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Abstract: An emerging concept is that cancers strongly depend on both internal and external signals
for growth and invasion. In this review, we will discuss pathological and physical changes in the
tumor microenvironment and how these changes can be exploited to design gold nanoparticles for
cancer diagnosis and therapy. These intrinsic changes include extracellular and intracellular pH,
extracellular matrix enzymes, and glutathione concentration. External stimuli include the application
of laser, ultrasound and X-ray. The biology behind these changes and the chemistry behind the
responding mechanisms to these changes are reviewed. Examples of recent in vitro and in vivo
studies are also presented, and the clinical implications of these findings are discussed.
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1. Introduction

Gold nanoparticles (AuNPs) have long been studied for their potential in facilitating anticancer
therapy. Several extraordinary reviews on the synthesis of AuNPs [1], and their application in
cancer diagnosis and therapy have been published [2,3]. Here, we review stimuli-responsive AuNPs
that can be activated either intrinsically or extrinsically. The diversity in the design of AuNPs and
their stimulus-responsiveness makes them promising multifunctional nanoplatforms. In this article,
we review the most commonly used stimuli in cancer research and examine how AuNPs have been
developed and studied as a multifunctional nanoplatform for cancer theranostics (Scheme 1).

Intrinsic stimuli are micro-environmental differences that occur either pathologically or
physiologically (Scheme 1). They include pH, extracellular matrix metalloproteinases (MMPs),
and glutathione (GSH) that regulate the intracellular redox condition. Sensitivity to an individual
stimulus is mainly caused by the incorporation or surface modification of polymers and peptides
sensitive to the particular stimulus, such as pH-sensitive polymers, peptide sequences that can
be cleaved specifically by MMPs, and disulfide bond-containing polymers. The introduction of
a stimulus-sensitive component can increase the delivery of a chemotherapeutic agent or cause a
spectrum change that can help to quantify molecular changes in tumors. This section covers the
pathological and physiological causes of changes in the tumor microenvironment, the rationale and
hypothesis underlying the design of each AuNP, and, briefly, the results of these studies and their
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implications for cancer diagnosis and treatment. A brief summary of the AuNPs that are responsive to
intrinsic stimuli is presented in Tables 1–3. The majority of the work regarding intrinsic stimuli is still
in the preclinical phase.
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patients. AuNPs are also used in photoacoustic (PA) imaging. External stimuli activate certain 
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tuned by adjusting the shape and size of the AuNP, for example, the diameter of nanospheres, aspect 
ratio of nanorods, or thickness of nanoshells. Because the SPR is fine-tunable, AuNPs powerfully 
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threshold of ultrasound. PA imaging, in which laser excitation is converted to ultrasound emission, 
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the reviewed external stimuli, including laser, ultrasound and X-ray, as well as photoacoustic imaging.
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(MMP), and redox condition (GSH).

External stimuli include lasers and ultrasound, both of which are used clinically to treat cancer
patients. AuNPs are also used in photoacoustic (PA) imaging. External stimuli activate certain physical
properties of AuNPs, such as their surface plasmon resonance (SPR). The SPR can be fine-tuned by
adjusting the shape and size of the AuNP, for example, the diameter of nanospheres, aspect ratio of
nanorods, or thickness of nanoshells. Because the SPR is fine-tunable, AuNPs powerfully enhance
hyperthermia when combined with lasers. Similarly, AuNPs can decrease the cavitation threshold
of ultrasound. PA imaging, in which laser excitation is converted to ultrasound emission, is also
discussed. Enhancement and sensitization of X-ray radiation by AuNP is also reviewed.

2. Intrinsic Stimuli

2.1. pH

Tumors are slightly acidic because they are often hypoxic. Despite the release of angiogenesis
factors that form neovasculature [4–9], tumor tissue often requires more oxygen and nutrition than can
be supplied by the neovasculature. The oxygen concentrations in blood, healthy tissue, and typical
hypoxic solid tumors are 10%–12.5%, 3%–6%, and 1%–2%, respectively [10,11]. Hypoxia triggers many
alterations in gene expression and metabolism in cells, including the upregulation of hypoxia-inducible
factor 1 [11,12], which leads to the overexpression of glycolytic enzymes and glucose transporters
(GLUT1 and GLUT3) [13]. Glucose molecules are more actively internalized and converted to pyruvate
as a result. Interestingly, in tumor cells, the majority of the resulting pyruvate undergoes a truncated
pathway and is converted to lactic acid directly, instead of entering the tricarboxylic acid cycle.
This phenomenon is known as the Warburg effect and has been observed in tumor cells even in
normoxia [14,15]. Hypoxia also triggers the upregulation of Na+/H+ exchangers, which play an
important role in maintaining intracellular pH [16,17], pumping large quantities of protons formed
during glycolysis out of cells. These overproduced protons would normally be washed out by blood
flow and lymphatic drainage, and the extracellular pH would remain normal [18]. However, because
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of the decreased blood flow [19] and impaired lymphatic drainage [20] in tumor tissues, the excess
protons accumulate in the extracellular space [19]. Although the intracellular pH remains close to
normal, at around 7.2, studies have shown that the extracellular pH in several kinds of tumors is more
acidic, with an average pH of around 6.8 [21,22].

AuNPs are made sensitive to pH by using a polymer that has a different charge at different pH
values, by adjusting the SPR, or by combining these two techniques (Table 1). For example, shieldable
tumor-targeting AuNPs that possessed a self-assembly/disassembly property triggered by extrinsic
pH changes were prepared by surface modification of AuNPs with two other components, lipoyl
tertiary amines (LA-NRn) and poly(ethylene glycol) (PEG) modified by a glycyrrhetinic acid (GA)
derivative, forming PEG-GA-N(CH3)2 [23]. GA is a targeting ligand of hepatocytes. It also serves as
the tuner of hydrophobicity in these AuNPs. The carboxylic acid group on GA was modified into a
tertiary amine group, causing the modified GA moiety to transit from non-charged (hydrophobic)
to positively charged (hydrophilic) as pH dropped, and LA-NRn underwent a similar transition
(illustrated in Figure 1). This hydrophobic/hydrophilic transition resulted in the aggregation of
the AuNPs and the hiding of the targeting ligand at pH 7.4, and disassembly and exposure of the
targeting ligand at acidic pH (such as 6.8). The results of an in vitro study showed that the uptake of
AuNPs@LA-NR4+PEG-GA-N(CH3)2 by HepG2 cells was about three times higher at pH 6.8 than at
pH 7.4. Aside from the incorporation of a polymer/compound that has a different charge at different
pH values, chemical bound that is prone to hydrolysis has also been used to introduce pH sensitivity.
The hydrolysis of the citraconic amide moiety triggers the release of doxorubicin (Dox) to the tumor
area and spurs the aggregation of AuNPs for photothermal therapy [24].
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Figure 1. Schematic Illustration of GA Ligand’s Shield at Blood pH (pH 7.4) and Exposure at Tumor
Extracellular Environment pH (pH 6.8), and Possible Mechanism of Sharp pH-Responsive Assembly
and Disassembly of Au NPs. Reprinted with permission from [23]. Copyright American Chemical
Society, 2014.

Like extracellular pH, the average intracellular pH is slightly lower than the physiological pH
of 7.4. Moreover, the pH value differs among subcellular compartments [25,26]. Some compartments,
in particular endosomes and lysosomes, even possess a pH as low as 4 or 5. The lower intracellular
pH plus the different extracellular and intracellular ion concentrations have provided a theranostic
target. For example, Cha et al. [27] fabricated theranostic hybrid nanoparticles from AuNPs,
methoxy-poly(ethylene glycol) (mPEG)-Asp-Cys copolymers, and calcium phosphate (CaP) [27].
The employed biological niches were the lower lysosomal pH (pH 4.5) versus physiological pH
(pH 7.4), the decreased intracellular calcium ion concentration (reduction of 104 times compared
to extracellular conditions), and the increased phosphate ion concentration (increase of 40–70 times
compared to extracellular conditions) [28]. The hypothesis was that the lower pH and the decreased
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calcium concentration would facilitate the dissolution of the calcium layer and therefore increase
the release of Dox in lysosomes. In the in vitro test, the particles stayed stable at physiological pH
(7.4) and released only 13% of Dox after 12 hours, but 70% of the Dox at pH 4.5. In vitro work also
showed an increased cytotoxicity on HeLa cells. The authors proposed future in vivo work on the
theranostic effect of PEGylated Dox-AuNP@CaP particles. Computed tomography (CT) imaging could
be obtained and Dox delivered using AuNPs.

Table 1. AuNPs responsive to pH.

Structure and Size at
Basic/Physiological pH (7.4)

Structure and Size at Acidic
pH In Vitro Effects In Vivo Effects Ref.

J. Funct. Biomater. 2016, 7, 19 2 of 14 

hypothesis underlying the design of each AuNP, and, briefly, the results of these studies and their 
Table 1. AuNPs responsive to pH. 

Structure and Size at 
Basic/Physiological pH (7.4) 

Structure and Size at 
Acidic pH 

In Vitro Effects In Vivo Effects Ref. 

 
~80 nm 

 
50 nm (pH = 6.8) 

Increased cellular 
uptake at pH 6.8 
when compared 

with pH 7.4 

None [23] 

 
10 nm 

 
~250 nm (pH 2.0);  
~50 nm (pH 5.5) 

Synergistic effect 
of Dox release and 

photothermal 
ablation  

(660-nm laser) 

Significant tumor 
suppression 

without noticeable 
damage to other 

organs 

[24] 

 
79.8 ± 18.7 nm 

 
Dissolution of calcium 

phosphate layer at acidic 
pH. 

Size: N/A  

Higher 
cytotoxicity on 

HeLa cells  
None [27] 

 

Figure 1. Schematic Illustration of GA Ligand’s Shield at Blood pH (pH 7.4) and Exposure at Tumor 
Extracellular Environment pH (pH 6.8), and Possible Mechanism of Sharp pH-Responsive Assembly 
and Disassembly of Au NPs. Reprinted with permission from [23]. Copyright American Chemical 
Society, 2014. 

2.2. Matrix Metalloproteinases 

MMPs are zinc-dependent proteins that belong to the metzincin superfamily [29]. Twenty-four 
MMPs have been identified [30]. They are synthesized as pre-proenzymes in cells, and most are 
secreted into the extracellular space as proenzymes [31]. MMPs used to be viewed as “scissors” that 
break down the basement membrane, degrade extracellular matrix components, and facilitate tumor 

 

~80 nm

J. Funct. Biomater. 2016, 7, 19 3 of 32 

AuNPs are made sensitive to pH by using a polymer that has a different charge at different pH 
values, by adjusting the SPR, or by combining these two techniques (Table 1). For example, shieldable 
tumor-targeting AuNPs that possessed a self-assembly/disassembly property triggered by extrinsic 
pH changes were prepared by surface modification of AuNPs with two other components, lipoyl 
tertiary amines (LA-NRn) and poly(ethylene glycol) (PEG) modified by a glycyrrhetinic acid (GA) 
derivative, forming PEG-GA-N(CH3)2 [23]. GA is a targeting ligand of hepatocytes. It also serves as 
the tuner of hydrophobicity in these AuNPs. The carboxylic acid group on GA was modified into a 
tertiary amine group, causing the modified GA moiety to transit from non-charged (hydrophobic) to 
positively charged (hydrophilic) as pH dropped, and LA-NRn underwent a similar transition 
(illustrated in Figure 1). This hydrophobic/hydrophilic transition resulted in the aggregation of the 
AuNPs and the hiding of the targeting ligand at pH 7.4, and disassembly and exposure of the 
targeting ligand at acidic pH (such as 6.8). The results of an in vitro study showed that the uptake of 
AuNPs@LA-NR4+PEG-GA-N(CH3)2 by HepG2 cells was about three times higher at pH 6.8 than at 
pH 7.4. Aside from the incorporation of a polymer/compound that has a different charge at different 
pH values, chemical bound that is prone to hydrolysis has also been used to introduce pH sensitivity. 
The hydrolysis of the citraconic amide moiety triggers the release of doxorubicin (Dox) to the tumor 
area and spurs the aggregation of AuNPs for photothermal therapy [24].  

Like extracellular pH, the average intracellular pH is slightly lower than the physiological pH 
of 7.4. Moreover, the pH value differs among subcellular compartments [25,26]. Some compartments, 
in particular endosomes and lysosomes, even possess a pH as low as 4 or 5. The lower intracellular 
pH plus the different extracellular and intracellular ion concentrations have provided a theranostic 
target. For example, Cha et al. [27] fabricated theranostic hybrid nanoparticles from AuNPs, methoxy-
poly(ethylene glycol) (mPEG)-Asp-Cys copolymers, and calcium phosphate (CaP) [27]. The 
employed biological niches were the lower lysosomal pH (pH 4.5) versus physiological pH (pH 7.4), 
the decreased intracellular calcium ion concentration (reduction of 104 times compared to 
extracellular conditions), and the increased phosphate ion concentration (increase of 40–70 times 
compared to extracellular conditions) [28]. The hypothesis was that the lower pH and the decreased 
calcium concentration would facilitate the dissolution of the calcium layer and therefore increase the 
release of Dox in lysosomes. In the in vitro test, the particles stayed stable at physiological pH (7.4) 
and released only 13% of Dox after 12 hours, but 70% of the Dox at pH 4.5. In vitro work also showed 
an increased cytotoxicity on HeLa cells. The authors proposed future in vivo work on the theranostic 
effect of PEGylated Dox-AuNP@CaP particles. Computed tomography (CT) imaging could be 
obtained and Dox delivered using AuNPs. 

Table 1. AuNPs responsive to pH. 

Structure and Size at 
Basic/Physiological pH (7.4) 

Structure and Size at 
Acidic pH In Vitro Effects In Vivo Effects Ref. 

 
~80 nm 

 
50 nm (pH = 6.8) 

Increased cellular 
uptake at pH 6.8 
when compared 

with pH 7.4 

None [23] 

 
10 nm 

 
~250 nm (pH 2.0);  
~50 nm (pH 5.5) 

Synergistic effect 
of Dox release and 

photothermal 
ablation  

(660-nm laser) 

Significant tumor 
suppression 

without noticeable 
damage to other 

organs 

[24] 

 

50 nm (pH = 6.8)

Increased cellular uptake
at pH 6.8 when

compared with pH 7.4
None [23]

J. Funct. Biomater. 2016, 7, 19 3 of 32 

AuNPs are made sensitive to pH by using a polymer that has a different charge at different pH 
values, by adjusting the SPR, or by combining these two techniques (Table 1). For example, shieldable 
tumor-targeting AuNPs that possessed a self-assembly/disassembly property triggered by extrinsic 
pH changes were prepared by surface modification of AuNPs with two other components, lipoyl 
tertiary amines (LA-NRn) and poly(ethylene glycol) (PEG) modified by a glycyrrhetinic acid (GA) 
derivative, forming PEG-GA-N(CH3)2 [23]. GA is a targeting ligand of hepatocytes. It also serves as 
the tuner of hydrophobicity in these AuNPs. The carboxylic acid group on GA was modified into a 
tertiary amine group, causing the modified GA moiety to transit from non-charged (hydrophobic) to 
positively charged (hydrophilic) as pH dropped, and LA-NRn underwent a similar transition 
(illustrated in Figure 1). This hydrophobic/hydrophilic transition resulted in the aggregation of the 
AuNPs and the hiding of the targeting ligand at pH 7.4, and disassembly and exposure of the 
targeting ligand at acidic pH (such as 6.8). The results of an in vitro study showed that the uptake of 
AuNPs@LA-NR4+PEG-GA-N(CH3)2 by HepG2 cells was about three times higher at pH 6.8 than at 
pH 7.4. Aside from the incorporation of a polymer/compound that has a different charge at different 
pH values, chemical bound that is prone to hydrolysis has also been used to introduce pH sensitivity. 
The hydrolysis of the citraconic amide moiety triggers the release of doxorubicin (Dox) to the tumor 
area and spurs the aggregation of AuNPs for photothermal therapy [24].  

Like extracellular pH, the average intracellular pH is slightly lower than the physiological pH 
of 7.4. Moreover, the pH value differs among subcellular compartments [25,26]. Some compartments, 
in particular endosomes and lysosomes, even possess a pH as low as 4 or 5. The lower intracellular 
pH plus the different extracellular and intracellular ion concentrations have provided a theranostic 
target. For example, Cha et al. [27] fabricated theranostic hybrid nanoparticles from AuNPs, methoxy-
poly(ethylene glycol) (mPEG)-Asp-Cys copolymers, and calcium phosphate (CaP) [27]. The 
employed biological niches were the lower lysosomal pH (pH 4.5) versus physiological pH (pH 7.4), 
the decreased intracellular calcium ion concentration (reduction of 104 times compared to 
extracellular conditions), and the increased phosphate ion concentration (increase of 40–70 times 
compared to extracellular conditions) [28]. The hypothesis was that the lower pH and the decreased 
calcium concentration would facilitate the dissolution of the calcium layer and therefore increase the 
release of Dox in lysosomes. In the in vitro test, the particles stayed stable at physiological pH (7.4) 
and released only 13% of Dox after 12 hours, but 70% of the Dox at pH 4.5. In vitro work also showed 
an increased cytotoxicity on HeLa cells. The authors proposed future in vivo work on the theranostic 
effect of PEGylated Dox-AuNP@CaP particles. Computed tomography (CT) imaging could be 
obtained and Dox delivered using AuNPs. 

Table 1. AuNPs responsive to pH. 

Structure and Size at 
Basic/Physiological pH (7.4) 

Structure and Size at 
Acidic pH In Vitro Effects In Vivo Effects Ref. 

 
~80 nm 

 
50 nm (pH = 6.8) 

Increased cellular 
uptake at pH 6.8 
when compared 

with pH 7.4 

None [23] 

 
10 nm 

 
~250 nm (pH 2.0);  
~50 nm (pH 5.5) 

Synergistic effect 
of Dox release and 

photothermal 
ablation  

(660-nm laser) 

Significant tumor 
suppression 

without noticeable 
damage to other 

organs 

[24] 

 

10 nm

J. Funct. Biomater. 2016, 7, 19 3 of 32 

AuNPs are made sensitive to pH by using a polymer that has a different charge at different pH 
values, by adjusting the SPR, or by combining these two techniques (Table 1). For example, shieldable 
tumor-targeting AuNPs that possessed a self-assembly/disassembly property triggered by extrinsic 
pH changes were prepared by surface modification of AuNPs with two other components, lipoyl 
tertiary amines (LA-NRn) and poly(ethylene glycol) (PEG) modified by a glycyrrhetinic acid (GA) 
derivative, forming PEG-GA-N(CH3)2 [23]. GA is a targeting ligand of hepatocytes. It also serves as 
the tuner of hydrophobicity in these AuNPs. The carboxylic acid group on GA was modified into a 
tertiary amine group, causing the modified GA moiety to transit from non-charged (hydrophobic) to 
positively charged (hydrophilic) as pH dropped, and LA-NRn underwent a similar transition 
(illustrated in Figure 1). This hydrophobic/hydrophilic transition resulted in the aggregation of the 
AuNPs and the hiding of the targeting ligand at pH 7.4, and disassembly and exposure of the 
targeting ligand at acidic pH (such as 6.8). The results of an in vitro study showed that the uptake of 
AuNPs@LA-NR4+PEG-GA-N(CH3)2 by HepG2 cells was about three times higher at pH 6.8 than at 
pH 7.4. Aside from the incorporation of a polymer/compound that has a different charge at different 
pH values, chemical bound that is prone to hydrolysis has also been used to introduce pH sensitivity. 
The hydrolysis of the citraconic amide moiety triggers the release of doxorubicin (Dox) to the tumor 
area and spurs the aggregation of AuNPs for photothermal therapy [24].  

Like extracellular pH, the average intracellular pH is slightly lower than the physiological pH 
of 7.4. Moreover, the pH value differs among subcellular compartments [25,26]. Some compartments, 
in particular endosomes and lysosomes, even possess a pH as low as 4 or 5. The lower intracellular 
pH plus the different extracellular and intracellular ion concentrations have provided a theranostic 
target. For example, Cha et al. [27] fabricated theranostic hybrid nanoparticles from AuNPs, methoxy-
poly(ethylene glycol) (mPEG)-Asp-Cys copolymers, and calcium phosphate (CaP) [27]. The 
employed biological niches were the lower lysosomal pH (pH 4.5) versus physiological pH (pH 7.4), 
the decreased intracellular calcium ion concentration (reduction of 104 times compared to 
extracellular conditions), and the increased phosphate ion concentration (increase of 40–70 times 
compared to extracellular conditions) [28]. The hypothesis was that the lower pH and the decreased 
calcium concentration would facilitate the dissolution of the calcium layer and therefore increase the 
release of Dox in lysosomes. In the in vitro test, the particles stayed stable at physiological pH (7.4) 
and released only 13% of Dox after 12 hours, but 70% of the Dox at pH 4.5. In vitro work also showed 
an increased cytotoxicity on HeLa cells. The authors proposed future in vivo work on the theranostic 
effect of PEGylated Dox-AuNP@CaP particles. Computed tomography (CT) imaging could be 
obtained and Dox delivered using AuNPs. 

Table 1. AuNPs responsive to pH. 

Structure and Size at 
Basic/Physiological pH (7.4) 

Structure and Size at 
Acidic pH In Vitro Effects In Vivo Effects Ref. 

 
~80 nm 

 
50 nm (pH = 6.8) 

Increased cellular 
uptake at pH 6.8 
when compared 

with pH 7.4 

None [23] 

 
10 nm 

 
~250 nm (pH 2.0);  
~50 nm (pH 5.5) 

Synergistic effect 
of Dox release and 

photothermal 
ablation  

(660-nm laser) 

Significant tumor 
suppression 

without noticeable 
damage to other 

organs 

[24] 

 

~250 nm (pH 2.0);
~50 nm (pH 5.5)

Synergistic effect of Dox
release and

photothermal ablation
(660-nm laser)

Significant tumor
suppression without
noticeable damage to

other organs

[24]

J. Funct. Biomater. 2016, 7, 19 4 of 32 

 
79.8 ± 18.7 nm 

 
Dissolution of calcium 

phosphate layer at acidic 
pH. 

Size: N/A  

Higher 
cytotoxicity on 

HeLa cells  
None [27] 

 

Figure 1. Schematic Illustration of GA Ligand’s Shield at Blood pH (pH 7.4) and Exposure at Tumor 
Extracellular Environment pH (pH 6.8), and Possible Mechanism of Sharp pH-Responsive Assembly 
and Disassembly of Au NPs. Reprinted with permission from [23]. Copyright American Chemical 
Society, 2014. 

2.2. Matrix Metalloproteinases 

MMPs are zinc-dependent proteins that belong to the metzincin superfamily [29]. Twenty-four 
MMPs have been identified [30]. They are synthesized as pre-proenzymes in cells, and most are 
secreted into the extracellular space as proenzymes [31]. MMPs used to be viewed as “scissors” that 
break down the basement membrane, degrade extracellular matrix components, and facilitate tumor 
invasion and metastasis [32,33]. Recent research, however, has revealed that MMPs are involved in 
several different aspects of the regulation of the tumor microenvironment [34]. Besides participating 
in tumor invasion and metastasis, MMPs are also involved in cell growth, angiogenesis, and 
apoptosis. They can be produced by both tumor cells and surrounding stromal cells [35,36]. MMP 
inhibitors have attracted growing interest in clinical trials [36], and various cleavage sequences of 
MMPs have been incorporated into the design of new anticancer nanoparticles, including AuNPs. 
Cleavage of these sequences often causes an optical change in the AuNPs, and this change is, in turn, 
mathematically related to the amount and/or activity of the MMPs (Table 2). 

Table 2. AuNPs responsive to MMP. 

Structure and Size 
before MMP 

Exposure 

Structure after 
MMP Exposure 

Targeting 
MMP 

Subclass 
In Vitro Effects In Vivo Effects Ref. 

 
 

MMP-7 

Extinction ratio 
(E520/E700) as 

function of MMP 
concentration 

None [37] 

 

79.8 ˘ 18.7 nm

J. Funct. Biomater. 2016, 7, 19 4 of 32 

 
79.8 ± 18.7 nm 

 
Dissolution of calcium 

phosphate layer at acidic 
pH. 

Size: N/A  

Higher 
cytotoxicity on 

HeLa cells  
None [27] 

 

Figure 1. Schematic Illustration of GA Ligand’s Shield at Blood pH (pH 7.4) and Exposure at Tumor 
Extracellular Environment pH (pH 6.8), and Possible Mechanism of Sharp pH-Responsive Assembly 
and Disassembly of Au NPs. Reprinted with permission from [23]. Copyright American Chemical 
Society, 2014. 

2.2. Matrix Metalloproteinases 

MMPs are zinc-dependent proteins that belong to the metzincin superfamily [29]. Twenty-four 
MMPs have been identified [30]. They are synthesized as pre-proenzymes in cells, and most are 
secreted into the extracellular space as proenzymes [31]. MMPs used to be viewed as “scissors” that 
break down the basement membrane, degrade extracellular matrix components, and facilitate tumor 
invasion and metastasis [32,33]. Recent research, however, has revealed that MMPs are involved in 
several different aspects of the regulation of the tumor microenvironment [34]. Besides participating 
in tumor invasion and metastasis, MMPs are also involved in cell growth, angiogenesis, and 
apoptosis. They can be produced by both tumor cells and surrounding stromal cells [35,36]. MMP 
inhibitors have attracted growing interest in clinical trials [36], and various cleavage sequences of 
MMPs have been incorporated into the design of new anticancer nanoparticles, including AuNPs. 
Cleavage of these sequences often causes an optical change in the AuNPs, and this change is, in turn, 
mathematically related to the amount and/or activity of the MMPs (Table 2). 
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2.2. Matrix Metalloproteinases

MMPs are zinc-dependent proteins that belong to the metzincin superfamily [29]. Twenty-four
MMPs have been identified [30]. They are synthesized as pre-proenzymes in cells, and most are
secreted into the extracellular space as proenzymes [31]. MMPs used to be viewed as “scissors” that
break down the basement membrane, degrade extracellular matrix components, and facilitate tumor
invasion and metastasis [32,33]. Recent research, however, has revealed that MMPs are involved in
several different aspects of the regulation of the tumor microenvironment [34]. Besides participating in
tumor invasion and metastasis, MMPs are also involved in cell growth, angiogenesis, and apoptosis.
They can be produced by both tumor cells and surrounding stromal cells [35,36]. MMP inhibitors have
attracted growing interest in clinical trials [36], and various cleavage sequences of MMPs have been
incorporated into the design of new anticancer nanoparticles, including AuNPs. Cleavage of these
sequences often causes an optical change in the AuNPs, and this change is, in turn, mathematically
related to the amount and/or activity of the MMPs (Table 2).
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inhibitors have attracted growing interest in clinical trials [36], and various cleavage sequences of 
MMPs have been incorporated into the design of new anticancer nanoparticles, including AuNPs. 
Cleavage of these sequences often causes an optical change in the AuNPs, and this change is, in turn, 
mathematically related to the amount and/or activity of the MMPs (Table 2). 

Table 2. AuNPs responsive to MMP. 

Structure and Size 
before MMP 

Exposure 

Structure after 
MMP Exposure 

Targeting 
MMP 

Subclass 
In Vitro Effects In Vivo Effects Ref. 

 
 

MMP-7 

Extinction ratio 
(E520/E700) as 

function of MMP 
concentration 

None [37] 

 

MMP-7
Extinction ratio

(E520/E700) as function of
MMP concentration

None [37]

J. Funct. Biomater. 2016, 7, 19 3 of 14 

invasion and metastasis [32,33]. Recent research, however, has revealed that MMPs are involved in 
Table 2. AuNPs responsive to MMP. 

Structure and Size 
before MMP 

Exposure 

Structure after 
MMP Exposure 

Targeting 
MMP 

Subclass 
In Vitro Effects In Vivo Effects Ref. 

 
Mean diameter 21.5 

nm 

 

MMP-7 

Extinction ratio 
(E520/E700) as 

function of MMP 
concentration 

None [37] 

 
Length 35.2 ± 1.5 nm 
Width 10.8 ± 0.9 nm  

 

 

MT1-
MMP 

LSPR blueshift 
after MT1-MMP 

cleavage. λmax and 
Δλmax depend on 

MT1-MMP 
proteolytic activity 

in cell lysate. 

None [38] 

 
5 nm 

 
 

 

MMP-7 

Relative intensity 
of scanometric 

image as a 
function of MMP-

7 concentration 

None [39] 

 
Core 5 nm 

Whole NP 26 nm 

 
311 nm 

MMP-2 
Enhanced cellular 
uptake on MDA-

MB-231 cells 
None [40] 

 
Aspect ratio 2:1  

MMP-3, -
7, -9, -13 

NIRF imaging of 
MMP by releasing 

Cy5.5. 
Cytotoxicity on 
HeLa cells by 
photothermal 

ablation (671 nm 
CW laser source) 

Maximum NIRF 
intensity 60 min 
after injection. 
Temperature 

exceeded 45°C after 
4 min of irradiation 

(SCC-7 tumor 
xenograft) 

[41] 

 
Core 13 nm 

 

MMP-2 + 
GSH 

Dox release by 
MMP2 (increased 

fluorescence), 
increased 

cytotoxicity 
(further 

intracellular Dox 
release by GSH) 

on SCC-7 and HT-
29 cells 

Increased 
fluorescence 

intensity at the 
tumor site 30 min 

after injection. 
Comparable 

antitumor effect 
with free Dox, but 

much lower 
systemic toxicity 

and higher animal 
survival 

[42] 

 

Length 35.2 ˘ 1.5 nm
Width 10.8 ˘ 0.9 nm

J. Funct. Biomater. 2016, 7, 19 5 of 32 

Mean diameter 21.5 
nm 

 
Length 35.2 ± 1.5 nm 
Width 10.8 ± 0.9 nm  

 

 

MT1-
MMP 

LSPR blueshift 
after MT1-MMP 

cleavage. λmax and 
Δλmax depend on 

MT1-MMP 
proteolytic activity 

in cell lysate. 

None [38] 

 
5 nm 

 
 

 

MMP-7 

Relative intensity 
of scanometric 

image as a 
function of MMP-

7 concentration 

None [39] 

 
Core 5 nm 

Whole NP 26 nm 

 
311 nm 

MMP-2 
Enhanced cellular 
uptake on MDA-

MB-231 cells 
None [40] 

 
Aspect ratio 2:1  

MMP-3, -
7, -9, -13 

NIRF imaging of 
MMP by releasing 

Cy5.5. 
Cytotoxicity on 
HeLa cells by 
photothermal 

ablation (671 nm 
CW laser source) 

Maximum NIRF 
intensity 60 min 
after injection. 
Temperature 

exceeded 45°C after 
4 min of irradiation 

(SCC-7 tumor 
xenograft) 

[41] 

 
Core 13 nm 

 

MMP-2 + 
GSH 

Dox release by 
MMP2 (increased 

fluorescence), 
increased 

cytotoxicity 
(further 

intracellular Dox 
release by GSH) 

on SCC-7 and HT-
29 cells 

Increased 
fluorescence 

intensity at the 
tumor site 30 min 

after injection. 
Comparable 

antitumor effect 
with free Dox, but 

much lower 
systemic toxicity 

and higher animal 
survival 

[42] 

GSH, glutathione; LSPR, localized surface plasmon resonance; NIRF, near-infrared fluorescence; CW, 
continuous wave; Dox, doxorubicin. 

One application of AuNPs is the bench quantification of MMP. For example, Kim et al performed 
a colorimetric assay of MMP activity using AuNPs [37]. Based on the discovery of a high binding 
affinity of His-tags with densely packed carboxyl groups on the nanoparticle surface in the presence 
of metal ions, they hypothesized that the carboxyl AuNPs would self-assemble in the presence of 
both metal ions and peptides with hexahistidine at both ends (H6-pep-H6). This self-assembly would 
cause a blueshift in the solution’s spectrum. When the peptide sequence in H6-pep-H6 was designed 
to be the cleavage sequence of MMP, MMP would cleave the peptide and reverse the self-assembly 
and the spectrum shift. The color extinction ratio of E520/E700 was calculated and used to 
characterize MMP activity.  
 

MT1-MMP

LSPR blueshift after
MT1-MMP cleavage.

λmax and ∆λmax depend
on MT1-MMP proteolytic

activity in cell lysate.

None [38]

J. Funct. Biomater. 2016, 7, 19 5 of 32 

Mean diameter 21.5 
nm 

 
Length 35.2 ± 1.5 nm 
Width 10.8 ± 0.9 nm  

 

 

MT1-
MMP 

LSPR blueshift 
after MT1-MMP 

cleavage. λmax and 
Δλmax depend on 

MT1-MMP 
proteolytic activity 

in cell lysate. 

None [38] 

 
5 nm 

 
 

 

MMP-7 

Relative intensity 
of scanometric 

image as a 
function of MMP-

7 concentration 

None [39] 

 
Core 5 nm 

Whole NP 26 nm 

 
311 nm 

MMP-2 
Enhanced cellular 
uptake on MDA-

MB-231 cells 
None [40] 

 
Aspect ratio 2:1  

MMP-3, -
7, -9, -13 

NIRF imaging of 
MMP by releasing 

Cy5.5. 
Cytotoxicity on 
HeLa cells by 
photothermal 

ablation (671 nm 
CW laser source) 

Maximum NIRF 
intensity 60 min 
after injection. 
Temperature 

exceeded 45°C after 
4 min of irradiation 

(SCC-7 tumor 
xenograft) 

[41] 

 
Core 13 nm 

 

MMP-2 + 
GSH 

Dox release by 
MMP2 (increased 

fluorescence), 
increased 

cytotoxicity 
(further 

intracellular Dox 
release by GSH) 

on SCC-7 and HT-
29 cells 

Increased 
fluorescence 

intensity at the 
tumor site 30 min 

after injection. 
Comparable 

antitumor effect 
with free Dox, but 

much lower 
systemic toxicity 

and higher animal 
survival 

[42] 

GSH, glutathione; LSPR, localized surface plasmon resonance; NIRF, near-infrared fluorescence; CW, 
continuous wave; Dox, doxorubicin. 

One application of AuNPs is the bench quantification of MMP. For example, Kim et al performed 
a colorimetric assay of MMP activity using AuNPs [37]. Based on the discovery of a high binding 
affinity of His-tags with densely packed carboxyl groups on the nanoparticle surface in the presence 
of metal ions, they hypothesized that the carboxyl AuNPs would self-assemble in the presence of 
both metal ions and peptides with hexahistidine at both ends (H6-pep-H6). This self-assembly would 
cause a blueshift in the solution’s spectrum. When the peptide sequence in H6-pep-H6 was designed 
to be the cleavage sequence of MMP, MMP would cleave the peptide and reverse the self-assembly 
and the spectrum shift. The color extinction ratio of E520/E700 was calculated and used to 
characterize MMP activity.  
 

5 nm

J. Funct. Biomater. 2016, 7, 19 5 of 32 

Mean diameter 21.5 
nm 

 
Length 35.2 ± 1.5 nm 
Width 10.8 ± 0.9 nm  

 

 

MT1-
MMP 

LSPR blueshift 
after MT1-MMP 

cleavage. λmax and 
Δλmax depend on 

MT1-MMP 
proteolytic activity 

in cell lysate. 

None [38] 

 
5 nm 

 
 

 

MMP-7 

Relative intensity 
of scanometric 

image as a 
function of MMP-

7 concentration 

None [39] 

 
Core 5 nm 

Whole NP 26 nm 

 
311 nm 

MMP-2 
Enhanced cellular 
uptake on MDA-

MB-231 cells 
None [40] 

 
Aspect ratio 2:1  

MMP-3, -
7, -9, -13 

NIRF imaging of 
MMP by releasing 

Cy5.5. 
Cytotoxicity on 
HeLa cells by 
photothermal 

ablation (671 nm 
CW laser source) 

Maximum NIRF 
intensity 60 min 
after injection. 
Temperature 

exceeded 45°C after 
4 min of irradiation 

(SCC-7 tumor 
xenograft) 

[41] 

 
Core 13 nm 

 

MMP-2 + 
GSH 

Dox release by 
MMP2 (increased 

fluorescence), 
increased 

cytotoxicity 
(further 

intracellular Dox 
release by GSH) 

on SCC-7 and HT-
29 cells 

Increased 
fluorescence 

intensity at the 
tumor site 30 min 

after injection. 
Comparable 

antitumor effect 
with free Dox, but 

much lower 
systemic toxicity 

and higher animal 
survival 

[42] 

GSH, glutathione; LSPR, localized surface plasmon resonance; NIRF, near-infrared fluorescence; CW, 
continuous wave; Dox, doxorubicin. 

One application of AuNPs is the bench quantification of MMP. For example, Kim et al performed 
a colorimetric assay of MMP activity using AuNPs [37]. Based on the discovery of a high binding 
affinity of His-tags with densely packed carboxyl groups on the nanoparticle surface in the presence 
of metal ions, they hypothesized that the carboxyl AuNPs would self-assemble in the presence of 
both metal ions and peptides with hexahistidine at both ends (H6-pep-H6). This self-assembly would 
cause a blueshift in the solution’s spectrum. When the peptide sequence in H6-pep-H6 was designed 
to be the cleavage sequence of MMP, MMP would cleave the peptide and reverse the self-assembly 
and the spectrum shift. The color extinction ratio of E520/E700 was calculated and used to 
characterize MMP activity.  
 

MMP-7

Relative intensity of
scanometric image as a

function of MMP-7
concentration

None [39]

J. Funct. Biomater. 2016, 7, 19 5 of 32 

Mean diameter 21.5 
nm 

 
Length 35.2 ± 1.5 nm 
Width 10.8 ± 0.9 nm  

 

 

MT1-
MMP 

LSPR blueshift 
after MT1-MMP 

cleavage. λmax and 
Δλmax depend on 

MT1-MMP 
proteolytic activity 

in cell lysate. 

None [38] 

 
5 nm 

 
 

 

MMP-7 

Relative intensity 
of scanometric 

image as a 
function of MMP-

7 concentration 

None [39] 

 
Core 5 nm 

Whole NP 26 nm 

 
311 nm 

MMP-2 
Enhanced cellular 
uptake on MDA-

MB-231 cells 
None [40] 

 
Aspect ratio 2:1  

MMP-3, -
7, -9, -13 

NIRF imaging of 
MMP by releasing 

Cy5.5. 
Cytotoxicity on 
HeLa cells by 
photothermal 

ablation (671 nm 
CW laser source) 

Maximum NIRF 
intensity 60 min 
after injection. 
Temperature 

exceeded 45°C after 
4 min of irradiation 

(SCC-7 tumor 
xenograft) 

[41] 

 
Core 13 nm 

 

MMP-2 + 
GSH 

Dox release by 
MMP2 (increased 

fluorescence), 
increased 

cytotoxicity 
(further 

intracellular Dox 
release by GSH) 

on SCC-7 and HT-
29 cells 

Increased 
fluorescence 

intensity at the 
tumor site 30 min 

after injection. 
Comparable 

antitumor effect 
with free Dox, but 

much lower 
systemic toxicity 

and higher animal 
survival 

[42] 

GSH, glutathione; LSPR, localized surface plasmon resonance; NIRF, near-infrared fluorescence; CW, 
continuous wave; Dox, doxorubicin. 

One application of AuNPs is the bench quantification of MMP. For example, Kim et al performed 
a colorimetric assay of MMP activity using AuNPs [37]. Based on the discovery of a high binding 
affinity of His-tags with densely packed carboxyl groups on the nanoparticle surface in the presence 
of metal ions, they hypothesized that the carboxyl AuNPs would self-assemble in the presence of 
both metal ions and peptides with hexahistidine at both ends (H6-pep-H6). This self-assembly would 
cause a blueshift in the solution’s spectrum. When the peptide sequence in H6-pep-H6 was designed 
to be the cleavage sequence of MMP, MMP would cleave the peptide and reverse the self-assembly 
and the spectrum shift. The color extinction ratio of E520/E700 was calculated and used to 
characterize MMP activity.  
 

Core 5 nm
Whole NP 26 nm

J. Funct. Biomater. 2016, 7, 19 5 of 32 

Mean diameter 21.5 
nm 

 
Length 35.2 ± 1.5 nm 
Width 10.8 ± 0.9 nm  

 

 

MT1-
MMP 

LSPR blueshift 
after MT1-MMP 

cleavage. λmax and 
Δλmax depend on 

MT1-MMP 
proteolytic activity 

in cell lysate. 

None [38] 

 
5 nm 

 
 

 

MMP-7 

Relative intensity 
of scanometric 

image as a 
function of MMP-

7 concentration 

None [39] 

 
Core 5 nm 

Whole NP 26 nm 

 
311 nm 

MMP-2 
Enhanced cellular 
uptake on MDA-

MB-231 cells 
None [40] 

 
Aspect ratio 2:1  

MMP-3, -
7, -9, -13 

NIRF imaging of 
MMP by releasing 

Cy5.5. 
Cytotoxicity on 
HeLa cells by 
photothermal 

ablation (671 nm 
CW laser source) 

Maximum NIRF 
intensity 60 min 
after injection. 
Temperature 

exceeded 45°C after 
4 min of irradiation 

(SCC-7 tumor 
xenograft) 

[41] 

 
Core 13 nm 

 

MMP-2 + 
GSH 

Dox release by 
MMP2 (increased 

fluorescence), 
increased 

cytotoxicity 
(further 

intracellular Dox 
release by GSH) 

on SCC-7 and HT-
29 cells 

Increased 
fluorescence 

intensity at the 
tumor site 30 min 

after injection. 
Comparable 

antitumor effect 
with free Dox, but 

much lower 
systemic toxicity 

and higher animal 
survival 

[42] 

GSH, glutathione; LSPR, localized surface plasmon resonance; NIRF, near-infrared fluorescence; CW, 
continuous wave; Dox, doxorubicin. 

One application of AuNPs is the bench quantification of MMP. For example, Kim et al performed 
a colorimetric assay of MMP activity using AuNPs [37]. Based on the discovery of a high binding 
affinity of His-tags with densely packed carboxyl groups on the nanoparticle surface in the presence 
of metal ions, they hypothesized that the carboxyl AuNPs would self-assemble in the presence of 
both metal ions and peptides with hexahistidine at both ends (H6-pep-H6). This self-assembly would 
cause a blueshift in the solution’s spectrum. When the peptide sequence in H6-pep-H6 was designed 
to be the cleavage sequence of MMP, MMP would cleave the peptide and reverse the self-assembly 
and the spectrum shift. The color extinction ratio of E520/E700 was calculated and used to 
characterize MMP activity.  
 

311 nm

MMP-2 Enhanced cellular uptake
on MDA-MB-231 cells None [40]

J. Funct. Biomater. 2016, 7, 19 5 of 32 

Mean diameter 21.5 
nm 

 
Length 35.2 ± 1.5 nm 
Width 10.8 ± 0.9 nm  

 

 

MT1-
MMP 

LSPR blueshift 
after MT1-MMP 

cleavage. λmax and 
Δλmax depend on 

MT1-MMP 
proteolytic activity 

in cell lysate. 

None [38] 

 
5 nm 

 
 

 

MMP-7 

Relative intensity 
of scanometric 

image as a 
function of MMP-

7 concentration 

None [39] 

 
Core 5 nm 

Whole NP 26 nm 

 
311 nm 

MMP-2 
Enhanced cellular 
uptake on MDA-

MB-231 cells 
None [40] 

 
Aspect ratio 2:1  

MMP-3, -
7, -9, -13 

NIRF imaging of 
MMP by releasing 

Cy5.5. 
Cytotoxicity on 
HeLa cells by 
photothermal 

ablation (671 nm 
CW laser source) 

Maximum NIRF 
intensity 60 min 
after injection. 
Temperature 

exceeded 45°C after 
4 min of irradiation 

(SCC-7 tumor 
xenograft) 

[41] 

 
Core 13 nm 

 

MMP-2 + 
GSH 

Dox release by 
MMP2 (increased 

fluorescence), 
increased 

cytotoxicity 
(further 

intracellular Dox 
release by GSH) 

on SCC-7 and HT-
29 cells 

Increased 
fluorescence 

intensity at the 
tumor site 30 min 

after injection. 
Comparable 

antitumor effect 
with free Dox, but 

much lower 
systemic toxicity 

and higher animal 
survival 

[42] 

GSH, glutathione; LSPR, localized surface plasmon resonance; NIRF, near-infrared fluorescence; CW, 
continuous wave; Dox, doxorubicin. 

One application of AuNPs is the bench quantification of MMP. For example, Kim et al performed 
a colorimetric assay of MMP activity using AuNPs [37]. Based on the discovery of a high binding 
affinity of His-tags with densely packed carboxyl groups on the nanoparticle surface in the presence 
of metal ions, they hypothesized that the carboxyl AuNPs would self-assemble in the presence of 
both metal ions and peptides with hexahistidine at both ends (H6-pep-H6). This self-assembly would 
cause a blueshift in the solution’s spectrum. When the peptide sequence in H6-pep-H6 was designed 
to be the cleavage sequence of MMP, MMP would cleave the peptide and reverse the self-assembly 
and the spectrum shift. The color extinction ratio of E520/E700 was calculated and used to 
characterize MMP activity.  
 

Aspect ratio 2:1

J. Funct. Biomater. 2016, 7, 19 5 of 32 

Mean diameter 21.5 
nm 

 
Length 35.2 ± 1.5 nm 
Width 10.8 ± 0.9 nm  

 

 

MT1-
MMP 

LSPR blueshift 
after MT1-MMP 

cleavage. λmax and 
Δλmax depend on 

MT1-MMP 
proteolytic activity 

in cell lysate. 

None [38] 

 
5 nm 

 
 

 

MMP-7 

Relative intensity 
of scanometric 

image as a 
function of MMP-

7 concentration 

None [39] 

 
Core 5 nm 

Whole NP 26 nm 

 
311 nm 

MMP-2 
Enhanced cellular 
uptake on MDA-

MB-231 cells 
None [40] 

 
Aspect ratio 2:1  

MMP-3, -
7, -9, -13 

NIRF imaging of 
MMP by releasing 

Cy5.5. 
Cytotoxicity on 
HeLa cells by 
photothermal 

ablation (671 nm 
CW laser source) 

Maximum NIRF 
intensity 60 min 
after injection. 
Temperature 

exceeded 45°C after 
4 min of irradiation 

(SCC-7 tumor 
xenograft) 

[41] 

 
Core 13 nm 

 

MMP-2 + 
GSH 

Dox release by 
MMP2 (increased 

fluorescence), 
increased 

cytotoxicity 
(further 

intracellular Dox 
release by GSH) 

on SCC-7 and HT-
29 cells 

Increased 
fluorescence 

intensity at the 
tumor site 30 min 

after injection. 
Comparable 

antitumor effect 
with free Dox, but 

much lower 
systemic toxicity 

and higher animal 
survival 

[42] 

GSH, glutathione; LSPR, localized surface plasmon resonance; NIRF, near-infrared fluorescence; CW, 
continuous wave; Dox, doxorubicin. 

One application of AuNPs is the bench quantification of MMP. For example, Kim et al performed 
a colorimetric assay of MMP activity using AuNPs [37]. Based on the discovery of a high binding 
affinity of His-tags with densely packed carboxyl groups on the nanoparticle surface in the presence 
of metal ions, they hypothesized that the carboxyl AuNPs would self-assemble in the presence of 
both metal ions and peptides with hexahistidine at both ends (H6-pep-H6). This self-assembly would 
cause a blueshift in the solution’s spectrum. When the peptide sequence in H6-pep-H6 was designed 
to be the cleavage sequence of MMP, MMP would cleave the peptide and reverse the self-assembly 
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One application of AuNPs is the bench quantification of MMP. For example, Kim et al performed
a colorimetric assay of MMP activity using AuNPs [37]. Based on the discovery of a high binding
affinity of His-tags with densely packed carboxyl groups on the nanoparticle surface in the presence of
metal ions, they hypothesized that the carboxyl AuNPs would self-assemble in the presence of both
metal ions and peptides with hexahistidine at both ends (H6-pep-H6). This self-assembly would cause
a blueshift in the solution’s spectrum. When the peptide sequence in H6-pep-H6 was designed to be
the cleavage sequence of MMP, MMP would cleave the peptide and reverse the self-assembly and
the spectrum shift. The color extinction ratio of E520/E700 was calculated and used to characterize
MMP activity.
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Localized SPR has also been studied to detect the activity of membrane type 1 MMP
(MT1-MMP) [38]. Cleavage of MT1-MMP specific peptide sequence caused a blueshift of the maximum
wavelength of localized SPR; this shift was also greater at a higher concentration of MT1-MMP.
However, the shift could not be quantified as a function of MT1-MMP concentration.

Similarly, an MMP assay using biofunctionalized AuNPs and a nitrilotriacetic acid-modified chip
has also been developed [39]. AuNPs were functionalized by a 15-peptide sequence, which served as
the sensing element and contained an MMP-7 substrate sequence and a six-histidine (His) tag. With the
presence of Ni2+, the resulting peptide-AuNPs could be trapped on the nitrilotriacetic acid chip on the
His end. MMP-7 could proteolyse the MMP-7 substrate sequence and cleave AuNPs from the chip.
After silver enhancement, the amount of remaining bound AuNPs could be converted into grayscale
for quantification. The scanometric readout could then be used to quantify MMP-7 concentration.
The authors proposed that the assay could also be used to detect a wider range of MMPs if other
MMP-specific sequences were used. The advantage of this assay is that it could be performed in full
cell culture medium.

Besides quantification of MMP concentration or activity, AuNPs have also been fuctionalized
to enhance cellular uptake. For example, MMP2-functionalized AuNPs have been engineered [40].
PEG was linked with AuNPs via a peptide sequence, PVGLIGC, which was cleavable by MMP-2
(cleavable AuNPs). After incubation with MMP-2, cleavable AuNPs aggregated, and the average
hydrodynamic diameter increased from 26 nm to 311 nm, with a drop of the average zeta potential from
´9 to ´45 mV and a redshift in the spectrum. Cellular uptake of cleavable AuNPs also increased with
increasing concentrations of MMP-2. The authors also suggested that the liver uptake of PEGylated
nanoparticles could be a disadvantage, but they did not address this issue in the paper. It will also be
interesting to see what happens when chemotherapeutic agents are incorporated into the system in an
in vivo study.

The intrinsic properties of AuNPs have also been incorporated into the design to facilitate ablation.
For example, MMP-sensitive gold nanorods (MMP-AuNRs) were designed for simultaneous imaging
and photothermal ablation for cancer [41]. The peptide sequence GPLGVRGC was used to link a
near-infrared (NIR) fluorescent (NIRF) dye, Cy5.5, onto the surface of AuNRs. This peptide sequence
could be degraded by MMP. In the resulting MMP-AuNRs, the NIRF was quenched until the peptide
was cleaved by MMP and the Cy5.5 was released. To avoid tissue absorption, the AuNRs’ aspect
ratio was adjusted so that the strong absorption was tuned to the NIR region. Conjugation with the
Cy5.5 peptide sequence did not change the stability or photothermal properties of the MMP-AuNRs.
Incubation of MMP-AuNRs with MMP-3, -7, -9, and -13 resulted in increased fluorescence, though
MMP-7 treatment did not increase the fluorescence as much as the rest of the MMPs. After irradiation
with a continuous-wave laser at 671 nm for 10 minutes, MMP-AuNR-treated cells underwent cell
damage and apoptosis. The in vivo efficacy of MMP-AuNRs was also demonstrated on SCC-7 tumor
xenografts on nude mice. Enhanced NIRF was observed after intratumoral injection of MMP-AuNRs.
Maximum NIRF was observed 60 minutes after the injection. Pre-injection of an MMP inhibitor
reduced the NIRF. Hyperthermal therapy was also administered, with tumor temperature increasing
by more than 45 ˝C after 4 minutes of treatment. More tumor cell damage was observed in the
group of mice co-treated with MMP-AuNRs than in the group treated with hyperthermal therapy
alone (Figure 2).
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Other research has incorporated more than one targeting mechanism. For example,
dual-functionalized AuNPs that are responsive to both MMP-2 and intracellular GSH have been
developed [42]. In this study, Dox was attached to a peptide sequence CPLGLAGG, which was
cleavable to MMP-2. This peptide sequence was linked to the surface of AuNPs via a thiol-Au bond.
The surface of the AuNPs was also decorated with PEG for improved stability and prolonged blood
circulation. The authors hypothesized that once these AuNPs (called Dox-substrate/AuNP) reached
the tumor site, some Dox would be released due to the cleavage of the peptide sequence. They expected
to observe increased fluorescence because Dox would change from a quenched to an excited state.
They also anticipated cytotoxicity from the released Dox. The remaining Dox would be released into
the cytosol after the AuNPs were internalized, due to the thiol exchange between cytosolic GSH and the
thiol-Au bond. The intensity of cleaved peaks on high-performance liquid chromatography gradually
increased over 40 hours. Fluorescence emission spectra of Dox-substrate/AuNP also revealed a gradual
increase in Dox emission intensity over a period of 84 hours during which Dox-substrate/AuNPs
were incubated with MMP-2. Similarly, incubation of Dox-substrate/AuNP with GSH also revealed a
gradual but steady increase of the fluorescence intensity of released Dox over 72 hours. After 100 hours
of incubation, MMP-2 released around 80% of Dox and GSH around 60%. In both SCC-7 and HT-29
cell lines, Dox-substrate/AuNP was endocytosed by the cells and exhibited cytotoxicity. The efficacy
of Dox-substrate/AuNP was further evaluated on nude mice bearing SCC-7 tumors. Dox fluorescence
could be observed in tumor regions 30 minutes after Dox-substrate/AuNP was subcutaneously
injected. The fluorescence of Dox faded significantly if the animals were pre-injected with an MMP-2
inhibitor, TIMP-2. The antitumor activity evaluation suggested that Dox-substrate/AuNP had similar
antitumor efficacy to, but lower toxicity than, free Dox. This research took advantage of not only MMP
expression in the tumor region, but also the higher cytosol GSH concentration, which we will discuss
in the following section.
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2.3. Glutathione

GSH has a tripeptide structure, with a free thiol group on the side of the molecule. It is the
predominant intracellular nonprotein sulfhydryl in animals [43]. GSH exists in higher concentrations
in the cytoplasm and the nucleus (0.5–20 mM) [44–46] than in in the extracellular fluid (2–20 µM) [47,48].
The importance of GSH lies in its thiol-thiol exchange property, which can break down disulfide bonds
and substitute ligands attached on Au surfaces via thiol-Au or other bonds (Table 3).

Table 3. AuNPs responsive to GSH.

Structure and Size before
GSH Exposure

Structure and Size
after GSH Exposure In Vitro Effects In Vivo Effects Ref.
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The most commonly used GSH trigger mechanism is the thiol-thiol exchange between the thiol of
GSH and the thiol-Au bond. At intracellular GSH concentrations, the ligand that was once attached
on the Au surface via a ligand-thiol-Au bond is cleaved by the substitution of a GSH-thiol-Au bond.
For example, per-6-thio-β-cyclodextrin (CD) was linked to the surface of AuNPs, which were further
stabilized by PEG [49]. GSH-mediated release was characterized by using rhodamine B-conjugated
SH-CD (RhoCD) on MCF-7 and A549 cell lines. A549 cells had a higher cytosol GSH level, and a higher
fluorescence from restored rhodamine B was observed. A549 cells also had higher epidermal growth
factor (EGF) receptor expression. Thus, when the AuNPs were also functionalized by EGF, increased
fluorescence was observed on A549 cells. When β-lapachone was carried in the hydrophobic pockets of
SH-CD, AuNP/lap both with and without EGF induced apoptosis in A549 cells, and AuNP/lap with
EGF induced a higher percentage of apoptosis. Similarly, the surface of AuNPs was functionalized
via thiol (sulfhydryl) bond with CD, rhodamine B-CD, methoxy-poly(ethylene glycol sulfhydryl)
(mPEG-sulfhydryl), and/or heterofunctionalized thiol-PEG-Biotin [50]. The hydrophobic pockets of
CD were used to incorporate hydrophobic drugs such as paclitaxel (PTX). GSH facilitated the release
of PTX, which in turn induced cytotoxicity. The cytosol fluorescence intensity of cells treated with
AuNPs modified with rhodamine B-CD was also restored.

Similarly, a thiolated dye (HSBDP) and a tetra(ethylene glycol)-lated cationic ligand (TTMA)
were attached to the surface of AuNPs [51]. HSBDP was used as an analogue of a hydrophobic drug.
The fluorescence of HSBDP was quenched when it was attached to the surface of AuNPs but was
increased due of the release of HSBDP by GSH. TTMA was designed to enhance cellular uptake.
Hep G2 cells were incubated with AuNPs for 4 h, and strong fluorescence from HSBDP was observed
after 96 hours. The cytosol fluorescence could also be increased by adding a GSH monoester (GSH-Oet),
which could be internalized and hydrolysed into GSH. The release of the dye was also specifically
triggered by GSH, as removal of the thiol group from GSH did not increase the fluorescence of the
incubated solution.

Other polymeric architectures have also been used to modify AuNPs. For example,
dendrimer-encapsulated gold nanoparticles (DEGNPs) have been used as drug carriers [52].
Both anticancer drugs that have intrinsic thiol groups (thiol-containing drugs) and drugs from
which thiol groups are extended (thiolated drugs) can be incorporated in DEGNPs via the thiol-Au
bond. DEGNPs were shown to be more stable than AuNPs because the Au surface was protected by
the dendrimer.

In another study, [53], polysaccharide heparin was functionalized with thiol groups and
grafted with pheophorbide A (PhA), a photosensitizer. The resulting PhA-conjugated heparin
(PhA-H) was used to coat AuNPs via a thiol-Au bond, and PhA-H/AuNPs were obtained.
When PhA-H/AuNPs were treated with 10 mM of GSH, the once-quenched fluorescence of PhA
was recovered. In addition, restored were PhA’s photoactivity and generation of singlet oxygen
upon laser irradiation. Phototoxicity was examined on A549 cells. PhA-H/AuNP-treated cells had a
higher fluorescence signal than free PhA-treated cells. PhA-H/AuNPs also induced higher rates of
cytotoxicity than free PhA. In vivo efficacy was examined using a murine xenograft model of A549
tumors. The fluorescence signal was observed from 1 to 72 h after intravenous injection in both
PhA-H/AuNP-treated and free PhA-treated animals. The fluorescence signal from free PhA was
distributed throughout the animal, while the PhA-H/AuNP signal was mainly localized at tumor sites.
Tumor volume and weight were also lower in PhA-H/AuNP-treated mice than in free PhA-treated
mice and untreated control mice.

GSH-responsive AuNPs have also been studied for their potential use in the delivery of large
molecules. For example, short interfering RNAs (siRNAs) were combined with a poly(ethylene
glycol)-b-poly(L-lysine)-thiol (PEG-PLL-SH) copolymer to form a single siRNA-loaded unimer polyion
complex (uPIC) [54]. This uPIC was then linked onto the surface of AuNP by a thiol-Au bond.
Electrophoresis results suggested that GSH enhanced the release of siRNA from the uPIC-AuNPs.
In vivo results showed a higher silencing percentage of luciferase in HeLa-Luc cells treated with
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uPIC-AuNP than in those treated with uPIC alone. In vivo efficacy was studied by intravenously
injecting the particles into the tail vein of mice bearing subcutaneous HeLa-Luc tumors. Four hours
after injection, the accumulation of siRNA in the tumor site was the highest in the uPIC-AuNP
group (Figure 3).
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(B) Subcutaneous HeLa-Luc tumor accumulation of Alexa-siRNA delivered by each formulation at
4 h after intravenous injection (4.8 µg siRNA/mouse), determined by IVIS. Results are expressed as
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mean and standard error of the mean (n = 4, * p < 0.05). Reprinted with permission from [54]. Copyright
American Chemical Society, 2014.

GSH is often used to exchange the thiol-to-thiol ligand to release drug molecules incorporated
on AuNPs because thiol-containing molecules are typically used to passivate the surface of AuNPs.
However, the ligand exchange has been extended to other functional groups, providing that they
have weaker affinity to Au than thiol. For example, Au has been passivated with amine-containing
anticancer drug molecules, and GSH facilitated the release of the drugs via thiol-to-amine exchange [55].
The authors tried quite a few amine-containing anticancer drugs to passivate the AuNPs and found
a molecular weight of 300 to be the threshold for the successful formation of colloidally dispersed
AuNPs. Methotrexate (MTX) was cited as an example in the article. The Au:MTX particles were found
to be stable at pH 4–9. When Au:MTX was incubated with GSH, MTX was released via thiol-to-amine
exchange. Although the study did not fully address the physiological relevance of the tested GSH
concentrations, the antitumor effect of Au:MTX was demonstrated both in vitro and in vivo.

Besides amine-Au bonds, purine and pyrimidine compounds can also be absorbed onto Au
surfaces via nitrogen groups, and this absorption can also be exchanged by cytosol GSH. In one study,
6-thioguanine (6TG), gemcitabine, acycloguanosine, and fadrozole were used to coat AuNPs.
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Gemcitabine, acycloguanosine, and fadrozole interacted with AuNPs via their purine or pyrimidine
groups, and 6TG interacted with AuNPs via both sulfur and nitrogen atoms [56]. Surface-enhanced
Raman scattering spectra showed decreased peak intensities of all the drug-containing AuNPs
after GSH treatment, which indicated dissociation and release of the drug molecules. However,
over 30 minutes of treatment with 2 mM of GSH, the spectral intensities of 6TG-AuNPs did not
decrease as substantially as those of the rest of the drug-containing AuNPs. This effect was partially
attributed to the stronger association of 6TG with Au surface via its sulfur atom. Gemcitabine,
acycloguanosine, and fadrozole appeared to have been detached from the AuNPs and released into the
cytosol, whereas the majority of 6TG-AuNPs remained undetached in the endosomes or lysosomes.

Besides their major role as drug carriers, AuNPs could also be used in an auxiliary role.
For example, AuNPs have been used to assist in stabilizing Pluronic micelles (PF-micelles) [57].
PTX was loaded in the hydrophobic core of the PF-micelles to form PF-PTX-micelles. The hydrophilic
outer shell layer was thiolated and crosslinked by neighboring AuNPs via the Au-thiol bond,
producing AuNP-crosslinked PF-PTX-micelles (Au-PF-PTX-micelles). This crosslinking increased
the stability of the PF-micelles. PTX release from Au-PF-PTX-micelles was accelerated by GSH,
and PF-PTX-micelles were more cytotoxic than were Au-PF-PTX-micelles to human glioma cell line
U87. This higher cytotoxicity was explained as inhibition of release of PTX owing to the crosslinking
in Au-PF-PTX-micelles. Results from systemic administration of the two micelles also showed that
Au-PF-PTX-micelles had a longer systemic circulation time and were cleared from plasma more slowly
than PF-PTX-micelles. PTX accumulation was high in the spleen and liver and low in the kidneys and
lungs after systemic administration of Au-PF-PTX-micelles.

3. External Stimuli

3.1. Laser

Laser light is introduced into a patient through optical fibers fitted in an endoscope; this treatment
is commonly used to kill superficial cancers. The direct cause of cell death is hyperthermia generated
by the light beam. Laser therapy is nonselective and loses energy as the beam penetrates deeper tissues.

AuNPs exhibit a rapid photothermal conversion owing to their SPR (Figure 4). This photothermal
conversion can be used to heat a localized area surrounding the AuNPs by administering light
at a frequency that overlaps with the AuNPs’ SPR absorption. The SPR properties of noble
metal nanoparticles, including AuNPs, and their applications to biosystems have been reviewed
elsewhere [58]. AuNPs have also been undergoing intense study of their potential use in combination
with laser for theranostic purposes. Research has focused on fine-tuning the photothermal properties
of AuNPs by controlling their structure, shape, size, tumor specificity through ligand conjugation,
combinations of other nanostructures and platforms, and so on. Many excellent reviews on this topic
have been published [59–66]. Here we provide a review of recent progress (Table 4).

Among the most studied AuNPs are nanospheres, nanorods [67], nanoshells [68], and nanostars [69].
Shape and size play an important role in determining the photothermal profile of AuNPs. In one
study, Au nanostars of 25–150 nm were synthesized [69]. The SPR peak shifted from 500 to 1000 nm as
the size of the nanostars increased. The photothermal heating efficiency also varied according to the
nanostar size and the wavelength of the laser source. However, the photothermal heating efficiency
was found to be less size- and wavelength-dependent once the nanostars were internalized into the
cells. This attenuation was explained as nanostar aggregation as the particles were confined in the
endosome upon internalization. Similarly, attenuation was also found after cellular internalization
on animal xenografts. The authors inferred that the size and coating of the nanoparticle were more
important than the experimentally measured SPR peak, as the proper size and coating could ensure
optimal biodistribution.
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Branched AuNPs were also synthesized by the supramolecular aggregates of deoxycholate bile
acid in Au solution. The morphology and the maximum absorbance peak of the branched AuNPs
were dependent on the deoxycholate bile acid concentration, and gelation was observed at higher acid
concentration. Conjugation of cyclic RGD (cRGD) enhanced cellular uptake and, when combined with
NIR irradiation, increased in vivo antitumor efficacy [70]. AuNPs were grown on carbon nanotubes
and increased cytotoxicity in combination with NIR irradiation [71].

Nanorods and nanocages have also been compared. In one study, PEGylated nanorods of
60 ˆ 14.8 ˘ 6.5 ˆ 2.0 nm and PEGylated nanocages of 50 ˘ 7 nm were synthesized [72]. Nanocages
exhibited a higher light-to-heat transduction efficiency and required 18.4 times fewer particles
(approximately half the Au mass) than nanorods to achieve the same heating profile. Nanocages also
had higher cell internalization than nanorods, but the internalized amount was dependent on cell type.
Biodistribution in xenograft prostate tumor-bearing mice suggested that nanocages and nanorods had
different uptake and residence time in blood, heart, kidneys, liver, lungs, spleen ant tumor; long-term
biodistribution in healthy animals suggested that nanocages had a higher excretion rate.

Surface modification has also been studied. For example, modification with the TAT peptide was
found to increase the intracellular delivery of Au nanostars and consequently increase the efficiency of
photothermolysis [73]. Conjugation of Au nanostars with both cRGD and Dox not only enabled the
delivery of Au-cRGD-Dox close to the nucleus and facilitated its entrance into the nucleus, but also
increased antitumor efficacy after irradiation with NIR light [74]. Other surface modifications with
macromolecules include conjugation with anti-Mucin 7 antibodies [75], albumin [76], and others.
Small molecules have also been used for surface modification. For example, Prussian blue has been
used to coat AuNPs to achieve photothermal ablation and simultaneous PA/CT bimodal imaging [77].
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X-ray. (HN31 cell lines). 

Quadrapeutics system 
including AuNPs, TNs, laser, 
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therapy and photodynamic 

therapy (808 nm, 200 mW/cm2, 
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47 nm

Enhanced photothermal therapy
outcome on Mucin-7-expressing

MBT2, T24, 9202, and 8301 cells at
low energy levels (500 exposures,

532 nm laser)

None [75]
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FA- miR-122-AuNP 20 nm, 
GO and GGMPN nanocomposites 

500 nm 

P-gp antibody and FA facilitated 
cell targeting. Increased 

apoptosis on drug-resistant 
HepG2 cells. 

Apoptosis induction and 
tumor growth inhibition on 

HepG2 xenograft 
(semiconductor laser light 

source, 10 min, every 2 days, 
10 treatments). 

[82] 

 
rGO (< 200 nm) 

Thickness of GO/silica nanosheets 
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AuNP 4 nm 

Anti-EGFR SERS probe 
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tracking by Raman imaging. 
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synergistic photothermal effect 

of AuNP and rGO (808 nm laser, 
0.5 W/cm2, A549 cells). 

None [83] 
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cells and photothermal property 
of Au nanorods.  

Stem cell mediated tumoral 
delivery, MGC803 xenograft. 
Prolonged tumoral retention 
confirmed by photoacoustic 

and two-photon luminescence 
imaging. Tumor growth 

inhibition via photothermal 
therapy (NIR laser at 808 nm 

1.5 W/cm2) 

[84] 

 
SPIO 10 nm 

SPIO@AuNPs 82 ± 4 nm 

Loading of SPIO@AuNPs into 
AD-MSCs. 

Reservation of viability of AD-
MSCs and photothermal and 

magnetic properties of 
SPIO@AuNPs. 

Photothermal ablation of HepG2 
cells by SPIO@AuNP–loaded 

AD-MSCs.  

Homing of AD-MSCs to liver 
injuries or HCC confirmed by 

MR imaging and histologic 
analysis.  

[85] 

 
30–50 nm 

None 

Proved NPs interact with 
ablative techniques differently. 

Cellular incorporation of NP 
was only observed after 

combination with irreversible 
electroporation. Structural 

deformation was only 
observed in combination with 

[68] 
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FA- miR-122-AuNP 20 nm,

GO and GGMPN nanocomposites
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P-gp antibody and FA facilitated
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on drug-resistant HepG2 cells.

Apoptosis induction and tumor
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10 treatments).

[82]
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Nanorods length 65.0˘ 7.5 nm and
width 12.0 ˘ 1.5 nm

Loading of nanorods@
SiO2@CXCR4 into

human iPS cells.
Reservation of viability of iPS

cells and photothermal property
of Au nanorods.

Stem cell mediated tumoral
delivery, MGC803 xenograft.
Prolonged tumoral retention

confirmed by photoacoustic and
two-photon luminescence
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30–50 nm

None

Proved NPs interact with ablative
techniques differently. Cellular
incorporation of NP was only

observed after combination with
irreversible electroporation.
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observed in combination with
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[68]

cRGO, cyclic RGD; NIR, near infrared; TAT, TAT peptide; Dox, doxorubicin; PB, Prussian blue; CT, computed
tomography; TN, therapeutic nanoparticle; P-gp, P-glycoprotein; FA, folic acid; miRNA, GO, graphene
oxide; SERS, surface-enhanced Raman spectroscopy; EGFR, epidermal growth factor receptor; rGO, reduced
graphene oxide; iPS, human induced pluripotent stem cells; MR, magnetic resonance; HCC, hepatocellular
carcinoma; Ad-MSCs, adipose-derived mesenchymal cells; GGMPN, gold nanoparticles loaded with miR-122;
SPIO@AuNPs, superparamagnetic iron oxide-coated gold nanoparticles.

AuNPs have also been combined with other nanostructures and treatment modalities to achieve
multifunctionality and synergistic effect in cancer theranostics. For example, hydrophobic AuNPs
of 3–7 nm have been incorporated into the lipid bilayer of liposomes to fabricate photothermally
responsive liposomes [78]. The in vitro-triggered fluorescein release from these liposomes was
five times higher than the fluorescein release from non-responsive liposomes. The fluorescein
retention in the tumor was higher in the responsive liposome-treated group (81%) than in the free
fluorescein-treated group (14%) after 2 h. AuNP-coated liposomes and their pharmacokinetic profiles
have also been studied [79].

A quadrapeutics system, in which AuNPs were combined with other nanoparticles and treatment
modalities, has also been also studied [80]. EGFR-conjugated AuNPs and therapeutic nanocarriers
were administrated systemically, and the AuNPs and therapeutic nanocarriers were aggregated
intracellularly into a mixed cluster after endocytosis. Then a single laser pulse was administered
to generate plasmonic nanobubbles, which caused cell death and also released therapeutics from
the nanocarriers. A single X-ray dose was then administered and absorbed by AuNP nanoclusters.
Synergistic amplification of the X-ray was observed when a chemotherapeutic agent was carried by
the nanoparticles. This quadrapeutics system was found to be more effective than chemoradiation in
treating highly resistant and aggressive tumors. This greatly increased effectiveness was explained
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as the combination result of the mutual enhancement of chemotherapy and radiation therapy and of
mechanical radio- and chemosensitization. Cancer specificity was also achieved from ligand targeting.

Graphene oxide (GO) and its derivatives have also been incorporated with AuNPs. Reduced GO
(rGO) possesses high photon-thermal transfer efficiency upon NIR irradiation. It has been incorporated
into a hydrogel system consisting of rGO, amaranth extract, and AuNPs [81]. The hydrogel was
formed by the reduction of GO to rGO by amaranth extract, then NIR irradiation of rGO and AuNPs.
Amaranth extract served multiple roles, including photosensitization, while rGO and AuNPs further
improved 1O2 generation. The cytotoxicity of this system against cancer cells was demonstrated
in vitro. In a separate study, microRNA-122-loaded AuNPs on graphene nanocomposites were
modified with P-glycoprotein antibodies and folic acid [82]. This system inhibited tumor growth
in a xenograft model. Similarly, anti-EGFR-conjugated nanosheets containing rGO/mesoporous
silica/AuNPs also increased the efficacy of photothermal therapy by enhancing the synergistic effect
of conjugated AuNPs and rGO nanosheets [83].

Cell technologies have also been used to enhance the accumulation and intratumoral distribution
of AuNPs. For example, human induced pluripotent stem cells (iPS) with C-X-C chemokine receptor
type 4 (CXCR4) have been used to load Au nanorods@SiO2@CXCR4 to achieve better tumor target
migration, with CXCR4 used to increase loading [84]. This AuNP-iPS platform preserved the
photothermal properties of the Au nanorods and inhibited the growth of human gastric cancer
MGC-803 tumors in a xenograft model. In another study, adipose-derived mesenchymal cells were
loaded with superparamagnetic iron oxide coated with AuNPs (SPIO@AuNPs) [85]. The loaded
mesenchymal cells were used to deliver SPIO@AuNPs for both the theranosis of liver injury and
the photothermal ablation of hepatocellular carcinoma. In both cases, the loaded nanoparticles were
nontoxic to the stem cells and maintained their photothermal properties.

Laser therapy also demonstrated unique effects on AuNPs compared to other ablative
therapies. One article compared the intratumoral nanoparticle (Dox loaded nanoshells) uptake
after nanoembolization among several different ablative modalities, including radiofrequency,
electroporation, and laser-induced thermal therapy [68]. Structural deformation of the nanoshells
was found only in the region ablated with laser-induced thermal therapy. This finding contributed
to the understanding of how drugs are released from nanoshells when combined with laser-induced
thermal therapy.

3.2. Ultrasound

Ultrasound has long been a powerful tool for various clinical applications, ranging from prenatal
imaging [86] to cancer detection [87]. Ultrasound machines detect the reflection and refraction of
sound waves through various media [88]. As an ultrasonic wave propagates through different types of
materials, different variations of acoustic impedance are created [88]. The differences in the reflection
and refraction of the sound waves are then fed through an algorithm to paint a picture of the relative
densities and shapes of the various tissues [88]. Diagnostic ultrasound is generally within the frequency
range of 2–20 MHz and therapeutic ultrasound between 0.5 and 2 MHz [89,90]. A summary of AuNPs
that are responsive to ultrasound is in Table 5.

One ultrasound modality of great research interest is high-intensity focused ultrasound (HIFU).
The intensity of HIFU is several orders of magnitude greater than that of standard ultrasound. A review
of the various uses of HIFU and therapeutic ultrasound has been published by Phillips et al. [91].
HIFU provides noninvasive treatment for tumors deep in the body [89,92,93]. A detailed discussion
of the role of HIFU-mediated hyperthermia in the enhanced delivery of nanoparticles to tumors
has been published by Frazier et al. [94]. In general, an ultrasonic beam is directed toward the
target tissue from single-element transducers or phased arrays [89,92]. The beam can be focused in
a small area toward a specific target [89]. The target tissue absorbs acoustic energy and increases in
temperature, which may cause acoustic cavitation or radiation, which in turn may lead to cell necrosis
or apoptosis [89,90,92,93,95]. If HIFU is applied with correct timing, inertial cavitation, or the rapid
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collapse of the vapor bubble, can ensue [95]. However, this therapy carries a risk of complications,
such as adjacent tissue damage, skin burns, and organ system-specific side effects [89,93]. Furthermore,
the development of bone and gas pockets can increase damage to surrounding tissue and cause
difficulty in targeting specific areas [89,93]. The efficacy of HIFU can be improved by using it in
conjunction with chemotherapy or radiotherapy [92].

Contrast agents or enhancement agents are often used to improve the efficacy of HIFU [93].
In the past decade, nanoparticles that serve both chemotherapeutic and imaging purposes have
been developed [87]. AuNPs are used because they are biocompatible, easy to prepare, relatively
nontoxic, and have a surface plasmon absorption property that make them good contrast agents [96].
They are particularly promising for use in altering the surface tension of microbubbles, increasing
acoustic impedance, enhancing detectable scattering [93], and decreasing the threshold of cavitation
intensity [97]. Cavitation caused by laser-heated nanoparticles has been shown to produce localized
cell death. However, the laser fluence required to produce cavitation exceeds permissible levels or
can cause permanent bleaching. Methods to lower the required fluence levels include aggregation of
nanoparticles to cause thermal field overlap and plasmonic coupling and decrease of local pressure
using an ultrasound field [98].

One study constructed AuNP-coated, polydopamine-modified poly(lactic-co-glycolic acid)
(AuNPs@PDA/PLGA) hybrid capsules of an average size of 725 nm for use in ultrasound imaging
and HIFU therapy [93]. The utility of these capsules for HIFU contrast imaging in vitro was tested
in degassed water and ex vivo in bovine livers. The AuNPs@PDA/PLGA capsules rose more
quickly in temperature when exposed to an ultrasonic probe compared to PLGA nanocapsules in
pure water. The test particles reached 26 ˝C in 300 s. In vitro cytotoxicity test results showed that
the AuNPs@PDA/PLGA capsules had no effect on cell mortality, which was comparable to that
of cells placed in PBS. The echogenicity at a mechanical index of 0.6 under harmonic mode and
0.18 under contrast mode increased with the concentration of the nanoparticles, proving that the
particles do act as contrast agents in ultrasonography. HIFU ablation with AuNPs@PDA/PLGA
hybrid capsules showed an approximately four-fold or higher increase in damaged tissue compared to
PLGA nanocapsules alone or a blank control of PBS only. This result is believed to be the effect of the
increased thermal efficiency and conductivity of the AuNPs and the resultant mechanical and thermal
effects of ultrasound.

The dependence of cavitation activity on HIFU pressure and laser energy was also studied using
82-nm AuNPs embedded in 7% acrylamide gel and tested with a 532-nm pulsed laser and 1.1-MHz
transducer [95]. The results showed that laser irradiation on AuNPs lowered the HIFU cavitation
pressure to as low as 0.92 MPa, compared to 4.50 MPa without the presence of the laser. When vapor
bubbles were produced during the peak rarefaction phase, the cavitation activity was the highest.
Furthermore, the threshold pressure decreased as the laser energy increased because the vapor bubble
sizes became larger.

Another study showed that AuNP-coated, perfluorohexane-encapsulated and PEGylated
mesoporous silica nanocapsule-based enhancement agents (MAPP) could be used for enhanced
ultrasound imaging and HIFU enhancement [99]. AuNP-coated mesoporous silica nanocapsules
were synthesized by S-Au chemistry and were then loaded with pyrene and perfluorohexane.
Enhanced drug release was indicated by blue fluorescence in the cytoplasm of L929 murine fibroblast
cells, showing that pyrene had been released from MAPP and into the interior of the cells. Cytotoxicity
was shown to have increased by 20% in L929 cells after exposure to ultrasound; this was thought to
have been caused primarily by heat effects, as the temperature of MAPP reached 54.8 ˝ in 2 minutes.
Under both contrast and harmonic imaging modes, significant differences in the average grayscales
between MAPP and PBS control and between pre- and post-MAPP injection were observed, attesting
to the contrast-intensified ultrasound imaging provided by MAPP. Furthermore, injections of MAPP
into hepatocellular carcinoma tumor-bearing nude mice showed that the nanoparticles accumulated
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in the tumors owing to enhanced permeability and retention effects. Finally, the presence of MAPP
increased necrotic cell volumes significantly after treatment with HIFU ablation.

Combinations of multiple treatment modalities have also been studied [100]. An additive effect on
epithelial breast cancer cell viability was shown when gold nanorods with a 4:1 aspect ratio, conjugated
with mPEG and with a surface resonance peak at 813 nm was combined with laser therapy at 810 nm,
ultrasound (50 kHz and 0.6/1/0 MPa), and Definity microbubbles. The AuNP and laser therapy
mainly caused heat damage to cells that eventually led to necrosis, while ultrasound microbubbles
created transient membrane pores that led to cell death.

Another ultrasound-based approach that has been adopted in cancer treatment is sonodynamic
therapy [90,101]. Sonosensitizers like protoporphyrin IX are activated by ultrasound to cause inertial
cavitation, which produces microscopic air bubbles within tissues [90,102]. The rapid collapse
of the bubbles can cause excitation of the sonosensitizers to produce reactive oxygen species like
superoxide anion, hydrogen peroxide, or hydroxyl radicals [90]. These species interact negatively
within cells to cause dysfunction and, ultimately, apoptosis [90]. The use of AuNPs has shown to be
a safe and efficient method to deliver the sensitizers to the target tissue and a means to provide a
nucleation site for cavitation bubbles, decreasing the threshold intensity necessary for cavitation [102].
Furthermore, the nonradiative relaxation time of protoporphyrin is increased in the presence of AuNPs,
a phenomenon that is favorable for the production of singlet oxygen, used for tissue destruction [102].

In one study, colon carcinoma tumors in BALB/c mice were used to test the efficacy of
ultrasound and AuNP (7 nm)-protoporphyrin IX conjugates linked by a bidentate linker in producing
cavitation and sonodynamic antitumor effects [102]. The researchers used cold degassed water
as the ultrasonic medium in order to negate possible heat effects. The results showed significant
antitumor effects, evidenced by reduced tumor volumes, increased survival rates of the mice,
and greater amounts of necrotic tumor cells in the group of mice treated with ultrasound and the
AuNP-protoporphyrin IX conjugate than in the groups that received various other combinations of
ultrasound, protoporphyrin IX, and AuNPs. These results also showed that the conjugate is an effective
sonosensitizer in sonodynamic therapy since there was negligible temperature increase; the antitumor
effects were attributable to shear stress and cavitation during ultrasonic exposure.

Ultrasound has also been utilized in drug delivery. Ultrasound and microbubbles increase
membrane permeability through sonoporation [100]. The microbubbles undergoing oscillation and
inertial cavitation disrupt membranes through shear stress or cause increased endocytosis [100],
forming a major pathway in the cellular internalization of nanoparticles. Ultrasound-mediated drug
delivery and imaging can be combined to effectively target tumors through passive accumulation of
AuNPs in tumors and their responsiveness to ultrasound [87,89].

For example, Moon et al used gold nanocapsules to load hydrophobic or hydrophilic drugs [103].
A phase-change material (PCM) was used as the medium to load the drug so that the drug would not
diffuse out of the nanocapsules (produced by galvanic replacement reaction between Ag nanocubes
and HAuCl4) until the melting point of the PCM was reached. As a result, the release of the drugs
could be manipulated by regulating the temperature as long as the drug was miscible in the PCM,
which had surfactant-like behavior. The results of the study showed that this combination of PCM and
Au nanocapsules could be widely applicable to variety of drugs. HIFU was effective in controlling the
temperature of the drug release system and therefore the release profile.

Ultrasound has been used to propel porous gold nanowire motors created by electrodeposition of
anodisc alumina membranes coated with poly(sodium 4-styrenesulfonate) (PSS), poly(acrylic acid),
or methyl thioglycolate to target tissues [104]. The PSS-coated nanowires had the highest Dox loading
capacity, at 17.9 micrograms/membrane, and were able to release 40% of their payload upon exposure
to NIR light at 808 nm for 15 min. The movement of the nanowires toward HeLa cells was monitored
by microscope as ultrasound waves at 2.01 MHz were applied.

Other nanoconstructs have also been studied. For example, the release of dye from gold nanocages
with poly(NIPAAm-co-AAm) thermally-responsive copolymer surface modifications by exposure to
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HIFU at 1.6 MHz [105]. At a power of 10W, the HIFU irradiation caused most of the dye to be released
in 10 minutes, which was much faster than with conventional heating in a 40 ˝C oil bath. HIFU also
caused dye release at a deep penetration depth of 30 mm.

AuNPs have also been used to increase the density of nanomedicine for better
ultrasound-mediated drug delivery. A 149-nm adenovirus-Au-PEG (Ad-Au-PEG) construct showed
an higher ultrasound-mediated transport resulting from the increased density (3.35 g/mL) of the
nanoparticle [106]. As determined by an enzyme-linked immunosorbent assay, Ad-Au-PEG showed
good stealthing from antibodies in BALB/c mice that had been implanted with CT26 or HepG2 cancer
cells, allowing the development of greater passive accumulation of the particles in vivo. Furthermore,
Ad-Au-PEG was found to travel further in a tissue mimicking material flow channel than non-modified
Ad and Ad-poly[N-(2-hydroxypropyl)methacrylamide].

Table 5. AuNPs responsive to ultrasound.

Structure and Size of AuNP In Vitro Effects In Vivo Effects Ref.
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3.3. Photoacoustic Imaging

PA imaging is an extension of ultrasound, combining standard ultrasound technology with high
optical contrast at microscale resolution. Diagnostic PA imaging has gained prominence over the
last decade. The primary mechanism of PA imaging is the absorption of electromagnetic energy that
translates into the creation of acoustic waves [107]. More specifically, light directed at the tissue is absorbed
by photoabsorbers (tuned to a specific wavelength range) that are naturally present in the tissue [108].
This process then causes thermoelastic expansion, generating a wide-band ultrasound wave, which is
detected by a transducer and translated into an image representing the location of PA contrast agents [108].

AuNPs are promising contrast agents because they exhibit strong NIF absorption [103,109].
Furthermore, PA spectroscopy can help distinguish contrast agents from other structures of the
body [109]. Clinical ultrasound scanners and linear arrays can be used to quickly generate ultrasound
and PA images [109] by detecting the ultrasound waves generated by AuNPs through SPR that
results from absorption of incident lasers [110]. PA imaging aided by ultrasound can also be used
to guide photoabsorber-enhanced photothermal therapy by monitoring temperature and detecting
photoabsorbers [111,112].

For clinical applications, the high contrast of PA imaging can reveal early-stage tumors that are
undetectable with conventional ultrasound technologies [107]. Furthermore, PA imaging employs
electromagnetic energy in the optical and radiofrequency domains because of their non-ionizing
properties, high contrast potentials, and adequate penetration depths [107,108]. The imaging depth
corresponds to the ultrasonic bandwidth. As the bandwidth increases, for example from 1 to 10 MHz,
stronger resolution is attained; however, the ultrasonic penetration depth decreases [107].

Furthermore, PA imaging techniques differ according to the imaging configuration used. In PA
depth profiling, the tissue depth structure and properties can be determined from the temporal PA
signal. However, PA tomography is more appropriate for imaging more complex structures [107].
This technique is optimal for PA signals measured at different locations around the target material [107].

PA imaging often incorporates contrast agents that improve the quality of the image by
accentuating the contrast of the target material [108,113,114]. Contrast agents can be classified as
endogenous or exogenous. Much research has focused on endogenous contrasts with chromophores
such as hemoglobin and melanin [108]. In one study, PA imaging was used to observe melanoma
tumor growth over a 2-week period. Results indicated that greater optical contrast was achieved
because there was a higher concentration of melanin in the tumor than in the encompassing tissue [108].
However, exogenous agents produce better accuracy in PA imaging of deeply located tumors [108].
Specifically, exogenous agents can include small-molecule dyes (NIR-absorbing dyes), single-walled
carbon nanotubes, AuNPs, or copper nanoparticles [113–115]. Each of these contrast agents exhibits
different properties and mechanisms that improve the potential of PA imaging. Here, however,
the primary focus will be on AuNPs.

AuNPs are of particular interest in PA imaging because they have characteristics related to
the SPR effect [108,113]. Because of the SPR effect, AuNPs have absorbance values at a greater
magnitude than some of the other exogenous agents [108]. In addition, AuNPs are excitable in the
wavelength range of 650–900 nm, which is close to the NIR range, allowing for deeper penetration
of light [113]. AuNPs can take a variety of different shapes and sizes, though some forms, such as
nanorods, nanoshells, and nanocages, have received more prominence than others in recent research
(Table 6) [113,114].

In particular, the standard spherical AuNP has an SPR in the range of visible light. However, as
discussed earlier, the SPR must be placed in the infrared range to allow for deeper penetration [113].
The class of nanocages was created to possess wavelength flexibility, meaning that they can be adjusted
to reach any wavelength in the infrared range [113]. Nanocages can also be used to enhance PA
contrast and control the release of encapsulated materials. For example, a temperature-sensitive PCM
has been used to fill the space in the nanocages and encapsulate other chemotherapeutic agents [103].
The material melted upon exposure to heat or HIFU, and the encapsulated dye was released.
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Table 6. Gold nanoparticles (AuNPs) in photoacoustic (PA) imaging.

AuNP In Vitro Effects In Vivo Effects Ref.
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In addition to nanocages, nanorods have also been the subject of research in PA imaging.
Gold nanorods (AuNRs) with an aspect ratio of 3:1 were used to improve PA imaging contrast [109,115].
Mice dorsal skin flaps that were implanted with human prostate cancer cells (PC3N) were stretched
with a window chamber and illuminated with a pulse laser of 680–1000 nm. The skin flaps with the
GNRs implanted were scanned using a clinical ultrasound system that provided real-time tracking of
contrast agents and volumetric, spectroscopic PA images. A clinical ultrasound scanner and linear
array provided 3D images 120 times faster than a single-element mechanical scanning system could.
Sites injected with GNRs showed up to an 18-dB increase in PA signal intensity at wavelengths
of 825–850 nm, and over 0.8 dB in areas without GNRs. The enhanced system could facilitate PA
contrast agent and drug delivery testing while enabling PA imaging and spectroscopy for human
cancer research. The ability to dynamically track injection of PA contrast agents could potentially lead
to tracking of injections in real time [109]. Nanorods have also been used to modify the surface of
lipid-based microbubbles for PA imaging [115].

An ex vivo study used 82-nm Au nanospheres and 25 ˆ 81-nm AuNRs suspended in ultrapure
water to test for PA cavitation at 532 nm and 724 nm illuminations, respectively [98]. As laser fluence
increased at various pressures, the cavitation probability increased sigmoidally. The concentration of
the nanoparticles and the cavitation probability were related logarithmically. The required cavitation
threshold fluences (4 mJ/cm2 for nanospheres and 2.3 mJ/cm2 for nanorods at the mechanical index
limit) were below the maximum permissible exposure level in the presence of an applied ultrasound
field [9]. Even at relatively low concentrations of AuNPs, cavitation occurred at levels below the
maximum permissible exposure for tissue at the mechanical index limit in diagnostic ultrasound.

In another study, alpha(v)beta(3)-gold nanobeacons (AuNBs) were developed for PA tomography
of neovasculature [116]. A mouse Matrigel-plug model of angiogenesis was used to demonstrate the
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efficacy of the GNB. The contrast of GNBs was ten times greater than that of blood in PA tomography.
Furthermore, the signal was six times greater than that of hemoglobin using an ultrasound receiver.
GNBs allowed for visualization of angiogenic sprouts and bridges, and rhodamine-labeled GNBs
specifically targeted immature neovasculature over mature microvasculature.

3.4. X-ray Radiation

AuNPs are widely studied and used as a contrast agent for X-ray. Aside from that, AuNPs
have been used to enhance the efficacy of radiation therapy owing to its high atomic (Z) number.
The proposed mechanism includes photon absorption, photoelectron release and auger electron
generation [117].

Hainfield et al. [118] intravenously injected 1.9 nm AuNP to tumor bearing animals, and the
AuNP enhanced the outcome of 250 kVp X-ray radiation. The one-year long term survival rate of the
combination group was as high as 86%, while the long term survival rate of X-ray alone group was
only 20%. In a similar study, Jain et al. [119] also used 1.9 mm AuNP but explored the enhancement
of megavoltage (MV) X-ray radiation. Their results suggested the enhancement was cell specific.
The enhancement was observed in MDA-MB-231 cell, which had the greatest AuNP uptake, but not in
L132 or DU145 cells.

Interestingly, the enhancement of radiation outcome seems to vary according to the radiation
source. Kong et al. [120] used 10.8 nm cysteamine- or glucose-coated AuNPs in combination with
either X-ray or γ-ray. The results suggested AuNP enhanced cytotoxicity of X-ray but lacked significant
effect when combined with γ-rays. However, in a separate study, Zhang et al. [121] used PEG-coated
AuNPs of 4.8, 12.1, 27.3 and 46.6 nm in combination with γ-ray. Their results suggested that 12.1 and
27.3 nm AuNPs enhanced the radiation outcome stronger than 4.8 and 46.6 nm AuNPs in vitro and
in vivo, and also had higher accumulation in tumor (Table 7).

Table 7. AuNPs sensitizes X-ray radiation.

AuNP In Vitro Effects In Vivo Effects Ref.
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4. Conclusions

We have reviewed the response of AuNPs to intrinsic stimuli, including pH, MMPs, and GSH,
and external stimuli, including laser and ultrasound. The versatility in their response to both intrinsic
and extrinsic stimuli makes AuNPs excellent potential tools in cancer imaging and treatment. However,
most research ended with showing the efficacy of the AuNPs and little has been reported on the in vivo
disposal of the AuNPs after the treatment. Although AuNPs are generally biocompatible, they are not
inert and can cause oxidative stress. Thus, the long term toxicity of retained AuNPs must be studied
thoroughly in order for a safe clinical application. Similarly, interaction of AuNPs with other blood
components, including different hematocytes, serum proteins and other small molecules, requires
more study to further understand and evaluate the in vivo behavior and safety of AuNPs. The results
from these studies may also in return provide more insight and optimization of the design of AuNPs
for cancer theranostics. It will be interesting to see more cancer-related clinical work on AuNPs.
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Abbreviations

The following abbreviations are used in this manuscript:

Ad adenovirus
Ad-MSCs adipose-derived mesenchymal cells
AFM atomic-force microscopy
AuNP gold nanoparticle
cRGO cyclic RGD
CT computed tomography
CW continuous wave
DLS dynamic light scattering
Dox doxorubicin
EGFR epidermal growth factor receptor
FA folic acid
GFP green fluorescent protein
GGMPN gold nanoparticles loaded with miR-122
GO graphene oxide
GSH glutathione
HCC hepatocellular carcinoma
HIFU high intensity focused ultrasound
HSBDP thiolated Bodipy dye
iPS human induced pluripotent stem cells
LSPR localized surface plasmon resonance
MB microbubble
miRNA microRNA
MMP matrix metalloproteinases
mPEG methoxy polyethylene glycol
MR magnetic resonance
MTX methotrexate
NIR near infrared
NIRF near-infrared fluorescence
PA photoacoustic
PB Prussian blue
PCM phase-changing material
PDA polydopamine
PF-PTX paclitaxel loaded Pluronic micelles
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P-gp P-glycoprotein
PhA pheophorbide A
PHF perfluorohexane
PK pharmacokinetics
PLGA poly(lactic-co-glycolic acid)
PpIX Protoporphyrin IX
rGO reduced graphene oxide
SER surface-enhanced Raman scattering
SERS surface-enhanced Raman spectroscopy
siRNA short interfering RNA
SPIO@AuNPs superparamagnetic iron oxide-coated gold nanoparticles
TAT TAT peptide
TN therapeutic nanoparticle
TTMA tetra(ethylene glycol)-lyated cationic ligand
uPIC short interfering RNA-loaded unimer polyion complex
US ultrasound
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