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Abstract: The human mandible’s cancellous bone, which is characterized by its unique porosity and
directional sensitivity to external forces, is crucial for sustaining biting stress. Traditional computer-
aided design (CAD) models fail to fully represent the bone’s anisotropic structure and thus depend
on simple isotropic assumptions. For our research, we use the latest versions of nTOP 4.17.3 and
Creo Parametric 8.0 software to make biomimetic Voronoi lattice models that accurately reflect the
complex geometry and mechanical properties of trabecular bone. The porosity of human cancellous
bone is accurately modeled in this work using biomimetic Voronoi lattice models. The porosities
range from 70% to 95%, which can be achieved by changing the pore sizes to 1.0 mm, 1.5 mm, 2.0 mm,
and 2.5 mm. Finite element analysis (FEA) was used to examine the displacements, stresses, and
strains acting on dental implants with a buttress thread, abutment, retaining screw, and biting load
surface. The results show that the Voronoi model accurately depicts the complex anatomy of the
trabecular bone in the human jaw, compared to standard solid block models. The ideal pore size
for biomimetic Voronoi lattice trabecular bone models is 2 mm, taking in to account both the von
Mises stress distribution over the dental implant, screw retention, cortical bone, cancellous bone,
and micromotions. This pore size displayed balanced performance by successfully matching natural
bone’s mechanical characteristics. Advanced FEA improves the biomechanical understanding of how
bones and implants interact by creating more accurate models of biological problems and dynamic
loading situations. This makes biomechanical engineering better.

Keywords: finite element analysis; Voronoi lattice; dental implant; trabecular bone; human mandible’s;
nTopology; creo parametric; computer aided design; porosity

1. Introduction

The complex architecture of human bone, particularly the cancellous or spongy bone
in the jaw, is a significant challenge to dental implant design and biomimetic engineering.
As a result, the field of study has implemented advanced modeling techniques, with
Voronoi lattice structures being widely preferred [1–4]. Notorious for their distinct open-cell
structure that sets them apart from other lattice families, like triply periodic minimal surface
(TPMS) gyroid and sheet-type lattices, Voronoi lattices are recognized for their remarkable
ability to precisely resemble the intricate and porous properties of human bone [5–11].
Voronoi lattices are made up of a network of irregular, mathematically determined cell
shapes that are very different in how they change shape and how well they can handle
mechanical forces. Thus, making them extremely advantageous for scaffolding applications
in the field of biomedical engineering. These scaffolds improve osseointegration and tissue
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ingrowth in addition to mimicking the natural porosity of bone, which usually varies from
60% to 90% [12–17]. Because of this, Voronoi lattices are necessary for making biomimetic
implants because they offer a customized method that is better at copying the complex
anatomical and functional details of human bone than other types of lattices [18–22].

Similar to composite materials, bone has directional dependency under external
loads [23–28], which makes it crucial yet challenging to accurately simulate using tra-
ditional computer-aided design (CAD) models [29–31]. These conventional models, which
frequently assume isotropic or orthotropic features, considerably simplify the complex
behavior of human cancellous bone. When compared to actual clinical dental scenarios,
this simplification significantly reduces the accuracy of computational simulations [32].
The majority of earlier research has resorted to replacing human cancellous bone in finite
element analysis with solid cross-section block CAD models, a technique that severely
reduces the precision of numerical approximations [31–37]. Voronoi lattice structures pro-
vide a remedy to this problem due to their capacity for customized design. They make
it possible to adjust Young’s modulus such that it more nearly resembles the modulus
of common implant materials, including titanium and its alloys. This tailoring facilitates
the mechanical synergy that is necessary for dental implants to integrate effortlessly and
remain stable over time inside the human mandible. By strategically using Voronoi lattices,
researchers can potentially guarantee a better level of accuracy and clinical relevance in
implant design by bridging the gap between simplified assumptions and the complicated
nature of biomechanical behavior.

The main focus of this work is to study biomimetic Voronoi lattice structures, which
are unique in that they can mimic the porous properties of trabecular bone, which is
an important part of human cancellous bone. The porosity of human cancellous bone,
which usually ranges from 30% to 90%, is noteworthy and significant for its biomechanical
function [17,38–40]. The Gibson–Ashby theory demonstrates the significance of the porosity
and relative density in defining the mechanical strength and stiffness of cancellous bone
by relating the mechanical properties and physical structure of porous materials [5,41–45].
This theory demonstrates how the relative density of cancellous bone, which is a measure
of its structural solidity against porosity, directly affects its biomechanical properties. This
is how Voronoi lattice structures are different from other types of lattices, like sheet-type
lattices, because they can perfectly replicate the unevenly distributed, networked porosity
of cancellous bone. This feature improves the biomechanical reliability of finite element
analysis (FEA) simulations in addition to promoting osseointegration.

The finite element method (FEM) is used in this study to improve the mechanobiol-
ogy analysis of dental implants [1,20,21,24,29–32,34–37,44,46–49]. FEM is a well-known
computer method for modeling and analyzing complex physical events by breaking a con-
tinuum into a few discrete parts. The use of finite element method (FEM) in biomechanics
and biomimetics has transformed the study of cancellous bone structures by providing a
comprehensive understanding of how they behave under different stress scenarios [50–56].
In particular, this work uses FEM to simulate dynamic, slow loading conditions that are
precisely designed to mimic the cyclic biting forces applied to dental implants during
mastication. This robust approach differs from earlier research that mostly relied on static
loading assumptions, ignoring the dynamic and cyclical nature of mandibular stress during
chewing [30,53,57–62]. By using smooth step-time convergence, this study is more like
the explicit dynamic loading that happens in clinical settings. It gives a more accurate
and complete look at the stress, strain, and displacement that happen in dental implants.
This improved modeling method provides insight into the mechanical behavior of the im-
plants over time, which is a major advancement over previous static loading assumptions.
Previous studies have highlighted the shortcomings of static models in representing the
complex biomechanical environment of the jaw [32,35]. These studies have advocated for
the incorporation of dynamic loading parameters in order to more accurately simulate the
physiological conditions of mastication.
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This study carefully assesses how differences in pore sizes in biomimetic Voronoi
lattice structures affect their capacity to bear external stresses, with particular emphasis
on improving dental implant biomechanics. An adequate pore size not only increases the
load-bearing capacity of the implant but also promotes an ideal biomechanical environment
by reducing stress-shielding effects and enabling uniform stress distribution [63]. In order
to acquire mechanical properties that match those of natural bone, pore size modifica-
tions are strategically used to control porosity and relative density [64–66]. This promotes
osseointegration and improves the long-term durability of the implant. The mechanical in-
tegrity and biological performance of implants are greatly influenced by pore sizes within a
certain range [67–69]. These studies show that increased porosity often results in decreased
mechanical strength, even if it is advantageous for biological integration. Nonetheless, a
tailored approach that maximizes the strength-to-weight ratio while maintaining biological
functioning is made possible by the use of Voronoi lattice structures, which are in line with
cancellous bone’s inherent properties [70].

By using FEA, the main goal of this study is to improve the comprehension of the
biomechanical properties of dental implants. In particular, it focuses on using biomimetic
Voronoi lattice architectures with different pore diameters to effectively mimic human
cancellous bone characteristics. In order to precisely replicate masticatory conditions
seen in real life, every component of the dental implant is thoroughly examined in the
present study. It also explores into effects to the implant parts and the trabecular bone
mimic when the pore size changes in the Voronoi lattice. Thus, this work anticipates that
the novel Voronoi lattice cancellous bone pore size changes have a significant impact on
the lattice’s relative density and porosity, which are required to replicate the integrity
and strength of real cancellous bone. This work clarifies the crucial role that structural
changes play in varying the overall biomechanical effectiveness of dental implant systems
through a thorough investigation of biomechanical parameters—displacements, stresses,
and strains—derived from the FEA.

2. Materials and Methods
2.1. 2D CAD Drawing and Dimensions

The dental implant system’s main parts—cancellous and cortical bone structures—were
rigorously designed with the use of Creo Parametric 8.0 software. As seen in Figure 1,
this method constructed both two-dimensional sketches and three-dimensional designed
models with precise dimensions.
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2.2. Pore Sizes and Voronoi Latticed Bone

Compact bone is defined by a relatively low porosity, usually less than 15%, while
certain instances show a porosity range of around 5–30% [71]. On the other hand, trabecular
bone, or cancellous bone, has much greater porosity; it often exceeds 70%. However, there
are variances ranging from around 30% to over 90% [72]. This trabecular structure has
a relative density that varies between 0.05 and 0.3, indicating that it is very cellular [73].
Based on previously published data on the natural porosity of human trabecular bone,
this work uses nTopology software (nTOP 4.17.3) to generate four biomimetic Voronoi
lattice models with pore sizes of 1.0 mm, 1.5 mm, 2.0 mm, and 2.5 mm. These models,
known as Voronoi Trabecular Bone (VTB) structures, are designated VTB10, VTB15, VTB20,
and VTB25, respectively. Figure 2 shows these four models with different pore sizes.
Using finite element analysis (FEA), the study precisely investigates the impact of these
various pore sizes in the Voronoi lattice structure on the stresses and strains that bones
and other dental implant components experience. The objective of this methodology is to
better understand the biomechanical effects of pore size variations on implant stability and
bone stability.
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Figure 2. Comparative analysis of biomimetic Voronoi latticed spongy bone structures with four dis-
tinct pore sizes, (a) 1.0 mm, (b) 1.5 mm, (c) 2.0 mm, and (d) 2.5 mm, designed using nTopology (nTop
4.17.3) software.

2.3. Building, FE Volume Meshing, and Boundary Condition of Voronoi Lattice

A solid 3D CAD model saved as a Standard ACIS Text (SAT) file is imported and
used as the design area to create Voronoi-latticed models that resemble the cancellous bone
structure. Then, using a randomization seed of 250 and four different pore sizes as shown
in Figure 2, a randomized lattice graph is produced (as shown in Figure 3a). The lattice
graph is thickened with a beam diameter of 0.3 mm to strengthen the structure. In order
to reduce structural complexity and remove unnecessary overhangs, a lattice trimming
procedure is used with a feature tolerance of 10. By exercising precision, a biomimetic
scaffold that closely mimics the architecture of cancellous bone could be designed, allowing
for a possible exploration of its biomechanical properties.

2.4. Oblique Load and FE Boundary Conditions

As shown in Figure 4a, the occlusal crown surface was loaded with forces in three
different directions: mesiodistal, buccal-lingual, and apical. This is to illustrate the biome-
chanical response of the dental implant under multi-axial dynamic oblique loading. There
were three different specific force magnitudes applied: 23.4 N, 17.1 N, and 114.6 N. By using
a multi-point constraint (MPC) approach, these forces converged at a dummy reference
point that was 3 mm from the occlusal surface. This method replicated the complex forces
encountered during clinical mastication by generating an equivalent force of 118.2 N, tilted
at 75.8 degrees with respect to the occlusal plane [32,34–36,74].
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To be more specific, the simulation method included explicit dynamic loading at a
slower rate to mimic the cyclic mastication stress seen in real life. Notably, to accurately
mimic in vivo situations, the load was applied over a 0.5 s period in the dynamic scenario,
representing the typical mastication frequency of 2 Hz [32,34,75]. Specially designed bound-
ary conditions were used to mimic real-life constraints. At the implant–mandible interface,
a six-degree-of-freedom (DoF) Encastre boundary condition was used to fix the implant in
all three spatial dimensions (X, Y, and Z). The objective of this configuration was to accu-
rately replicate the distribution of combined stress in the mesiodistal, buccal-lingual, and
apical directions. Finite Element (FE) Boundary by Body Modeling was used to represent
the biomimetic Voronoi cancellous bone structure. As shown in Figure 2, this technique
made it easier to accurately export nodes from nTop for boundary condition assignment
in the ABAQUS/CAE 2023 software environment. All dental implant constituents were
investigated, including the artificial Voronoi lattice cancellous bone (Figure 4b). The study
accurately measured the compressive and tensile stresses in the implant system using finite
element analysis with ABAQUS. This makes progress in the study of implant biomechanics
under physiologically important loading scenarios.

2.5. Physical Properties and FE Mesh

It is very important to mesh the model properly so that there are fewer numerical
errors and the results of finite element analysis (FEA) are more reliable when compared to
real-world events. Using nTopology (nTOP 4.17.3) software, the Voronoi cancellous bone
meshing was performed consecutively in the present study. First, an implicit body was
constructed from a traditional 3D solid CAD model of spongy bone that was imported
from Creo Parametric software in order to utilize it as a design space. This implicit design
area was then used for building a Voronoi lattice, which was then utilized for lattice
meshing. Robust tetrahedral meshing was used after surface re-meshing steps to address
the structure’s complexity. Figure 5 serves as an illustration of the choice of an edge length
of 1.0 mm and a feature tolerance of 0.25 mm for this purpose. To prepare the model
to use finite element analysis, the last step was performing FE volume meshing. To be
more precise, several element sizes were used to mesh the dental implant components:
0.2 mm for the implant, 0.15 mm for the screw-retaining components, and 0.35 mm for
the remaining components [32]. The meshing procedure was carried out using ABAQUS
software (see Figure 5). The FE mesh statistics for all the implant system components are
presented in Table 1. The physical characteristics of the implant and bone materials are
presented in Table 2. It is assumed that the components of the implant, comprising the
screw, abutment, and crown, have homogeneous, elastic characteristics.

Table 1. FE mesh statistics of different biomimetic trabecular bone and implant component models.

Crown Abutment Screw Implant Cortical Bone Trabecular Bone Total

Bone
Models

No.
Element

No.
Node

No.
Element

No.
Node

No.
Element

No.
Node

No.
Element

No.
Node

No.
Element

No.
Node

No.
Element

No.
Node

No.
Element

No.
Node

VTB10 107,954 20,670 85,243 17,463 627,098 121,624 160,676 31,737 146,767 31,180 1,936,663 584,049 3,064,401 806,723

VTB15 107,954 20,670 85,243 17,463 627,098 121,624 160,676 31,737 146,767 31,180 1,187,637 363,867 2,315,375 586,541

VTB20 107,954 20,670 85,243 17,463 627,098 121,624 160,676 31,737 146,767 31,180 791,391 248,917 1,919,129 471,591

VTB25 107,954 20,670 85,243 17,463 627,098 121,624 160,676 31,737 146,767 31,180 591,166 186,214 1,718,904 408,888

Table 2. Physical properties of materials for the FEA [32,35,37,47].

Materials Young’s Modulus E (MPa) Poisson’s Ratio ν Density (g/cm3) Strength (MPa)

Cortical bone *

Ex 12,600 νxy 0.3

1.79 190

Ey 12,600 νyz 0.253
Ez 19,400 νxz 0.253

νyx 0.3
νzy 0.39
νzx 0.39
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Table 2. Cont.

Materials Young’s Modulus E (MPa) Poisson’s Ratio ν Density (g/cm3) Strength (MPa)

Cancellous bone *

Ex 1148 νxy 0.055

0.45 10

Ey 210 νyz 0.01
Ez 1148 νxz 0.322

νyx 0.01
νzy 0.055
νzx 0.322

Gold abutment * 136,000 0.37 17.5 765

Porcelain * 68,900 0.28 2.44 145

Titanium grade 4 * 110,000 0.34 4.5 550

* The vectors of x, y and z are mean the infero-superior (Axial), mesiodistal, and buccolingual direction, respectively.
And Implant & screw = Titanium grade 4, Abutment = Gold, Crown = Porcelain.
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an emphasis on the mesh configuration, as illustrated in the zoomed section.

2.6. Relative Density and Porosity of Biomimetic Voronoi Lattice

The nTopology (nTop 4.17.3) program is used to make a Voronoi-latticed biomimetic
bone structure, which is different from traditional modeling methods. With this method,
the surface area-to-volume ratio, relative density, and porosity of the lattice structure can
all be accurately calculated. Understanding the mechanical characteristics and potential
for the osteointegration of biomimetic bones requires knowledge of these analyses. The
following equations provide a mathematical basis for these key parameters:

Relative Density (ρrel) of Biomimetic Bone:

ρrel =
MLa
MSol

(1)

Surface Area-to-Volume Ratio (SA/V) of Voronoi Lattice:

SA/V =
ALa
VLa

(2)
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Porosity (Φ) Relating to Relative Density:

Φ = 1 − ρrel (3)

where MLa is the mass of the lattice structure, MSol is the mass of the solid (CAD model)
volume, ALa is the total surface area of the lattice, and VLa is the total volume of the lattice.

3. Results
3.1. Voronoi Lattice Pore Size

Models with four different pore sizes—1 mm, 1.5 mm, 2 mm, and 2.5 mm—were
created using nTopology (nTOP 4.17.3) software, all of which had a constant 0.4 mm beam
thickness. The influence of these variations in pore size on a variety of essential lattice
structure parameters, such as the average beam length, number of beams, number of nodes,
relative density, and surface-area-to-volume ratio, was well established by our analysis
(see Table 3). The study found a significant pattern associated with an increasing pore
size. Notably, the average beam length rose as the pore size increased, from 0.4614 mm at
1 mm to 0.9203 mm at 2.5 mm, showing the need for longer beams to cross the increasing
distances between nodes. From the smallest to the biggest pore diameters, the lattice beam
and node counts significantly decreased simultaneously with increasing pores, falling from
25,809 to 3024 and 15,186 to 2058, respectively. This reduction allows for bigger spaces of
voids by signaling a decline in the lattice complexity and density. Additionally, a clear
decrease in relative density was seen, decreasing from 22.21% for the 1 mm pore size
to 6.27% for the 2.5 mm pore size. This indicates that pore size and lattice density are
inversely related.

Table 3. Effects of pore size variation on structural parameters of biomimetic Voronoi lattice trabecu-
lar bone.

Symbolic
Name

Pore Size
(mm)

Beam
Thickness

(mm)

Randomization
Seed

Average
Beam Length

(mm)

Lattice
Beam Account

Lattice
Node Count

Relative
Density (%)

Surface-Area-
to-Volume
Ratio (%)

VTB10 1.0 0.4 250 0.4614 25,809 15,186 22.21 10.49

VTB15 1.5 0.4 250 0.5681 13,286 8182 15.19 11.58

VTB20 2.0 0.4 250 0.7532 5438 3535 8.84 12.21

VTB25 2.5 0.4 250 0.9203 3024 2058 6.27 12.4

3.2. Pore Size versus Relative Density and Porosity

The range of pore sizes in biomimetic Voronoi lattice structures, shown in Figure 6,
from 1.0 mm (VTB10) to 2.5 mm (VTB25), is an important factor for describing the pore
scale and has a direct impact on the relative density and porosity of the scaffold. The
relative density, which measures the lattice structure’s compactness in comparison to its
solid equivalent, steadily drops with an increasing pore size; it declines from 22.21% at
1.0 mm to 6.27% at 2.5 mm. This trend represents a gradual decline toward a structure that
is less dense. On the other hand, porosity measures the volume percentage of empty space
within the lattice and has an inverse relationship with relative density. With increasing
pore sizes, Figure 6 shows an increasing porosity trend that ranges from 77.79% for VTB10
to 93.73% for VTB25.
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pore sizes.

3.3. Dynamic Oblique Loading

Figure 7 displays the application of an oblique dynamic load of 118.2 N to the occlusal
surface of the crown. The load is directed in the buccal–lingual, axial, and mesiodistal
directions, simulating a 2 Hz mastication cycle with a plane of mastication load. The
figure shows the smooth change in load on the crown’s occlusal surface across mesiodistal,
buccal–lingual, and apical orientations throughout a 0.5 s mastication cycle. The goals of
this study were met by using multi-point constraints (MPCs) and a reference point as the
master control to create a smooth step amplitude on the occlusal surface of the crown. The
load distribution was in the three designated directions, which matches the findings of a
previous study [32]. This proves that the masticatory forces on dental implants that were
simulated in this research method are accurate.
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3.4. Von Mises Stress in Dental Implant Assembly

Figure 8 depicts the maximum von Mises stress values for a doubly sliced assembly of
dental implant components, exhibiting stress distributions across four different biomimetic
Voronoi lattice trabecular bone designs. The findings show a decreasing trend in the von
Mises stress with an increasing pore size. The stress values are reported as 305.93 MPa for
a 1 mm pore size (VTB10), subsequently decreasing to 220.96 MPa for 1.5 mm (VTB15),
186.01 MPa for 2 mm (VTB20), and ultimately to 161.16 MPa for 2.5 mm (VTB25).
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3.5. Von Mises Stress in Dental Implant and Retaining Screw

The von Mises stress analysis, shown in Figure 9a–h, illustrates the effect of various
pore sizes inside the biomimetic Voronoi-latticed trabecular bones on stress distribution
in both the dental implant and the retaining screw. The von Mises stress for the dental
implant consistently decreases as the pore size increases, from 1 mm (VTB10) to 2.5 mm
(VTB25), falling from 233.84 MPa to 173.48 MPa, respectively. The retaining screw has an
identical trend but a less noticeable decline from 220.96 MPa to 184.11 MPa. Interestingly,
the 2 mm pore size (VTB20) indicates a key threshold where the implant’s von Mises stress
significantly decreases to 179.69 MPa, which is in close alignment with the retaining screw’s
stress levels (182.09 MPa).
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3.6. Von Mises Stress in Cortical and Voronoi Trabecular Bone

The results from Figure 10a–d, combined with observed stress concentration patterns,
provide a comprehensive understanding of maximum von Mises stress behavior in both
cortical and biomimetic Voronoi lattice trabecular bones under a mastication frequency of
2 Hz, corresponding to a cycle time of 0.5 s. Notably, regions of possible mechanical risk
are indicated by the concentration of the highest stress around the hole where the cortical
bone contacts the implant. Stress distribution inside the Voronoi lattice trabecular bone is
consistent throughout different pore sizes, ranging from 12.83 MPa at 1.0 mm (VTB10) to
25.55 MPa at 2.5 mm (VTB25). Likewise, stress in the cortical bone increases from 35.67 MPa
(VTB10) to 106.42 MPa (VTB25) as the trabecular structure pore size increases, indicating a
clear relationship between the pore size and stress effect on both types of bone. Stress levels
peak at about 0.35 s into the mastication cycle, remaining constant even as cycles continue.
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Figure 10. Maximum von Mises stresses in biomimetic Voronoi lattice trabecular and cortical bones
for (a) VTB10, (b) VTB15, (c) VTB20, and (d) VTB25.

3.7. Micromotions in Voronoi Trabecular Bone

Figure 11, which depicts contour plots of the magnitude of micromotion inside the
biomimetic Voronoi-latticed trabecular bone subjected to finite element analysis, shows
a clear relationship between the pore size and micromotion magnitude. Specifically, mi-
cromotion values inside the biomimetic Voronoi trabecular bone increased gradually as
pore diameters increased. For a pore size of 1.0 mm (VTB10), the micromotion was 8.00 µm.
This micromotion increased progressively with the pore size; at 1.5 mm (VTB15), it was
reported at 10 µm, rising to 13.00 µm at 2.0 mm (VTB20), and reaching 17.00 µm at the
maximum pore size of 2.5 mm (VTB25). These results show how important pore size is
when studying the biomechanical behavior of the biomimetic Voronoi trabecular bone,
especially micromotion when dynamic mastication stresses are present.
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Figure 11. Contour plots of the magnitude of displacements in biomimetic Voronoi lattice trabecular
bone for pore sizes: (a) VTB10, (b) VTB15, (c) VTB20, (d) VTB25.

3.8. Displacement in Dental Implant Assembly

Figure 12a–d shows the maximum displacement found in the axial, mesiodistal, and
buccolingual directions for various pore sizes of biomimetic Voronoi-latticed trabecular
bone. The findings show that biomimetic Voronoi-latticed trabecular bones with varied
pore sizes (VTB10, VTB15, VTB20, and VTB25) exhibit maximal displacements in the axial,
mesiodistal, and buccolingual directions. The displacements in the axial direction range
from 111.76 µm for VTB10 to 117.73 µm for VTB25. VTB20 has a mesiodistal displacement
peak of 256.55 µm, whereas VTB25 has the largest buccolingual displacement at 310.07 µm.

3.9. Reaction Forces in Dental Implant Assembly

Figure 13a–d shows the dynamic response forces for the biomimetic Voronoi-latticed
trabecular bones with various pore sizes (VTB10, VTB15, VTB20, and VTB25) in the axial,
mesiodistal, and buccolingual directions. Initially, response forces are zero across all models
until 0.23 s, after which they increase in line with the dynamic loading amplitude. After
0.23 s, the maximum response forces are observed: VTB10 has forces of 529.41 KN axially,
858.6 KN mesiodistally, and 530.86 KN buccolingually; VTB15 has 465.09 KN, 927.27 KN,
and 316.98 KN, respectively; VTB20 has 215.25 KN, 717.68 KN, and 259.8 KN; and VTB25
has 224.21 KN, 788.69 KN, and 329.24 KN in the respective directions.
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4. Discussion

This study looked into the biomechanical design of dental implant systems in great
detail. It used cutting-edge software, like Creo Parametric and nTopology (nTop 4.17.3),
to accurately model both cancellous and cortical bone structures. We used advanced
modeling techniques to make biomimetic Voronoi lattice structures with different pore
sizes that are very similar to the natural porosity and mechanical properties of human
bone. We used finite element analysis (FEA) to assess the impact of these pore sizes
on stress and strain distributions within the bone and implant components, aiming to
enhance implant stability and osseointegration. The main results showed that holes with an
intermediate size, especially those with a diameter of 2.0 mm, made the implants much more
biomechanically compatible. This suggests that dental implant designs and clinical uses
could be improved in this way. The findings we obtained support the argument that was
proposed in the study’s introduction. It is suggested that the variation in pore size inside
biomimetic Voronoi lattice structures affects the stress distribution and micromotion across
the dental implant components, as well as the surrounding cancellous bone. According
to our investigation, a pore size of 1.5 mm provides optimum equilibrium and closely
mimics the dynamic loading response observed in human cancellous bone. This pore size
makes the stress distribution significantly uniform at the implant–bone contact (BIC) by
balancing structural factors, like the beam length and node count, with the biomechanical
needs of dental implants. With a relative density of 15.19% and a surface-area-to-volume
ratio that promotes cell attachment and nutrient transport, this option maintains structural
strength while also facilitating osteointegration. The design effectively mimics the porosity
structure of real bone, improving both mechanical stability and biological compatibility.
Because it distributes stress analogously to naturally occurring cancellous bone, it can
sustain physiological loads and lower the likelihood of stress shielding and implant failure.
Our present findings show that the lattice structure has a porosity of around 84.81%, which
closely matches the porosity range of 75% to 90% seen in real human cancellous bone.
This discovery is consistent with previous research, which has repeatedly established
that trabecular bone has a porosity greater than 70% [17,72,73,76–78], highlighting the
biomimetic accuracy of our lattice design. This shows that the chosen pore size worked well.
This congruence verifies our study’s biomimetic methodology and supports the integration
and vascularization that are essential to dental implants’ long-term effectiveness. As such,
it highlights the possibility of tailored biomimetic Voronoi lattices to augment the lifetime
and efficacy of dental implants, thus making them a model option for mimicking the
intricate interplay between strength and porosity that characterizes human cancellous bone.
Our findings, which show that a 2.0 mm pore size (VTB20) is better for distributing stress
and making dental implants last longer, are in line with what other studies have found.
Our findings support previous research showing the efficiency of biomimetic implants in
distributing stress to neighboring bone structures, ensuring safety and structural integrity
under normal loading scenarios [77]. This agreement underlines the need for regulating
pore size to enhance the biomechanical compatibility and performance of dental implants,
establishing the foundations for future advances in implant design and application.

Figure 6 depicts the study’s findings, which show a significant relationship between
pore size and the mechanical integrity of biomimetic Voronoi lattice trabecular bone, partic-
ularly in the context of dental implants. Pore diameters increased from 1.0 mm to 2.5 mm,
resulting in a decrease in the relative density and an increase in porosity. These variations
have an immediate influence on the implant’s stress distribution properties under dynamic
loading conditions. A lower relative density, which means bigger pores, is more like the
natural structure of human cancellous bone. This makes it easier for the dental implant
system to spread stress evenly. By mimicking the natural load-bearing function, this ad-
vancement promotes osseointegration and lowers the possibility of implant failure. The
2.0 mm (VTB20) configuration stands out as the best candidate among the assessed pore
sizes as it maintains a compromise between preserving adequate structural strength with
a relative density of 8.84% and having sufficient porosity (91.16%) for biological integra-



J. Funct. Biomater. 2024, 15, 94 16 of 22

tion. This pore size successfully mimics the mechanical and structural characteristics of
natural cancellous bone, which optimizes stress distribution and ensures the scaffold’s
endurance under physiological loading conditions [77], thereby extending the lifespan and
functionality of dental implants.

Figure 8 shows that pore size variations in biomimetic Voronoi lattice trabecular bones
have a significant impact on stress distribution across dental implant assemblies, particu-
larly around critical interfaces consisting of implant–bone, implant–abutment, abutment–
screw retaining, abutment–crown, and implant–retaining screw contacts. Stress concen-
trations are significantly reduced when the pore size is increased from 1.0 mm (VTB10) to
2.0 mm (VTB20), which allows for a more uniform stress distribution that is more consistent
with the behavior of natural bones. Despite its intended purpose of mimicking human can-
cellous bone, the stiffness inherent in the smaller-pore-size (VTB10) assembly hinders stress
homogeneity, boosting the possibility of localized failure. The larger-pore-size (VTB20)
assembly makes the implant system more stable and helps it fit together better by improv-
ing its mechanical response and closely matching the load-bearing and stress-dissipation
properties of natural cancellous bone. This optimization shows how important it is to
change the size of the pores in Voronoi lattice structures to find the right balance between
stiffness and porosity when trying to make a design that can withstand mechanical loads
and mimic the biological activity of bone tissue.

Figure 9a–h shows that the maximum von Mises stress inside dental implants and
their retaining screws is significantly influenced by pore size in biomimetic Voronoi-latticed
trabecular bone designs. As the pore size increases from 1 mm (VTB10) to 2.5 mm (VTB25),
the research shows a steady drop in von Mises stress values in both the implant and the
retaining screw. Notably, the stress in the retaining screw decreased from 220.96 MPa to
184.11 MPa, and the stress in the dental implant decreased from 233.84 MPa for VTB10
to 173.48 MPa for VTB25. According to this trend, larger pores may help distribute stress
uniformly, which could prolong the implant system’s lifespan and improve its mechanical
stability. Notably, the ideal stress distribution, defined by a compromise between mechani-
cal integrity and biomimetic porosity, was seen for VTB20, demonstrating that a pore size
of 2.0 mm is the best for imitating the mechanical characteristics of human cancellous bone.
The stress concentration at the implant’s neck and the screw’s mid-region—areas that are
often prone to failure or fracture under cyclic dynamic loading—is significantly reduced
by this improved design. This adaptation mimics human bone’s inherent load-bearing
characteristics, with the potential to increase the implant lifetime and function in clinical
conditions. This work strongly corresponds with previous research aims, highlighting the
importance of mechanical strength and biological characteristics in titanium materials for
biomedical applications [79,80].

Figure 10a–d shows the maximum von Mises stress across cortical and biomimetic
Voronoi lattice trabecular bones, emphasizing the critical role of pore size in the biome-
chanical response of different bone types under masticatory stress. As illustrated, the pore
size directly affects the structural integrity and mechanical behavior of the bone–implant
system. The even stress distribution inside the Voronoi trabecular structure and the stress
concentration at the cortical bone–implant interface serves as evidence for this. The fact
that von Mises stress goes up as pore sizes get bigger and stays the same after 0.35 s shows
that the structural design and dynamic loading response are complicatedly linked. In
particular, changing the size of the pores in the Voronoi lattice trabecular bone creates a
biomechanical environment that is similar to how bones naturally behave. This makes
the stress distribution better and reduces stress concentrations in certain areas that could
cause failure. This optimized distribution pattern not only demonstrates the biomimetic
structure’s capacity to imitate the physiological stress of human bones, but it also represents
a major improvement in finite element analysis (FEA) results. The biomimetic Voronoi
lattice is a better way to predict how bone–implant assemblies will act in real life. This is
because it changes the size of the pores to find a balance between biological activity and
mechanical support. This study uses biomimetic Voronoi-latticed cancellous bone for finite
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element analysis, which is very different from earlier studies that used solid CAD blocks to
model bone structures. By adding the Voronoi lattice’s detailed, porous design, this study
provides a more physiologically realistic description of bone mechanics, improving the
predictability of stress distribution patterns under masticatory stresses. This method not
only improves the biomechanical modeling of bone–implant interfaces, but it also gives a
more nuanced knowledge of the effect of pore size on structural integrity and mechanical
behavior. In line with what other studies have found [81–84], this discovery opens the door
to the creation of bone scaffolds and implants that improve healing by closely imitating the
properties of natural bone.

Figure 11 shows the sizes of micromotions in biomimetic Voronoi-latticed trabecu-
lar bones with four different pore sizes. This shows how important micromotion is in
the biomechanics of dental implants. Larger pore diameters are linked with increased
micromotion, which increases the risk of bone resorption at the bone–implant interface
and fractures in dental implant components, particularly the retaining screw and the im-
plant itself. Additionally, micromotions increase the likelihood of corrosion, especially
when the implant works in a biofluid environment. Despite these difficulties, the research
finds that a pore size of 2.0 mm (VTB20) with a micromotion of 13 µm provides an ideal
compromise between reducing unfavorable biomechanical consequences and providing
a satisfactory degree of mechanical rigidity. This pore size facilitates the structural and
functional integration of the implant into the biological system while also reducing the
chance of implant system failure. As such, these micromotion optimization insights provide
an in-depth understanding of the relationship between pore size and implant function,
which considerably advances the field of biomechanical dentistry research.

Incorporating the observed displacement patterns from Figure 12a–d, the axial and
buccolingual directions show both negative and positive peak displacement amplitudes,
indicating that the dental implant can withstand cyclic masticatory stress. The scenario
demonstrates the implant’s flexibility and mechanical resilience, which are essential for
enduring numerous stress cycles while maintaining structural integrity. Such displacement
patterns indicate that VTB20, with its nuanced response in all measured directions, not
only mimics the normal biomechanical behavior of human bone, but also guarantees the
implant’s capacity to tolerate dynamic stresses experienced in vivo. This modification
emphasizes just how essential it is to choose the right pore size in the Voronoi lattice
trabecular bone in order to maximize the performance of dental implants. VTB20 offers an
excellent balance between mechanical rigidity and flexibility, which is crucial for long-term
clinical success.

Figure 13a–d shows the dynamic reaction forces across different pore sizes of biomimetic
Voronoi-latticed trabecular bone (VTB10, VTB15, VTB20, and VTB25), providing significant
insight into the biomechanical performance of dental implant assemblies. The consistent
lack of response forces for up to 0.23 s, followed by a rise in alignment with dynamic load-
ing amplitudes, demonstrates the implants’ mechanical flexibility to masticatory stresses.
Specifically, the research shows that VTB20 outperforms the other models due to its lower
axial and buccolingual reaction forces and optimum mesiodistal response. This research
implies that a pore size of 2.0 mm promotes a compromise between structural support
and flexibility, allowing the implant to efficiently distribute stresses while maintaining
its biomechanical integrity. The distinct mechanical responses observed at the 0.5 s mark
across all models highlight the importance of pore size in tailoring the biomechanical prop-
erties of dental implants to mimic natural bone behavior, thereby improving the overall
effectiveness and longevity of dental implant systems.

This work advances the biomechanical knowledge of bone–implant interactions by us-
ing advanced finite element analysis (FEA) that extends beyond typical unrealistic models.
Our technique provides a more realistic representation of bone behavior in physiological
settings by replicating the nonlinear and anisotropic features of biological tissues, as well as
including dynamic loading conditions that replicate real-world pressures. This technique
not only eliminates past shortcomings, but it also gives more in-depth insights into the
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performance and stability of biomimetic Voronoi lattice implants, making a substantial
contribution to biomechanical engineering.

In summary, our results show that larger hole sizes result in a less dense, more open
scaffold structure, boosting the surface complexity and perhaps improving osteointegration
and mechanical bonding with bone tissue. An increased pore size increases the scaffold’s
structural mimicry of the natural bone porosity, which has a major impact on the stress dis-
tribution and mechanical endurance of dental implants under dynamic conditions. A 2 mm
pore size emerges as the best dimension, achieving a balance in stress distribution while
also strengthening the structural integrity of both dental implants and retention screws.
This adaptation emphasizes the importance of pore size in optimizing the biomechanical
responses of biomimetic trabecular bone and dental implant assemblies to masticatory
stresses, hence improving performance and durability.

5. Conclusions

This work sought to understand the biomechanical behavior of biomimetic Voronoi-
latticed trabecular bone structures. Using finite element analysis (FEA) to evaluate the
effect of altering pore sizes on stresses and micromotion magnitudes. Hence, the following
are significant inferences from the present study:

• A direct relationship was discovered between the pore size and micromotion mag-
nitude. This highlights the impact of pore size on the biomechanical behavior of
biomimetic Voronoi trabecular bone. This relationship has significance during dental
implant designs that optimize biomechanical performance.

• The research shows that the biomimetic Voronoi-latticed trabecular bone used in FEA
has properties that are similar to real human cancellous bone when subjected to the
applied external dynamic mastication stresses.

• The use of anisotropic characteristics in these novel biomimetic trabecular bones, as
well as the simulation of dynamic mastication stresses, greatly improved the FEA
findings. This method gives a more precise description of biomechanical interactions
in the oral environment, resulting in more reliable implant designs.

• The study found that a 2.0 mm (VTB20) pore size presents the optimal integration of
mechanical rigidity and minimum micromotion, making it a better option to further
enhance the implant lifespan and performance.

• Micromotion optimization considerably reduces the chances of implant failure, such as
fractures in implant components, bone resorption, and corrosion in a biofluid environment.

The research gives significant insight into the biomechanical optimization of dental
implant designs by studying biomimetic Voronoi-latticed trabecular bones. This study
expands possibilities for the design of dental implants that enhance biomechanical compat-
ibility and performance by using modern FEA methods and considering the anisotropic
properties of bone and dynamic loading scenarios. These results demonstrate the signif-
icance of using biomimetic approaches for developing and evaluating the performance
of dental implants, in addition to making advancements in the fields of biomechanical
engineering in dentistry.
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