamoyl groups hindered by mesogenic groups. The reaction was
also monitored by Fourier transform infrared (FT-IR) spectroscopy [42,43]. Figure 3 shows the FT-IR
spectral change of TC-HBPHA during UV irradiation. The absorbance at 1722 cm−1 in the spectrum
of non-irradiated TC-HBPHA corresponds to the cinnamoyl C=O stretching vibration conjugated
with the adjacent C=C bond. This peak seems broadened because it contains the absorption of ester
C=O vibrations of the mesogenic groups. The absorbance of cinnamoyl C=O vibration is known
to decrease and shift to the higher wavenumber region by the dimerization reaction because of
deconjugation [39,42]. The absorbances at 1632 cm−1 and 1574 cm−1 correspond to the C=C symmetric
and asymmetric stretching vibration, respectively. These absorbances significantly decreased, which
suggests that dimerization reaction occurred under UV irradiation [43].
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2.3. Liquid Crystalline Behavior of TC-HBPHA before and after UV Irradiation

The liquid crystalline behavior of TC-HBPHA was observed using a polarized optical microscope
(POM). Before UV irradiation, TC-HBPHA showed a droplet texture and the morphology of nematic
liquid crystal (Figure 4a). The droplet texture was also reported for the sugar-derived liquid crystal [36].
The liquid crystalline morphology was observed from 150 ◦C to 175 ◦C at the heating process, and
observed from 170 ◦C to 120 ◦C at the cooling process. The liquid crystalline droplets moved around in
these temperature regions. The fact that the liquid crystalline droplets did not fill the space implies the
partial existence of liquid crystal regions in the isotropic non-liquid crystalline matrix. We considered
that this inhomogeneity was caused by the variation of DS of TC-HBPHA for mesogenic groups: liquid
crystalline regions may consist of TC-HBPHA with higher DS, and non-liquid crystalline regions may
consist of TC-HBPHA with lower DS.
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Figure 4. Polarized optical micrographs under crossed Nicols of TC-HBPHA (a) before UV irradiation
and (b) after UV irradiation.

Figure 4b shows the liquid crystalline behavior of TC-HBPHA after UV irradiation. Interestingly,
though the droplet texture was also observed, the mobility of the droplets was limited. The liquid
crystalline morphology of irradiated TC-HBPHA was observed from 150 ◦C to 180 ◦C at the heating
process, and observed from 175 ◦C to 120 ◦C at the cooling process. Many reactive mesogens were
investigated for liquid crystalline thermosets; some are known to lose liquid crystalline properties
and keep mesomorphic structure in the solid phase, and some are known to keep the partial liquid
crystalline properties [44]. The photocrosslinked TC-HBPHA corresponds to the latter case. We found
that the photocrosslinking mainly occurred in the non-liquid crystalline matrix described above, and
that mesomorphic properties of the liquid crystalline regions were kept.

We measured thermal properties of TC-HBPHA by DSC before and after UV irradiation intending
to clarify the phase transition behavior. Figure 5 shows the differential scanning calorimetry (DSC)
thermograms of TC-HBPHA before and after UV irradiation. However, we could not determine the
apparent transition points corresponding to the results observed using a POM. In particular, we could
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not find the transition point between the nematic phase and the isotropic phase in the DSC analysis.
Furthermore the solid-nematic phase transition was observed as broadened and complex peaks in the
DSC analysis after UV irradiation as well as before UV irradiation. However, several endothermic
peaks were observed at a lower temperature region than expected from the observation with a POM.
As described above, we can see the partial liquid crystalline behavior, possibly depending on the
number of mesogenic groups in a TC-HBPHA molecule. Since the product contains TC-HBPHA
molecules carrying various numbers of mesogenic groups, it is reasonable that the transition point is
not obvious.
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Figure 5. DSC thermograms of TC-HBPHA (a) before and (b) after UV irradiation.

2.4. Cell Culture on UV-Irradiated TC-HBPHA and Study of Surface Hydrophobicity

Cell viability and growth on the UV-irradiated and non-irradiated TC-HBPHA thin films were
tested using 3T3 Swiss Albino fibroblast cells. The cell observation after tripan-blue staining revealed
that there are very few dead cells on all of the tested samples. Figure 6 shows the result of cell
growth evaluation using the MTT test. The result revealed that the fibroblast cells increased both on
the UV-irradiated and non-irradiated TC-HBPHA as well as tissue culture polystyrene (TCPS) and
UV-irradiated TC4. Generally, cell proliferation is influenced largely by the surface hydrophobicity of
the substrate. We studied surface hydrophobicity of our samples using a contact angle meter with a
water drop on substrates. Figure 7 shows the photograph and the contact angle of a water drop on
each substrate. As a result, UV-irradiated TC-HBPHA had especially higher hydrophobicity, despite
its good cell compatibility. The contact angle is known to be influenced by the surface morphology,
and the surface of UV-irradiated TC-HBPHA was observed using FE-SEM. The SEM images are
shown in Figure 8. Many small spots were observed on the surface of UV-irradiated TC-HBPHA,
while the surface of non-irradiated TC-HBPHA was almost homogeneous. This result suggests
that some rearrangement of mesogenic groups and phase separation possibly occurred during UV
irradiation [45], causing the increase of hydrophobicity. We carefully observed the cell morphology
on each substrate after 5-d culture, and found that many cells adhering on UV-irradiated TC-HBPHA
were characteristically aligned and had a spindle shape (Figure 9). This phenomenon usually occurs
on the physically patterned substrate [46,47]. Though we do not have a clear vision of this result at
the current stage, we considered two possible reasons. First, the cells can be considered to attach on
the substrate, avoiding certain regions. We observed the separated liquid crystalline regions by the
POM observation and their fixation by UV irradiation as described above. The cells may have avoided
this separated liquid crystalline phase. Second, the cells can be considered to favorably attach some
regions. We reported the favorable cell adhesion on the UV-irradiated TC in the previous paper [27].
As described above, some regions are considered to contain relatively more cinnamoyl groups because
of variation of the DS. In either case, the cell behavior is considered to be due to the phase separation
of liquid crystalline regions.
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Figure 9. Morphology of cells grown on (a) TCPS; (b) a glass cover slip; (c) UV irradiated TC4;
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3. Materials and Methods

3.1. Materials

Trehalose dihydrate was kindly provided by Hayashibara Co., Ltd. (Okayama, Japan) and
dehydrated at 130 ◦C for 24 h before use. Cinnamoyl chloride, 4-(dimethylamino)pyridine (DMAP),
4-hexyloxybenzoic acid, adipoyl chloride were purchased from Tokyo Kasei Kogyo Co. (Tokyo,
Japan). Anhydrous N,N-dimethylformamide (DMF) and N,N′-dicyclohexylcarbodiimide (DCC) were
purchased from Sigma-Aldrich Co. (St Louis, MO, USA). Triethylamine, hydroquinone, sodium
bicarbonate, sodium sulfate, oxalic acid and other organic solvents were purchased from Kanto
Chemical Co. (Tokyo, Japan). These reagents and solvents were used as received.

3.2. Synthesis of Partially Cinnamoyl-Modified Trehalose (TC4)

TC4 was prepared by the method reported previously [39]. Dehydrated trehalose (10 mmol)
was finely suspended in anhydrous DMF (15 mL) at 60 ◦C, and triethylamine (TEA) (40 mmol) and
4-(dimethylamino)pyridine (DMAP) (5 mmol) were added to the suspension. A solution of cinnamoyl
chloride (40 mmol) in anhydrous DMF (5 mL) was added to the mixture dropwise. After stirring at
room temperature for 24 h, the reaction product was obtained by precipitation in deionized water and
washed twice with deionized water. White powder was obtained after drying in vacuo for 2 days
(yield, 55%).

3.3. Synthesis of 4-Hydroxyphenyl 4'-Hexyloxybenzoate (HPHB)

4-(Hexyloxy)benzoic acid (HBA) (15 mmol) was dissolved in an anhydrous dichloromethane
(30 mL)/DMF (20 mL) mixed solvent at room temperature, and DMAP (1.5 mmol) and hydroquinone
(60 mmol) were added to the solution. A solution of N,N′-dicyclohexylcarbodiimide (DCC) (22.5 mmol)
in an anhydrous dichloromethane (15 mL)/DMF (10 mL) mixed solvent was added. After stirring at
30 ◦C for 24 h, the reaction mixture was filtered and the filtrate was concentrated in vacuo. To the
concentrate was added excess amount of dichloromethane, followed by washing with a saturated
sodium bicarbonate aqueous solution. After washing with deionized water, the organic layer was dried
with sodium sulfate overnight. The crude product was obtained by the evaporation of the solvent, and
further purified by silica gel column chromatography (eluent: dichloromethane). White powder was
obtained after drying in vacuo for 24 h (yield, 58%).
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3.4. Synthesis of 6-(4-Hexyloxybenzoyloxy)phenoxy-6-oxohexanoic Acid (HBPHA)

HBPHA was prepared by the method reported by Tian et al. [36]. HPHB (18 mmol) was dissolved
in an anhydrous tetrahydrofuran (THF) (16 mL)/pyridine (2 mL) mixed solvent at room temperature.
A solution of adipoyl chloride (36 mmol) in anhydrous THF (9 mL) was added to the mixture dropwise.
After stirring at room temperature for 15 h, the reaction product was obtained by precipitation
in deionized water and washed twice with deionized water. After drying in vacuo for 24 h, the
product was purified by silica gel column chromatography (eluent: dichloromethane:acetone = 30:1).
White powder was obtained after drying in vacuo for 24 h (yield, 47%).

3.5. Synthesis of a Trehalose Derivative Esterified with Cinnamoyl Groups and HBPHA (TC-HBPHA)

TC4 (0.97 mmol) and HBPHA (4.86 mmol) was dissolved in anhydrous pyridine (11 mL) at
room temperature, and DMAP (2.92 mmol) was added to the solution. After a solution of DCC
(5.83 mmol) in pyridine (30 mL) was added, the mixture was stirred at room temperature for 72 h.
The reaction product was obtained by filtering the reaction mixture and concentrating the filtrate
in vacuo. The crude product was obtained by precipitation in deionized water and washed twice
with deionized water. Then the crude product was dissolved in dichloromethane and dried with
sodium sulfate overnight. After evaporation of the solvent, the product was washed with ethanol.
Furthermore the product was washed with an oxalic acid (5.84 mmol) solution in methanol (10 mL)
to deactivate DCC. The product was redissolved in dichloromethane and washed with a saturated
sodium bicarbonate aqueous solution. After washing with deionized water, the solution was dried
with sodium sulfate overnight and evaporated to dryness. The resulting solid product was dissolved
in a small amount of chloroform and reprecipitated in hexane. White powder was obtained after
drying in vacuo for 24 h (yield, 8%).

TC-HBPHA: IR (KBr, cm−1): 2933, 2852 (CH, CH2, CH3), 1724 (C=O), 1633 (C=C), 1602 (aromatic
C–C), 1575 (C=C), 1510, 1496, 1450 (aromatic C–C), 1255, 1165 (C–O–C).

1H-NMR (CDCl3, TMS, δ, ppm): 8.13 (d, J = 7.6 Hz, H-Ar (benzoyloxy)), 7.82–7.61 (m, H–C=C),
7.60–7.45 (m, H-Ar (cinnamoyl)), 7.45–7.30 (s, H-Ar (cinnamoyl)), 7.26–7.01 (m, H-Ar (phenoxy)),
6.98 (d, J = 7.5 Hz, H-Ar (benzoyloxy)), 6.60–6.33 (m, H–C=C–), 5.7–4.9 (m, H-trehalose unit),
4.7–3.8 (m, H-trehalose unit, –CH2–O– (hexyloxy)), 2.5–2.3 (m, –CH2–C(=O)– (oxohexanoyl)), 1.9–1.5
(m, –O–CH2–CH2– (hexyloxy), –CH2–CH2–C(=O)– (oxohexanoyl)), 1.51 (s, –CH2– (hexyl)), 1.39
(s, –CH2– (hexyl)), 1.29 (s, –CH2– (hexyl)), 0.95 (s, –CH3 (hexyl)).

Anal. Found: C, 67.54; H, 6.21; O, 26.09.

3.6. Photocrosslinking of a Trehalose Derivative Carrying Mesogenic Groups

For preparation of films used in the ultraviolet-visible (UV-Vis) spectroscopy, quartz glass plates
were coated with samples using an Aiden DC4100 dip coater (Aiden Co. Ltd., Kobe, Japan) as
reported previously [27]. Chloroform solutions of samples at a concentration of 10 mg/mL were
used. The dipping time was 1 min and the speed of subsequent raising was 0.5 mm/s. Prior to the
dipcoating process, glass substrates were washed with the mixed acid solution of concentrated nitric
acid, concentrated sulfuric acid, and water (1:3:6). In order to crosslink at the liquid crystalline state,
samples were once heated at 180 ◦C and cooled to 145 ◦C. Then, the samples were irradiated at 145 ◦C
using an Ushio SP-7 spot UV irradiator (Ushio Inc., Tokyo, Japan) with a 250-W deep UV lamp through
a λ ≥ 280 nm long pass filter (Thorlabs Japan Co., Ltd., Tokyo, Japan) to cut the shorter-wavelength
light. The distance between the sample and the light guide was 17 cm, and the light intensity was
60 mW/cm2.

3.7. Characterization

Proton nuclear magnetic resonance (1H-NMR) spectra were recorded on a Bruker AV-400
spectrometer (Bruker Corp., Karlsruhe, Germany) using CDCl3 as a solvent. Elemental analysis
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was carried out for C, H, N and O using an Exeter Analytical CE-440 elemental analyser (Exeter
Analytical Inc., Chelmsford, MA, USA). The average number of cinnamoyl groups and mesogenic
groups substituted for hydroxyl groups on one trehalose unit was defined as the degree of substitute
(DS) and calculated from the elemental analysis data. We found no nitrogen in the final product,
TC-HBPHA. UV-Vis spectra were recorded on a JASCO V-650 spectrophotometer (JASCO Corp.,
Tokyo, Japan) with an attachment for the measurement of plates and films. Fourier transform infrared
(FT-IR) spectra were recorded on a Shimadzu FT-IR 8400S spectrometer (Shimadzu Corp., Kyoto, Japan)
by the KBr-pellet method. Differential scanning calorimetry (DSC) thermal curves were recorded
on a PerkinElmer Pyris 1 differential scanning calorimeter (PerkinElmer Inc., Waltham, MI, USA).
The heating rate and the cooling rate were 10 ◦C/min. Liquid crystal morphologies of samples on a
glass slip was observed by an Olympus BS50 polarized optical microscope (POM) and an Olympus TH3
light source (Olympus Corp., Tokyo, Japan) equipped with a thermal stage. The surface morphologies
of photo-cured samples were observed by a Hitachi S-4700 field emission scanning electron microscope
(FE-SEM) (Hitachi High-Technologies Corp., Tokyo, Japan). The accelerating voltage was 1 kV, and
the samples were coated with gold prior to the observation. The water contact angle was measured
by an Excimer SImage mini contact angle meter (Excimer Inc., Yokohama, Japan). A 4-µL droplet of
ultrapure water was placed at five positions on each sample followed by taking a digital picture to
calculate static contact angles, and the five values were averaged.

3.8. Cell Culture Study

Round-shape glass cover slips (15 mm diameter) were coated with samples by the dipcoating
method, and irradiated with UV light by an Ushio SP-7 spot UV irradiator. The irradiated cover
slips were placed in a 24-well polystyrene (PS) culture plate and sterilized with ethylene oxide gas.
After washing with D-MEM, 3T3 Swiss Albino mouse embryo fibroblast cells were seeded on the
samples at 3 × 103 cells/mL. The cells were incubated at 37 ◦C in 300 µL of D-MEM containing 10%
FBS and 1% penicillin–streptomycin using a CO2 incubator with 5% CO2. Cell growth was observed
using a Carl-Zeiss Axio Vert.A1 phase-contrast microscope (Carl Zeiss AG, Oberkochen, Germany).
The number of cells adhered onto each sample was determined using a hemocytometer after treated
with 0.25% trypsin–EDTA solution and trypan blue staining. Cell proliferation was also measured by
MTT assay, which is based on the mitochondrial activity of viable cells. An MTT solution (300 µL of
1.0 mg/mL) was added to the samples and incubated for 90 min at 37 ◦C under 5% CO2. A 300 µL of
a cell lysing solution containing 10% polyoxyethylene octylphenyl ether (NP-40) was added to the
solution. The absorbance of the resulting solution at 570 nm was measured using a Bio-Rad iMark
microplate reader (Bio-Rad Laboratories Inc., Hercules, CA, USA) (n = 4 for each assay).

4. Conclusions

Photocrosslinkable trehalose derivative carrying cinnamoyl groups and mesogenic groups were
synthesized mainly by esterification reactions. From the UV-Vis and FT-IR spectral measurement of the
product, the cinnamoyl groups mainly underwent dimerization, and some part underwent trans-cis
isomerization by UV irradiation. We can observe a droplet morphology of the product under crossed
Nicols from 150 ◦C to 175 ◦C in the heating process and from 170 ◦C to 120 ◦C in the cooling process
before UV irradiation. After UV irradiation, a similar droplet morphology with limited mobility was
observed from 150 ◦C to 180 ◦C at the heating process and from 175 ◦C to 120 ◦C at the cooling process.
However, the transition points were not observed clearly in the DSC measurement. The fibroblast
cell culture on TC-HBPHA thin films cast on glass cover slips revealed that TC-HBPHA did not have
toxicity and has good cell compatibility before and after UV irradiation as well as a polystyrene culture
plate. Many cells on UV-irradiated TC-HBPHA presented the characteristic alignment and a spindle
shape. Though the reason for this alignment and shape is not clear at the current stage, it is interesting
that the cell behavior is influenced by the substrate containing mesogenic groups. This is the first step
to investigate cell behavior on photocrosslinked substrates containing mesogenic groups with liquid
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crystalline properties. Future studies will be conducted on cell behavior on the molecular-aligned
substrate using liquid crystal materials.
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