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Abstract: Injectable hydrogels are gaining popularity as tissue engineering constructs 

because of their ease of handling and minimal invasive delivery. Making hydrogels from 

natural polymers helps to overcome biocompatibility issues. Here, we have developed an 

Amorphous Chitin (ACh)-Agarose (Agr) composite hydrogel using a simpletechnique. 

Rheological studies, such as viscoelastic behavior (elastic modulus, viscous modulus, yield 

stress, and consistency), inversion test, and injectability test, were carried out for different  

ACh-Agr concentrations. The composite gel, having a concentration of 1.5% ACh and 

0.25% Agr, showed good elastic modulus (17.3 kPa), yield stress (3.8 kPa), no flow under 

gravity, injectability, and temperature stability within the physiological range. Based on 

these studies, the optimum concentration for injectability was found to be 1.5% ACh and 

0.25% Agr. This optimized concentration was used for further studies and characterized 

using FT-IR and SEM. FT-IR studies confirmed the presence of ACh and Agr in the composite 

gel. SEM results showed that the lyophilized composite gel had good porosity and mesh like 

networks. The cytocompatibility of the composite gel was studied using human mesenchymal 

stem cells (hMSCs). The composite gels showed good cell viability.These results indicated that 

this injectable composite gel can be used for biomedical applications. 
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1. Introduction 

Hydrogels derived from biopolymers are gaining more interest in the field of tissue engineering 

because of their good biocompatibility and biodegradability. These gels, having a 3-D network, are very 

similar to the structure of extracellular matrix (ECM) of native human tissue/organs [1]. This highly 

networked structure provides good mechanical support, as well as good porosity, for cells to grow and 

proliferate. Good porosity also enables the efficient diffusion of solutes, including nutrients, and effusion 

of waste by-products [2]. Since our body is made up of 70% water, any material that can retain high 

amounts of water is ideal to be used as a tissue-engineering construct. Hydrogels can absorb as much as 

1000 times its weight of water without undergoing dissolution [3]. 

Injectable hydrogels can be easily placed into the defect site with minimum invasiveness. Injectability 

helps in the homogeneous distribution of gel in the entire defect site [4]. This reduces the need for open 

surgery, thus, decreasing the chances of infection, affording a quicker healing time, and having a better 

aesthetic outcome. Injectable hydrogels have better adaptability to defect margins, moldability [5], 

handling properties, and cost effectiveness [6]. Different types of drugs, growth factors, biomolecules, 

and cells can be incorporated into hydrogels to enhance tissue regeneration [7,8]. 

Chitin is a naturally occurring biocompatible polysaccharide, containing N-acetyl-D-glucosamine 

units linked by β-1, 4-glycosidic bonds. It is suitable for tissue engineering applications as its monomeric 

units of N-acetyl glucosamine are similar to the composition of the ECM [9]. Because of this similarity, 

it can be easily degraded by the lysozymes present in the body [9].Chitin has been processed into 

scaffolds, sponges, membranes, microparticles, nanofibers, and nanogels, as well as hydrogels, for 

various tissue engineering and other biomedical applications [10–14]. However, the major drawback of 

chitin is the difficulty in dissolving it. The strong hydrogen bonding in the chitin polymer due to the high 

degree of acetylation (DAc) makes chitin insoluble in water [12]. Therefore, reducing the DAc increases 

the number of amino groups and breaks the secondary structure of chitin, thus making it amorphous 

(DAc ~ 70%–60%). This increases the hydrophilicity of chitin and makes it soluble in milder 

solvents [11,15,16] making it more cytocompatible. Usually, chitin is converted into chitosan, having a 

DAc less than 50%. This requires major chemical modifications. Thus, decreasing the DAc to around 

60% would increase the solubility of chitin without using any major chemical modifications [17]. 

Agarose (Agr) is also a naturally occurring biocompatible linear polysaccharide, consisting of  

1,4-linked 3,6-anhydro-α-L-galactose and 1,3-linked-β-D-galactose derivatives. Agr easily dissolves in 

water upon moderate heating and forms a gel at room temperature. However, Agr has a slow degradation 

rate [18], poor injectability, high hydrophilicity, and lower cell adhesiveness [19].To overcome these 

issues, Agr is blended with other polymers. Thus, a blend of ACh and Agr is expected to serve as a good 

injectable hydrogel for tissue engineering. 

In this work, we propose a simple technique for the development of a composite hydrogel made of 

amorphous chitin (ACh) and agarose, which is injectable, and can be potentially used for the regeneration 

of soft tissues. Earlier similar works have been done using Chitosan and Agr [20–22]. However, these 
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gels did not show injectable properties, which make their handling difficult for clinical applications. 

ACh gel, being injectable, is easy to handle and can fill in irregular defect sites with ease. Moreover, 

ACh is easy to process from chitin than chitosan, as chitosan requires extensive chemical modifications. 

Further, the monomers of ACh resemble the native glycosaminoglycan composition. Agr gel with its 

high water retaining capability mimics the water rich native ECM. Various concentrations of ACh and 

Agr solutions were used for making the hydrogels. The strength and injectability of the gels were 

analyzed, followed by in vitro studies to analyze the cytocompatibility of the optimized gel. 

2. Results and Discussion 

2.1. Preparation of ACh-Agr Composite Gel 

For preparing the Agr gel, Agr powder was dissolved in double distilled water and the solution was 

heated. Heated Agr solution, on cooling to room temperature, formed a transparent gel (Figure 1a).  

When heated, Agr molecules form double helical fibers having random coiled structures. These fibers, 

on cooling, aggregate into super coiled structures, thereby forming a gel [23]. 

ACh gel was formed by altering the pH. On adding excess of NaOH to ACh solution, translucent 

mass was observed which indicated the gel formation (Figure 1b). When ACh is dissolved in acidic pH, 

the polymeric chains break apart. On bringing the pH to alkaline, the chains move closer and get  

entangled [24]. Since the process takes place in an aqueous environment, water gets entrapped in 

between the polymer chains, thereby forming a hydrogel. 

The ACh-Agr composite gel was prepared by simple regeneration method with help of heat treatment 

and pH change without any cross-linker. Upon altering the pH (to alkaline) of the heated ACh-Agr 

solution, the polymeric chains are expected to get entangled with each other and form a three-dimensional 

network, entrapping large amount of water (Figure 1c,d). The pH of the ACh and ACh-Agr gel was 

around 10, which was neutralized by subsequent washing with double distilled water. 

 

Figure 1. Photographic Images of (a) Agr gel; (b) ACh gel; (c) 1.5% ACh-0.25% Agr gel; 

and (d) 1.5% ACh-0.5% Agr gel. (Scale bar: 1 cm). 
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2.2. Characterization of ACh-Agr Gel 

The lyophilized composite and control gels were analyzed using SEM. It was observed that the Agr 

gel showed a slight fiber like morphology, forming a mesh like network (Figure 2a). The ACh gel 

showed no porosity (Figure 2b) and had smooth morphology. The ACh-Agr gel showed mesh like 

network with interconnected micro-porous structure (Figure 2c,d). This porous structure can enhance 

the efficient transport of solute molecules when placed at the tissue site and help the cells to grow and 

proliferate within the gel. 

 

Figure 2. SEM images of (a) Agr (×1000); (b) ACh (×1000); (c) ACh-Agr (×1000) and  

(d) ACh-Agr (×5000). 

Further the composite gel was characterized using FTIR spectroscopy (Figure 3). The FT-IR spectra 

of ACh showed peaks at 1660, 1500, 1455, 1020 and 951 cm−1 [17]. Agr showed its characteristic peaks 

at 1046, 1371, 890 and 931 cm−1 [20]. In ACh-Agr gel, the Agr peaks at 1046 and 931 cm−1were seen 

with slight change, which may be because of its interaction with ACh. 1046 cm−1peak represents the  

C–O axial deformation and 931 cm−1 represents 3,6-anhydrogalactose group in Agr. ACh peak at 1500 

and 1250 cm−1were retained in the composite ACh-Agr gel. The 1500 cm−1 peak represents-C stretching 

of the glycosidic ring and 1250 cm−1 representsthe C–N stretching. Therefore FT-IR confirmed the 

presence of ACh and Agr in the composite gel. 
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Figure 3. FTIR spectrum of ACh, Agr and ACh-Agr hydrogel. 

2.3. Rheological Analysis of Composite Gels 

Various concentrations of ACh and Agr solutions were used to make hydrogels in different 

compositions: (i) 1% ACh-0.25% Agr (ii) 1% ACh-0.5% Agr (iii) 1.5% ACh-0.25% Agr and  

(iv) 1.5% ACh-0.5% Agr. All the four samples were subjected to rheological analysis (Figure 4).  

To study the physical nature of the gel, amplitude sweep was performed (Figure 4a). Amplitude sweep 

gives the elastic modulus (G′) and viscous modulus (G′′) for different shear strain (%). Shear strain 

(0.01%–100%) was applied to determine the Linear Viscoelastic Region (LVER), the region in which 

the sample can elastically strain and return to its original state once the strain is removed. All further 

rheological analysis was performed in this LVER. Elastic modulus represents the solid component and 

viscous modulus represents the liquid component of the material under testing. For a gelling material, 

the solid component must be more than the liquid component. It was noticed that all the compositions 

showed higher elastic modulus than the viscous modulus, thus confirming the gel nature of the 

composite. 1% ACh-0.25% Agr gel had an elastic modulus of 5.6 kPa. This value increased to 7.1 kPa, 

when the Agr concentration was increased to 0.5%. Similar results were obtained for gels made of 1.5% 

ACh. The elastic modulus of 1.5% ACh-0.25% Agr gel was found to be 17.3 kPa and for 1.5% ACh-0.5% 

Agr it was 25 kPa. The gels made of 1.5% ACh showed higher elastic modulus as compared to gels 

made of 1% ACh. The gel with the composition of 1.5% ACh and 0.5% Agr showed highest elastic 

modulus (G′) (Table1). 

Figure 4b shows the yield stress analysis of the gels. The composite gel containing 1.5% ACh and 

0.25% Agr had a higher yield stress (sigma prime) at 3.8 kPa, as compared to the other hydrogels, which 

implies that this particular composition of hydrogel is able to take higher loads. Interestingly, though the 

composition having 1.5% ACh and 0.5% Agr showed higher elastic modulus (high G′ value), it could 

not withstand higher loads and thus started to yield at around 2.9 kPa. It was observed that on increasing 

the concentration of ACh, the yield stress value increased, however an increase in the Agr concentration 

showed different trends when added to 1% and 1.5% ACh. The gel containing 1% ACh and 0.25% Agr 

started to yield at 0.98 kPa. This value increased to 1.3 kPa for 1% ACh-0.5% Agr gel. In the case of 
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1.5% ACh gels, the gel having 0.5% Agr started to yield at 2.9 kPa, whereas the gel with 0.25% Agr had 

a yield stress of 3.8 kPa. This may be because, on increasing the concentration of ACh, the gel might be 

becoming more viscous and with addition of higher amounts of Agr, the gel may start to become slightly 

brittle and hence lose its load bearing ability. Based on the yield stress analysis, 1.5% ACh-0.25% Agr 

gel was found to be better than 1.5% ACh-0.5% Agr gel. 

 

Figure 4. Rheological properties of the composite gels (a) Amplitude sweep, showing the 

elastic modulus (i,iv) and viscous modulus(v–viii) at different shear strain. (i,v)  

1.5% ACh-0.5% Agr; (ii,vi) 1.5% ACh-0.25% Agr; (iii,vii) 1% ACh-0.5% Agr; (iv,viii) 1% 

Ach-0.25% Agr). (b) Yield stress analysis. (c) Power law model fit data for different 

compositions of the hydrogels. 

Power law model fit data was generated by the rheometer (Figure 4c). This data along with the power 

law equation (Equation (1)) was used to obtain the power law index (n), consistency (k) and the 

correlation coefficient (Corr. Coeff) values (Table 1). The n value is a measure of the shear thinning 

property of the gel. Shear thinning is the property of the gel, which makes it flow only under shear 

(external force). Without an external shear the gel should behave as a solid. This n value is important 

when considering the injectability of the gel. For a shear thinning gel n value is expected to be below 1(for 

water n = 1, pure solid n = 0) [25]. Based on the power law analysis it was found that all the compositions 

of hydrogels had a shear thinning property with n<1. The k value helps us to understand the consistency 

of the gel. Higher the k value, higher the viscosity of the gel. Gels made of 1% ACh-0.25% Agr and  

1% ACh-0.5% Agr had a k value of 5.11 kPa and 6.48 kPa, respectively. On the other hand,  

1.5% ACh-0.25% Agr and 1.5% ACh-0.5% Agr showed a k value of 15.5 kPa and 22.9 kPa, respectively. 

It was observed that on increasing the Agr concentration, the gel became more viscous. This result was 

consistent with the low yield stress value of the 1.5% ACh-0.5% Agr gel. The Corr. Coeff gives the 

closeness of the original data to the model fit data. All the gel composition had a Corr. Coeff > 0.99 

(perfect correlation = 1), thereby showing that the gels followed the model fit values (Figure 4c). 
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σ = kΫn (1)

where, σ = Shear stress; k = Consistency; Ϋ = Shear rate; n = Power law index. 

Table 1. Rheological properties for different concentrations of composite ACh-Agr gels. 

Amorphous 
Chitin (%) 

Agarose 
(%) 

G′ 
(kPa) 

Sigma 
Prime (Pa) 

Complex 
Shear 

Strain (%) 
n k (kPa) Corr. Coeff 

1 0.25 5.6 0.981 × 103 40.27 0.04488 5.11 0.9985 
1 0.5 7.1 1.3 × 103 42.33 0.04433 6.48 0.9983 

1.5 0.25 17.3 3.8 × 103 62.54 0.05155 15.5 0.9981 
1.5 0.5 25 2.9 × 103 15.88 0.04389 22.9 0.9917 

The phase angle values for all the gels were between 4° and 6° (Figure 5a).This indicates that the gels 

are of solid dominating nature with a liquid component (δ = 0° for purely solid, and δ = 90°, for  

purely liquid) [26]. 

Frequency sweep determines the elastic modulus with respect to time (inversely proportional to 

frequency) (Figure 5b). It was observed that as the frequency decreased (increase in time), the G′ values 

did not show any considerable amount of variation. A very slight decrease in the elastic modulus was 

observed, which may be due to the water content. 

Since 1.5% ACh-0.25% Agr gels showed good yield stress along with higher elastic modulus and 

shear thinning property, further, its temperature stability was tested between 25 °C and 45 °C. It was 

observed that the complex modulus (G*) remained more or less constant (Figure 5c). This shows that 

the gel is able to withstand considerable amount of temperature variability. 

As all the gels showed n < 1, they were all expected to be injectable. In order to confirm this, 

injectability test was done. Gels having 1.5% ACh were used for these tests as they showed higher 

modulus and consistency. Injectability test was carried out using 18 G needle by applying shear 

manually. The injectability of the gels was compared with the control gels, and it was observed that 

0.25% Agr gel (Figure 6a) was dripping when shear was applied where as 1.5% ACh showed 

considerable amount of injectability but with breaks in the flow (Figure 6b). The gel made of 1.5%  

ACh-0.25% Agr showed good and continuous injectability (Figure 6c).This injectable property of the 

1.5% ACh-0.25% Agr gel could enable one to deliver it at the damaged tissue site with minimum 

invasiveness. Gel with a composition of 1.5% ACh-0.5% Agr did not show injectability (Figure 6d). 

This may be due higher Agr concentration. Since 1.5% ACh-0.25% Agr gel showed good viscoelastic 

behavior, along with good injectability, this composition was chosen for further studies. 

Inversion test was carried out for 1.5% ACh gel, 0.25% Agr gel and 1.5% ACh-0.25% Agr gel.  

This test is used to observe the effect of gravity on the gel flow. The flow of the hydrogels was visually 

observed at different time points. Agr gel started to flow within half an hour of inversion (Figure 7b), 

whereas the other two gels showed no flow even after 24 h of inversion (Figure 7c,d). The early flow of 

the Agr gel may be due to the low adhesiveness of the Agr molecules. The adhesive forces between the 

Agr molecules are expected to be too low to overcome the shear by gravitational force. ACh gel showed 

no flow even after 24 h of inversion. This could be attributed to higher adhesive forces between the ACh 
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molecules. Thus, the ACh-Agr hydrogel is expected to stay in the defect site and not flow off to the 

neighboring tissue till the damaged tissue is repaired. 

 

Figure 5. (a) Phase angle vs. shear strain; (b) Frequency sweep (Elastic Modulus vs. 

Frequency) for different composite ACh-Agr hydrogels; (c) Temperature stability of 1.5% 

ACh-0.25% Agr hydrogel. 

 

Figure 6. Injectability test: (a) 0.25% Agr; (b) 1.5% ACh; (c) 1.5% ACh-0.25% Agr;  

(d) 1.5% ACh-0.5% Agr. (Scale bar: 1 cm). 
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Figure 7. Inversion test for Agr, ACh and 1.5% ACh-0.25% Agr at different time points  

(a) 0 h; (b) 0.5 h; (c) 1 h; (d) 24 h. (Scale bar: 1 cm). 

2.4. Cytocompatibility 

Cytocompatibility of the composite gel was studied using human Mesenchymal Stem Cells(hMSCs) 

by AlamarBlue® (Thermo Fisher Scientific, Waltham, MA, USA) assay for 24, 48 and 72 h (Figure 8). 

All the gels were cytocompatible up to 72 h. There was no significant difference between the cell viability 

of the 1.5% ACh gel, 0.25% Agr gel and composite gels (1.5% ACh-0.25% Agr). With increase in time, 

there was an increase in cell number, indicating the proliferation of the hMSCs. Control group (cells 

alone) and the gel groups showed similar amount of cell viability, thereby indicating the non-toxic nature 

of the gels. As these gels were prepared under mild conditions, the cytocompatibility of the polymers 

was not affected by the preparation technique. 

 

Figure 8. hMSCs viability was analyzed on ACh, Agr and ACh-Agr hydrogels at different 

time points (24, 48 and 72 h) using AlamarBlue® assay. 
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3. Experimental Section 

3.1. Materials 

ACh (DAc 60%) was purchased from Koyo Chemicals Ltd. (Tokyo, Japan). Agr (Ultrapure), Iscove’s 

Modified Dulbecco’s Medium (IMDM), Mesenchymal Stem Cells (MSCs) specific Foetal Bovine 

Serum (FBS), Penicillin, Streptomycin and AlamarBlue® dye were bought from Invitrogen (Camarillo, 

CA, USA). Acetic acid was obtained from Sigma Aldrich (Bangalore, India). Sodium hydroxide (NaOH) 

was purchased from Qualigens (Qualigens Fine Chemicals, Mumbai, India). Double distilled (MQ) 

water (18.2 MΩ·cm) was used wherever needed. All other chemicals used were of analytical grade. 

3.2. Preparation of ACh-Agr Composite Gel 

Different concentrations of ACh (1% and 1.5%) and Agr solutions (0.25% and 0.5%) were made and 

mixed in varying proportions (Table 1). ACh solutions were made by dissolving the required 

concentration in 1% acetic acid. 1N NaOH was slowly added to ACh solution to form ACh gel.  

The ACh gel was formed at pH 10. Agr was dissolved in MQ water with mild heating to form the Agr 

solution, which formed a gel on cooling. In order to make ACh-Agr gel, the Agr powder was added to 

the ACh solution under constant stirring and mild heating. On complete dissolution of the Agr in the 

ACh solution, 1N NaOH was added under constant stirring and cooled to room temperature.  

Four samples were made, 1% ACh with 0.25% and 0.5% Agr and 1.5% ACh with 0.25% and 0.5% Agr. 

In order to remove the excess NaOH, the gels are washed several times (Figure 9). Pure ACh and Agr 

gels were used as controls. 

 

Figure 9. Schematic of preparation of composite ACh-Agr hydrogel. 

3.3. Physicochemical Characterization of the Gel 

The control and composite gels were lyophilized for 24 h. The porosity and morphology of the gels 

were characterized using Scanning Electron Microscope (JEOL JSM-6490LA Analytical SEM). In order 
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to compare the functional groups in the control and composite gels, Fourier Transform Infra-Red (FTIR) 

Spectroscopy (Shimadzu IRAffinity-1S Fourier Transform Infrared Spectrophotometer) was carried out. 

3.4. Rheological Studies 

3.4.1. Viscoelastic Studies 

In order to assess the strength, flow and stability of the gels, Rheological tests were carried out using 

a Malvern Kinexus pro rheometer. Amplitude sweep, frequency sweep, yield stress analysis and power 

law model fit analysis were performed using a stainless steel 20 mm cone plate (4°) (upper). The gap 

between upper and lower plates was kept at 0.5 mm.The instrument was set to determine the LVER and 

frequency sweep was carried out. Elastic modulus (G′), viscous modulus (G′′) and phase angle (δ) were 

measured against varying percentages of shear strain. The yield stress analysis was done between 10 Hz 

to 0.1 Hz to find out the yielding point of the gel. All the experiments were carried out at 25 °C. 

3.4.2. Temperature Stability 

In order to determine the temperature stability of the composite gel, it was subjected to varying 

temperatures from 25 to 45 °C and oscillatory tests were carried out. Throughout the experiment, a 

constant frequency and shear was maintained and the complex modulus and complex viscosity  

were measured. 

3.4.3. Injectability andInversion Study 

The injectability of the gels was tested by loading them into a 1 mL syringe (with 18 G needle) and 

subjecting them to manual shear. The flow was observed visually. Inversion test was done to analyze  

the effect of gravity on the gels’ flow/stability. 0.25% Agr, 1.5% ACh and the composite gels  

(1.5% ACh-0.25% Agr) were subjected to this test. Equal volumes of these three gels were placed in a 

cylindrical vial (with flat bases) and their levels were labeled. The vials were inverted and made to stand 

on their caps and were left undisturbed [27]. The flow of the gels was observed at different time intervals 

(0 h, 0.5 h, 1 h and 24 h). 

3.5. Cytocompatibility 

AlamarBlue® assay was carried out to determine the cell viability and proliferation. In this assay the 

blue, non-fluorescent resazurin dye (AlamarBlue® reagent) is reduced to a pink, fluorescent resorufin 

compound by the metabolically active enzymes in the live cells. Adipose derived hMSCs were used to 

carry out the cell viability studies. Equal amounts of UV-sterilized composite and control hydrogels were 

taken in a 12 well plate and hMSCs were seeded at a density of 15,000 cells/well. IMDM supplemented 

with 10% FBS and streptomycin/penicillin was used as the growth medium. The cells were then 

incubated at 37 °C for different time periods of 24, 48 and 72 h. After incubating for the required time 

periods, the culture media was removed and 10% AlamarBlue® reagent in IMDM was added to each of 

the wells and incubated at 37 °C. After 5 h incubation, the optical density is measured at 570 nm with 
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600 nm as the reference wavelength using a microplate spectrophotometer (Biotek Power Wave XS, 

Winooski, VT, USA) [28]. 

3.6. Statistical Analysis 

All experiments were carried out in triplicates. Statistical significance was analyzed using two-tailed 

paired Student’s t-test. p < 0.05 was considered significant. 

4. Conclusions 

The ACh-Agr composite hydrogels were prepared under mild conditions and characterized. 

Viscolelastic behavior of the gels was studied to know their injectable nature. It was observed that 1.5% 

ACh-0.25% Agr gels showed good viscoelastic behavior along with good injectability. Inversion test 

showed that this gel flowed only under shear, thereby withstanding flow under gravity. Further, 

cytocompatibility of the composite gel was proved using hMSCs. These studies demonstrated that gels 

with the composition of 1.5% ACh and 0.25% Agr can be used for biomedical applications. Furthermore, 

this gel system would serve as a base for further modifications and incorporation of fillers, growth 

factors, biomolecules, etc., to improve the functionalities. 
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